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Summary. Customers carrying goods of different types arrilve at an un-

loading station, at which the goods are unloaded into transit
sheds (tanks). The walting time of the customers 1s discussed

for one, two, or more infinite tanks,

Résumé. Des usageurs portant des cargaisons de types différents,

arrivent a un débarcadére ou 1ls débarquent les marchandises
dans des dépots (réservoirs). Le temps d'attente est discuté

pour un,deux ou plusieurs réservoirs infinis,



The queueing model to be described presently is not intended as the
introduction to the formulation of a problem, but rather as a framework

into which a number of simpler problems fit, some of which we will dis-

CUusS.

The arrival process has the following properties:

customers (ships, trucks, etc.) arrive at a single service channel, called

unloading line, carrying loads (e.g. crude oils, ore) of varying sizes and

of m different types; howeVer, each customer carries one type only; we

shall use the term "j-customer" if the load is of type j. The customers

of the wvarious types arrive independently of all others, according to a

1)

Polsson process with density Aj = pjk, ij 1. The size *Eﬂ of a load
of type J has an arbitrary distribution, which only depends on the type j:

]

Pls; < s} = Dj(s)° (1)

The service consists of unloading the goods into one of a number of

warehouses or tanks of given capacities. Type jJ 1s unloaded at a rate T.

J
(units per units of time), whereas the switch-over times from one unloading

operation to another are negligible. There is only one unloading line. A

customer Jleaves the system when the unloading has been completed.,

The tanks, which can be emptied 2)

, can contaln only one type at a

time, When a tank containing type j is emptied, this occurs at a ratecnju
Only one tank can be emptied at a time. After a tank has been emptied, it
can be used for another type. It 1is possible to simultaneously fill and
empty a tank. It 1s also possible to start or to continue emptying a tank,
before one has completely emptied the previous tank, hence we do not a

priori exclude the possibility of preemptive resume priorities.

Stochastic variables are underlined,

We will make a consistent distinction between unloading (of customers)
and emptying (of tanks).



Figure 1 gilves a schematic representation of the system.
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Although the situation 1s a very general one, 1t 1s clear that at
some points quite arbitrary restrictions are made (like the number of
unloading lines being 1).

A related model has been considered by GAVER [1] , the main difference

8 |

being that his "orientation times" do not accumulate like our "emptylng

times" do.

If the number of tanks is equal to (or even greater than) the number
m of different types, and 1f moreover each tank has infinite capacity,
then the problem 1s a well-=known one, as far as the walting~times of the
customers and the queue length are concerned. For, i1n KENDALL's notation,
this is the M/G/1 situation (exponential interarrival times., general service
times, one service channel), the service times being the unloading times
and the one service channel, of course, the unloading line, A less well-
known problem arises when one gets interested 1n the process of the amounts
in the tanks (glven a rule for emptying them).

Specializing further still, by taking m = 1 in the preceding case

(one type and one infinite tank), and T, = ®, one obtains the problem of

o » L ) l & »
the infinite dam (MORAN [31 s LAKACS [:5]) provided the rule for emptying
the tank iss "Empty the tank whenever possible'.



A speclal case in which the customers do experience the influence
of the tanks 1s the following. there 1s one infinite tank,; m > 1;
Tj > uﬁ for all J. In section 3 this case will be treated in some detall,
In sections 4 and 5 some results will be given for two or more

infinite tanks, while T, == for all J-.

Before proceeding to the special cases, let us mention that the

distribution of the duration of the wet periods (i.e. the periods in
which at least one of the tanks is not empty), 1s known when all tanks

are infinite., The following relation is given by TAKACS [_51 >
] C ]
P{6 < t} =-~=J GP{u < x(u) < u + du}
0
where 6 1s the length of a wet period, and
L(u) - l.l + mxﬂg + c O U + l\)i(u)

where v(u) has a Poisson distribution with parameter Au and x. is the

amount carried by an arbiltrary customer, so that Xs has the distribution

function &L p. D.(w.s).
ij J( 5 )

