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AN INEQUALITY FOR EXPECTED VALUES

OF SAMPLE QUANTILES 1)

By WeR. VAN ZWET

University of Leiden and Mathematisch Centrum, Amsterdam

e INTRODUCTION
Let F be a continuous distribution function on R1, that 1is
strictly increasing on the (finite or infinite) open inter-

val I where 0 < F < 1, and let G denote the inverse of F.

For n =1, 2, see &nd 0O < A < 1, let

g 1 _
- - I'Mo#+1) A(n+1)-1

(1=X){(n+1)=-1

(1-3) dy .

Obviously, 1if Xi:‘ denotes the i~th order statistic of a

sample of size n from the parent distribution F, then
Y(M)KEX‘" 5 im'ﬁ,eg*.a,na

We shall call Yn(l) the expected value of the l-quantile
of a sample of size n from F, even though this interpre-

tation is meaningless when A(n+1) i1s not an integer.
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A1l thas, of course, presupposes that the integral
(1.1) converges, whereas for a sultable choice of G it
may in fact diverge for all A and n. We shall assume,

however, that there exist a,B > 0 such that

¢l
a~1 b—1
(1.2) | G(yly (1=y)~ ‘ay
‘0
converges whenever both a > o and b > B and diverges

1f a < a or b < RB. This i1mplies that for n > a+8,

v 18 defined on

n
_ o __B
(1.3) J. = Pk —— < A <1 n+1}’

and maps Jn on an open 1lnterval In ¢ I. We note that
if o > 0 or B » O and hence I is infinite, In can be
a proper subset of I for all n > a+B. To see this,

consider

2

2 a® - |
Yo =¥ 1log ¥y for 0 <y =7V,

G(y) =y, log

- -2 - -2
= (1=-y) 8log (‘i—y)-(‘l~y0) 8l@g (‘i~y0)
for Yo <7 < 1,

where o, B and:yo are chosen in such a way that

. e-—-E/B <Y = e-—-2/a‘



One easily verifies that G 1s increasing and that the
integral (1.2) converges iff both a > o and b > B. It
follows that for this choice of G, Y, 1s defined on the

closure Jn of Jn and maps Jn on a finite closed subset
of I = (~w,o),

However, this pathological behavior 1s relatively
harmless. For n -+ «, Jn -~ (0,1) and one easily shows
that Inconverges to I for all G that satisfy the conver-
gence condition (1.2). Also, by making minor changes 1n
W. HOEFFDING's proof 1in [é], one shows that Y, converges
to G on (0,1) for n > «.

Consider another continuous distribution function

. . : : s
F*; that 1s striectly increasing on the interval I where

s Y e e o s e -
O < F < 1, and let G , Yn’ Xi:n’ o 4 B Jn and In'be
defined for F*wanalogous to G, Y s e In ffor F. Further-

more let
(1.4) s(x) = ¢ F(x) , xe&l.

In[E] the author studied the following order relations

between F and F*E
(1«5) ¢ 1s convex on I1;

(1.6) F and F represent symmetric distributions and ¢ is

concave-convex on JlL.



Since ¢ 1s simply the unique increasing transformation
that carrles a random variable X with distribution F
into a random variable X. with distribution F*; the
order relations state that X may-.be transformed into
Xﬁhby:an:increasing convex-or: gn increasing concave-
convex transformation. Iflxo denotes the median of F,
relation (1.6) implies that ¢ 1s antisymmetric about
X (1.e. ¢(xo+x) + @(xowx) = 2¢(xo)) because of the
antisymmetry of F and G%; and hence that ¢ 1s concave
for x < X and convex for x > Xq e

Let ¢n be the function that maps the expected

values of the A-guantiles of a sample of size n from

F on the corresponding gquantities for F*-for A@iJn(\J:E

> =1

IIYII

(1.7) 6_(x) = vy (x), x&€I_Av (3).

For n - <, ¢n will converge to the function ¢ on I that
maps the population quantiles of F on those of F*l This
note is intended to show that if relations (1.5) or

(1.6) hold, ¢~ shares the convexity or concave-convexity
of ¢, and the convergence of ¢n to ¢ 1s monotone. A further
elaboration of the convexity property yields a theorem

on the behavior of the ratilio of expected values of spacings
of consecutive order statisties from F and F . Simple

applications are given in section 3.



