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1. Introduction. We constder a system with o finite number of states
1,2, - -, 5. Onee o day, we observe the current state s of the system and choose
an waction a from an arbitrary set «1 of actions. As a result, iwo things happen:
(1) we recelve an immediate income 7(s, a), and (2) the system moves t0 a new
state s with probability ¢(s" | s, a). Assume that the incomes are bounded, that
1s, there exists a positive number 1/ such that |i(s, )] = M, s = 1,2, --- | S,
a ¢ 4. The problem is to maximise the average rate of income (to be defined
below ).

Denote by /7 the set of all functions fon S into A. A policy # = {fi, fo, -+ -]
1S a sequencee of functions f, € F. Thus, to use policy # is to choose the action
fa(s) on the nth day, 1t the system is in state s on that day. We shall call a policy
w = {f.} stationary if f, = f,n = 1,2, --- and denote it by . .

With each f & 7, associate (1) the S X 1 vector »(f), whose sth coordinate is
2(s, f(8)) and (2) the S X S stochastic matrix Q(f), whose (s, §') element is
g(s’ |'s, f(8)). Hence, if we use the policy = = {f,}, the n-step transition matrix
of the system is Q.(7) = | |i=1 Q(f:). In particular, if our policy is stationary,
the system becomes a discrete time-parameter Markov chain with stationary
transition probabilities.

Given a policy =, let us denote by W,(x) the S X 1 vector of incomes on the
nth day, when the policy = 1s used. Set

z(w) = liMyaw N 2D Yoy Walar)

whenever the limit exists. Blackwell [1] has shown that the limit exists whenever
r is a stationary policy. In the case of a stationary policy, z(f**) is the vector
of average rates of income, when the policy 7’ is used.

We shall say that a policy fo is optimal among stationary policies if x( fg(w)) =
x(f (m)) for all f € F (for any two S X 1 vectors w; and w. , we shall write w; = w-
1if every coordinate of w; is at least as large as the corresponding coordinate of
w2, and wy > ws if w; = ws and w; ¥ w,).

Blackwell [1] showed that, if A is finite, there exists an optimal policy among
stationary policies. When A4 is not finite, there may not exist an optimal policy.
Consider, for instance, a system with a single state and 4 = {1, 2, ---}. Choice
of action z brings an income of 1 — 1/7 dollars. It is clear that there is no op-
timal stationary policy.

The purpose of this note is to prove:

THEOREM. Let A be arbitrary. Given ¢ > 0, there exists a stationary policy fe
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suchotnal ([ ) Z supy.p z(f ) — ee, where e is the S X 1 vector wilh |

ordinates unaty.

2. Proof of theorem. We introduce a discount factor 3,0 <3 <1,sothat the
value of unit income n days in the future is 8". Bluckwell 1] has shown that the
total expected discounted return from a policy f*“ is given by the S X 1 vector

Va(f) = 2 e B [QUN]*r(f)
and that

z(f*) = limpua (1 — B) V().

With each fe F and each 8, 0 < 8 < 1, let us associate the transformation
Ls(f) which maps the S X 1 vector w into Le(flw = r(f) + BR(f/HHw. We note
that Ls(f) is monotone, that is, w; = w. implies Lg(f)w, = Lg(f)w, . Note that
Vs(f°) is the fixed point of Lg(f).

In order to prove our theorem, we need a lemma.

LeMMA. Let f1, fy, - - - Jr € F (kK = 2). Then there exisis h € F such that

Vﬁ(h(m)) = Vﬁ(f{(m)), 7 = 1; 2: Tt K

for all B = some B, .

Proor. It suffices to prove the lemma for k¥ = 2. The proof for general & then
proceeds by induction.

Denote by u, the sth coordinate of the S X 1 vector w.

Consider Vs(f1"™), and Va(£2“?), . Either V5(1A"), = Va(£™), for all 8 =
some 8 or Va(£i'), < Vs(£:), for a sequence of 8’s tending to 1. But for each
sand each f, Vs(f () ). 18 a rational function of 8, as the representation Vs( f () ) =
[I — BQ(N]) ' r(f) shows. Consequently, either Vs(£i"), = Vi(£), for all
B = some 8" or Vi(i*), < Vs(fa"), for all 8 = some 8”. T hus, for each s,
there exists a 8, < 1 such that either V5(£i*?), = Vs(£), for all 8 = B, or.
Vrﬁ(fj_(M)); < Vs(fg(w)>3 for all 8 = B, .

Let 8. = maxX;c,<s8,. For each 8 = 8,, define u(B), = max (Va(i*™), :
Vs(£2°),). We now define & ¢ F as follows:

h(s) = fi(s)  if Va(A™). 2 Va(£s™), for all 8 = 8
= fa(s)  if Va(A“), < Vs(£2,), forallB = B, 1 S.

Set w(B8) = (w(B)1, w(B)2, ---, u(B)s). It is easy to check that Lg(h)u(B) =
w(B) for all 8 = B, . Denoting by L™ (h) the nth iterate of Ls(h), we see that
Lg™ (R)u(B) = u(B) for N = 1,2, --- and all 8 = B . For fixed 8 = B, . let
N.— «. We get: V3(h") = w(8) for all 8 = B8, . This completes the proof of
the lemma.
Proor oF THEOREM. Set z,° = sup,.r (z(f),) and z* = (21", 257, - -, s ).
Let ¢ > 0. For each s, choose f, ¢ F such that z(f,*), > z.* — . Hence, for
. each s, there exists 8, < 1 such that (1 — B) Tf",a(,f}(""t’))s > z,7 — e for all 8 =

IA
IA

S



1044 ASIIOK MAITRA

8,. Let 8/ = maXi<cs<s 8. . But by the preceeding lemma, there exists A e 7 and
8" < 1 such that Va(A™) = V(7Y for 1 < s £ Sand all 8 = 8”. Hence
(1 — B)Va(}z,(m}) > 2" — eeforallg = max (8°,8"). Let — 1. We aect: 2 (h") =
¥ — ec. The proof is completed by taking b = f. .

Revanx. In [2], T gave an example of a system with countably infinite state
space and finite action space A, where there exists no optimal policy among sta-
tionary policies. It would be of interest to know if there exist e-optimal policies
in this case.
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