3

In the case of one tank it 1s natural to assume that the tank 18
emptied whenever it contains a positive quantity. Other strategies are

possible, but this one is certalinly not worse than any other,

Things are quite different with the unloading. Although our consider=
ations will be limited to the first-come first-served discipline, 1t 1s
clear that there are other methods, which lead to shorter walting~times.,
It would be interesting to know, for example, how the (expected) waiting-
time will be influenced if one adopts "opportunist" priorities, by which
we mean that priority is given to customers who carry a load of the type
in the tank, if the tank 1s not empty. (If there is more than one customer
waiting who carries that type, or when the tank 1s empty, one could apply
the first-come first-served discipline again.) This method, of opportunist

priorities, has the unusual feature that it 1s not possible to once-and-



for-all rank the types, i.e., the classes to which the customers belong,
1in order of priority,

Whatever the discipline adopted, a stationary state can exist only
when every arriving unit can eventually be taken out of the tank (since
1. > @,, this is indeed the bottle-neck); hence a necessary (and presum-

J J
ably sufficient) condition for the existence of a stationary state 1s:

\u <1 (2)

where

-
]

-
L p. . JELS.¢ (3)
- d =J
J

Suppose now that we adopt the first-come first-served discipline.
When a customer is admitted to the unloading station, he will still have
to wait till the tank has been emptied, unless 1t contalns goods of the
same type, in which case the unloading can start immediately.

Assuming that the process 1s stationary, we will determine the

waiting-time of an arbitrary customer. To this end, we shall consider,

!

beside the "original process", a "modified process' 1in which a customer

never starts unloading before the tank has been emptied. Now, 1in the

modified process we have the familiar M/G/1 situation, the arrival times
being the same as in the original process, and the service times belng the
times required to clear the tank from the load of an arbitrary customer,

Hence, the distribution function D(s) of the service tlmes 1s given by

D(s) = 3 P Dj(sz)e (L)

For this process the stationarywaiting-time distribution can be found; 1ts

Laplace Stieltjes transform ﬁ(t) 1s given by the Pollaczek formula: -

(5)

where p = Kﬁﬁkand ﬁ(t) 1s the Laplace Stieltjes transform of D(s) (see
e.g. KENDALL [2]).



Consider a customer who is of a type which differs from the type
of his immedlate predecessor. For such a customer, not only the arrival
time, but also the moment at which his service starts in the modified
process coincides with the corresponding moment in the original process.
Therefore, the first customer of a sequence of consecutive customers
of the same type, has the same waiting-time in the two processes. (We
might add that the distribution of the waiting-time in the modified process
is independent of the type, which information must eventually be used 1in
the original process, This can be seen by noting that 1t 1s not necessary
to consider the type before the service starts, so that the waiting-time,
which has been completed by then, cannot possibly depend on the type ).

Now, going back to the original process, consider a customer who 1s
the k-th in a sequence of consecutive Jj-customers. The probability that
an arbitrary customer has this property is (1 - pj )pg{, since the event 1n
question is equivalent to: the customer is of type J, the k-1 preceding
customers are of type j, and the k-th customer, counting backwards, 1s of
a different type. Of course, a stationary state is never reached within
a sequence; here we are concerned with the transient behavior. Since a

customer leaves the system after having. completed.the unloading operation,

his service time has the distribution function

Bj(S) = Dj(TjS) (6)

Let 5 k3 .(t) be the Laplace Stieltjes transform of the walting-time

of the k-th customer in a J-sequence. Then

z(1~u.)(A~t)§ (t) - tu, 5 (A=Au,)

o 8 a(t)Zk N - 1 Y R (7)
-};1 K (wu {Aut 2)\% (t)‘L

where Elj is the root with the smallest absolute value satisfying the

equation 1n u:
u = z ﬁj(kmku)s (8)

and where % (t) is the Laplace Stieltjes transform of B (8)-
(ce. TAKACS' (4], p. 55-56).