2. THE RESULTS

THEOREM 2.1

If condition (1.5) holds, cpn(x) 18 convex in x for fixed

n, and non-increasing in n for fixed x.

PROOF

For each fixed n the densities

I (n+1) A(n+1)-1 (_t“y)(’l--)\)(nﬂ )1

(2.1) fk(Y) T{A(n+1))T((1=) (n+1)) v

constitute a one-parameter exponential family for

O < A,y < 1, and consequently the family 1is strictly totally
positive of order « in A and y (cf. [31). According to &
slight elaboration of a result due to S. KARLIN that 1is
given 1in Ele-j, the convexity of ¢n follows from the défi-—-
nition of Y, and Y:; the total positivity of‘fx(y), the

monotonicity of F and the convexity of ¢. Also

| . 1= A A
(2:2) 'Yn()\) - XYI].“}"!(X +m) + (THA)Yn_*.*i(k T 42

o N : . e
and the same holds for Y., This 1s easlily verified by

adding integrands in expression (1.1). Hence, because of

the convexity of ¢n+1s



. 1=X. XL
(2.3) < A ..y . (A + =2+ (1-2)0 .y (A = =) =
Tl = "Tn+1 'n+’ n+2 n+1 n+1 n+2
e 1-A- A e

= M O gt O O - 1) = ),

or, replacing Yn(k)‘by:x,
. e ‘......'! o
(pn"i"! (x) ; Yn Yn (X) — ¢n(X)ﬁ

Tn the same vein we have

If condition (1.6) holds, ¢n(x) 1s antisymmetric concave-

convex about X5 for fixed n, and non~increasing in n for

fixed x > Xy

PROOF

Obviously ¢n 1s antisymmetric about Xqe Since ¢ 1s concave-

% @ &
convex, G 1s a concave-convex function of G and hence

h(y) = G (y) - a - bG(y)

can have at most three changes of sign on (0,1) for any =
and b. If 1t does change sign three times, the signs occur
in the order (-, +, -, +) for increasing values of the argu-
ment. It follows from the variation diminishing property

of totally positive kernels (cf. [3] ) that



Pl

Y (A) = a =Dby () = | h(y)f,(y)dy
n n I 0 A
changes sign.:at most three times on Jn 1f 1t does

have three sign changes, the signs .occur in the order

("""', +3 Bl +)@ SUbStitUting Yn(k) - X e find tha't

¢'n(X) - 8 = bX

g
possesses ‘the .same property on I nYn(Jn) for any a
and b. A simple geometrical argument based on the anti-
symmetry of ¢n shows that this implies that c‘pn 1S concave-

convex about x.. Since for A > 3

OG
(Y AL
(A t o) T (A -3 > s

and hence by the antisymmetry of Y]

( A

- n+2) > X

O
the inequality of (2.3) remains valid now that ¢, 1s anti-
symmetmric and concave-convex instead of convex. This com-

pletes the proof.

We note that in the proofs of theorems 2.7 and 2.2
we have only made use of the total positivity of f)\(y)a
Exploiting the: fact that the total positivity is strict one

finds that- the: convexity (or concave-convexity) in x as



well as the monotonicity in n of ¢n(x) are strict, unless
® 1s linear on I.

The guantities Yn(k) for non-integer A(n+1) were
introduced to facilitate the discussion.of A-quantiles
for fixed A and varying n. Howewer, 1n conslidering the
convexity of ¢_ for fixed n, we may as well restrict
ourselves to the case where 1 = A{n+1) 1s an integer.
Theorem 2.1 then states that 1f condition (1.5) holds,

o3 & -ﬁw £ L *. o
1., 1f G 15 a convex function of G, then EX. 1s &

1:n
convex fUnctiongof‘EXi_n for varyling 1 and fixed n, 1.e.
e e
ED(# — :E:Xu
(2 h) 1+1:n 1: N
) EX . - FEX.
1+ 71:n 1:1n

1s non-decreasing in 1 for fixed n. We recall that the
proof of this assertion rests solely on the fact that the

family (2.1), which for 1 = A(n+1) becomes

oy n! 1=-1,, \n-1
(2*5) fi:n(Y) ~ (i*T)i(n-i)l N4 (1 Y) >

1s totally positive of order i1nfinity in 1 and y for
fixed n. However, the family (2.5) is also totally

positive of order infinity in n and (1-y) for fixed 1.