The functilion Ekj (t) occurs in (7) in a rather implicit manner:
first we have to solve the eqguation (8), and then we still only have
a generating function for the required sequence of functions. The
latter difficulty, however, disappears as we turn our attention to

é,j (t), the Laplace Stieltjes transform of the walting-time Ej of an
arbltrary J-=customer,
A

In (7) and (8) we replace z by p. and 8 . by H, and multiply

13
- o ] . d
b . g. = p. (1-1. thus obtaining:
Y Py a5 = P ( D ) s &
5 q. (1=u.) (A=t)H(t) - tu. H(A=2u. )
6 . (t ) — T“%n B . IR ! NI -.—.~, (9 )
J J }wt-—)\pjﬁj (t)

where uj 1s now the root with the smallest absolute value satisfying

the equation 1n u:

u = P ﬁj(Amxu)a (10)

Hence, the Laplace Stieltjes transform E(t) of the walting-time w

of an arbitrary customer is given by

P-Q: (1“uﬁ>()\”t)ﬁ(t) - tu
E(t ) - Z G-Tl—i S 7 S
iR Amtmkpjéj (t)

aﬁ(lwkua)

By differentiating and substituting t = 0, we obtain the following

formula for the expected walting-time of an arbitrary customer:

D. u.
Ev=En-Jp 27" {=d (1-2€b.) - == F-ru)} (12)
- . L =3 1=u, J

where h 1s the walting~time in the modified process, and b. the service

—J
time (unloading-~time) of a j-customer.
In the special case T = o for all jJ, 1t follows at once from
(10) that uj = pj , While & Ej = 0, hence




and

é;‘:’;’"‘ EEW%ZP?Q?@ {1 = ﬁ(lqj)}c ary

So far, we have not been able to solve the problem of the amounts
1n the tank. Suppose we consider the amount in the tank at the times
when a customer leaves the system (in the original process). The
collection of these times includes all times at which the amount in the
tank 1s maximum., Although this is not the simplest way to obtaln results
on the amounts, it is presumably necessary to solve this problem before
results on the queue lengths can be obtained. We will just indicate now,
how the above gquantities are related to quantities that play a role 1in
the determination of the waiting times.

Let the amount in the tank on the departure of the k=th customer

of a J=sequence be denoted by 55k9 an amount r'. was in the tank at the

beginning of the unloading, and let E-,%k = £jsk ik_zlgkg Then R
ik = zjy 50 - eyTi gy
and
Lix = %5 Lok
where is the time by which the unloading of the k-th customer of a

V.
ka & W
j=sequence can be advanced when going back from the modified process to

the original process. Omitting the subscript j, we have v, = 0 and

7, S . ] iting time in the modified process of the k~th

v, = }_14{9 where }-ik 18 the walting a p

customer (of a j-sequence). One can verify that, for k 2 2, v, =1£1_k 3
)

| =1 : ; ‘ = + R S ¢ S
unless %{ > o1t (e = T }ikm‘s in which case v, = V, , (w S

hence




We will now consider the case where the customers can unload into

one of two infinite tanks, and the number of different goods is greater
than two, with the additional restriction Ij = © for all J. Since we
shall not be 1lnterested in the amounts in the tanks, it can be assumed
without loss of generality that all wj are 1 (by adjusting the sizes of
the loads).

As soon as the number of tanks is greater than 1, it is no longer
obvious how to define a stationary state, Of course, we will require the
expected queue.length to be finite., However, the values of the various para-
meters may be such that a finite expected gqueue length can only be
achieved by allowing the average amount of goods in one of the tanks to
be infinite., Since this is not intended, we will require that there exists
a method of emptying the tanks such that the expected stock size 1is finite,
This again leads to the condition Au* < 1,

Another consequence of introducing a second tank i1s that one has to
choose a strategy for emptying the tanks. We will assume that the loads
are taken away 1n order of arrival,

We now modify the process to the effect that every customer 1s forced
to postpone his unloading operation until one tank is entirely empty while
the other tank contains at most one load. As 1n the one=tank case, the
types play no role in the modified process,

After a customer has joined the queue, the load that he carries will
be 1in one of the following states: 1t waits until 1t can enter a tank, it
waits until it is taken out of the tank, or it is being taken out of the
tank (disregarding the unloading itself which takes no time). The corres-
ponding time intervals will be denoted by h, e, s. Putting h + ¢ = 2z, the

following relation holds for the total waiting=times of the n=th and

(n+1)=8t loads:

Zpeq = 2ex(00zg + 5, - 1) (15)

where Y, is the interarrival time between the n-=th and the (n+1)=st

customers. Hence, the Laplace Stieltjes transform of the stationary

distribution of z is given by:



o (16)

On the other hand, when the quantities g are consldered as service
tilmes; we obtain the relation

ﬁl}n-i-% = m&.}('.(()9 }_111 +Sﬂ mln) zmx(gagﬁ mln) (3'?)

where 5-;1 and l-n are independent.

From ( 17) one has

'ﬁn+j(t) = (18)
where ﬁn%-‘?(t) 1s the Laplac? Stieltjes transform of Hn-!-'i(h) = P{_l_lﬂﬂ < h},
and ﬁn(*t) that of Zn(z) = P{gn < z} . Hence, letting n + =,
(19)

: (20)

In the model we are considering, it is not necessary that a customer
waits until there is only one load left in the tank: some unloading times
can be advanced. However, the sequences " in the original process are
very complicated. For example, a sequence can contain all types, in sharp
contrast to the one=tank case. Moreover, it is not at all clear whether the
first-come first=served principle, which is in many cases adopted for the
sake of simplicity. had not better be dropped in favor of some form of
(opportunist) priorities. For the moment, let us concentrate on the
unloadings that can be advanced without much difficulty, namely the unloadings
corresponding to a sub=sequence of customers of one type. We are then back
in the situation of section 3, and the Laplace Stieltjes transform of the

waiting-=time, and the expected waiting=time are given by (13) and (1k4), the

v o A hhtﬁla.“# a “‘_‘.', . I~ I e g v .“u; 3 e i owge - b Wl R e i . LR LRCREES ™ ' _‘._.- - . - "'ﬁ 4 w

-

A precise definition of & sequence can be given as follows: a new

sequence is initiated by every customer whose departures in the modified

and the original process colncide.



only difference being, of course
ting (19) and (20} into (1

stomer for the abovew

where w is the waiting-time of an

mentioned way of advancing the unloading times,
On comparing (1L4) and (22), it can be seen at once that with the

2?“ S m jé for iy

present policy, the expected waiting

expected waiting=time given by (14), in accordance with what one

intuitively expect.

5. Three or more infinite tanks

When there are k tanks (k > 3), it is still possible to
process in a manner similar to the modific
allowing at most k loads in the tank

at most k=1 loads are present. kEach of these load

8. Hence, when a loa

before the load Just entered can be removed. Hence, the total

time 2z of the n-th load can be split as follows:

=) g |

‘ 2

where h . 18 the waliting=-time
-1 K

takes place, and e the time the n=th customer has to wait for the
8

removal of the i=th load present (i = 1, ..., k=1), where the load
when less than K=

present are counted in order of arrival. Of course,

loads are present Just before the load in question enters 1its te

More generally, define

of the e . are Q.
- 1

z . = h + e
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Then, by the same argument as in section L,

£ﬂ+?9k ) mx(% "E!lgkm? - z1‘1) (25)

E;n.*?si = m(og %ﬁimﬁ = Ll) (l=2900¢91{m1) (26)
= + -

Eﬂ-i-‘“‘i me.x (0, ,En” S, ln) (27)

where gﬁ 1s the service time of the n=th customer and zn the i1nter=

arrival time between the n~th and (n+1)=st customers.

Taking the Laplace Stieltjes transform of (25) and (26), and

letting n -+ ©, one obtains after some factor calculations

Ko 1
En, = Ez, -+ 5 (28)
: pe
where %gl) (X) is an abbreviation for 3-? %1(t):] £ 0 and
5{ lim Enakg 2, lim Eﬁ“ ;3 hence, 5 E.k 18 the expected waiting-time
I1->0 n->o

of an arbitrary customer in the modified process when there are k tanks.
It may be noted that g_lk has an interpretation in the M/G/1 situation:
_1;1_k 18 the waiting-time from the moment of arrival until the first moment

at which there are at most k=1 other customers in the system (including

the customer being served).

Here too, 1t is possible to determine the expected waiting=-time of

an arbltrary customer when his unloading is advanced in the manner

mentioned in section 4, For k = 3, one has
=
{1 'g(AQj)} "'&i“"'{? “z.!(l)}a (29)

For larger values of k, complexity of the formula increases rapidly,

The convexity on (0,») of the Laplace Stieltjes transform is now

required to verify that & w as given by (29) is uniformly smaller than

the corresponding result for two tanks (cf., (22)),
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