One easily verilifies that this implies that Elen 1S also

a convex .function of EX. for varying n and fixed 1.

Since EX. 1s decreasing in n for fixed 1, 1t follows

n
that
e g
EXG " EX:: :
1:n 1:n+1
EX. - BX.
1:n 1:n+
is non-increasing in n. Using formula (2.2) for A(n+1) = 1,
1e€,
| 1 n+7l=1
- == . . u _ o
(2 6) EXl:n n+1 EX1+1:n+1 n+ EXl:n+1’
and the corresponding expression for EXi'n’ we find
EX . Y. EX . BX .
i:n Ti:n+1l | Ui+ 1:in+d 1:n+1
X. ~ {., T EX. . - EX. 2
EXl:n EXl:n+1 1+7 :n+ EXl:n+1

and hence (2.4) i1s non-increasing 1in n.
By considering the distribution functions
1 = F (-x) and 1 - F(-x) instead of F and F one easily

shows that

. EX .
n-1+71:n n=-1:n

(2.7)

=
=

n—-i+71:n n-1:n
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1s non-increasing in 1 and non-decreasing in n. The
former conclusion 1s of course eguivalent to the

monotonicity 1n i of (2.4). We have proved

W
If condition (1.5) holds, the quantities (2.4) are
non-decreasing in 1 and non-lncreasing 1n n, whereas

(2.7) is non-increasing in 1 and non-decreasing 1n n.

We note that the last assertion of the theorem may
also be proved directly by using the total positivity
of (2.5) in i and y for fixed (n-1) and applying (2.6).
It may be of interest to point out the similarity
of theorem 2.3 to inequalities that were recently
obtained by R.E. BARLOW and F. PROSCHAN [1] for the
case where F(O) = F (0) = O and ¢ is starshaped
(1.e. ¢(x)/x non-decreasing on I). By total positivity

arguments similar to those given above they show that

is non-decreasing in 1 and non-increasing 1n n, whereas



EX .
nn-1:Il

is non-lncreasing 1in 1 and non-deereasing in n.

3. APPLICATIONS

Let F be the unaform distribution function on

(0,1), hence

Yn(K) = A for O < A < 1,

s for mjage

¢ = G and ¢_ =y . If F is gifferentiable on T,

Il

it satisfies conditions (1.5) or (1.67) if its density
F'ois non—-lincreasing on I*; or symmetric and unimodal
respectively. Consequently we have:

The expected value of the A-quantile of a sample of
size n from a distribution with non-increasing density
is a non-lncreasing function of nj 1f the density 1s

symmetric and unimodal the conclusion remains valid

o w & ] 2
for A > 3. Moreover, if F ' is non-increasing,

sl -

(n+1)(EX. - EX. ) 1s non-decreasing in i and
1+13n 1:n
“ ing 1 h (n+1)(EX_ X . )
non-increasing in n, whereas (n+ , - ﬁ
& ? n-1+1:n n-1:n

1s non-decreasing 1n n.
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As & second example consider the case where P
denotes the exponential distribution function. Then
condition (1.5) 1s satisfied 1f the distribution F
has 1ncreasing failure rate

F'(x)

a(x) = T—F )

(cfa D] or [5] )e We have (cf. similar results 1in DJ):
If F has increasing faillure rate, then
(n-"l)(E}(i

. = EX. ) 1s non-~-increasing 1n 1 and
+1:n 1:n

)

nen—-decreasing in n, whereas (EX - EX

n-1+1:n n—1:n

1s non-increasing 1n n.
For other cases where relations (1.5) or (1.6)
are satisfied and the results of this paper may be

applied, the reader 1s referred to [Ej.
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