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Let F be a continuous distribution function on R1 that is 

strictly increasing on the (finite or infinite) open inter

val I where O < F < 1, and let G denote the inverse of F. 

For n - 1, 2, ••• 

( 1 • 1 ) 

and O <A< 1, let· 

• ( 1-

1 

0 

-1 dy. 

Obviously, if X. denotes the i-th order statistic of a 1:n 

sample of size n from the parent distribution F, then 

• 
l = E X. , 

1:n 
• 
1 = 1,2, ••• ,n. 

We shall call y (A) the expected value of the A-quantile n 

of a sample of size n from F, even though this interpre-

tation is meaningless when A(n+1) is not an integer. 

We shall ass11rne that for some A the integral converges for 

sufficiently large n, which ensures that the sarr1e will hold 

for every O <A< 1. By making minor changes in W. HOEFFDING's 

proof in 2, one shows that y converges to n G on (0,1) for 
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Consider another continuous distribution function * F 

that is strictly increasing on the . * interval I where 0 
)( 

< F < 1 , 

* * )( * and let G, y and X. be def'ined for F analogous to G, y 
n 1:n n 

and X. for F. Furthermore let i:n 

( 1 • 2) q> ( X) = G *F ( X) , X 6I. 

In the author studied the following order relations between 

F and 

( 1 • 3) 

* F : 

• is convex on I; 

( 1 • 4) * F and F represent synimetric distributions and 

• is concave-convex on I. 

If 

. . ..,,...,.....,. . is ant 1sy1urnetric 

and hence that is concave for x < x0 and convex for x > x 0 • 

Let ct, be the function that maps the expected value of 
n 

the A-quantiles of a sample of size n from Fon the correspond-

( 1 • 5) 

* F : 

ct, (x) = Y y X. 
n n n 

For n + 00 , q> will converge to the function ct, on I that maps 
n 

* the population quantiles of Fon those of F. It is shown in 

shares 

the convexity or concave-convexity of ct,, and the convergence 
' 

of cp to cp is monotone. Tne convexity property yields a theorem 
n 

on the behavior of the ratio 

consecutive order statistics 

are given in section 3. 

' 

of expected values of 

)( . 
from F and F. SJmple 

• spacings of 

applications 
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2. THE RESULTS 

THEOREM 2.1 

If condition (1.3) holds,~ (x) is convex in x for fixed n 

n, and non-increasing inn for fixed x. 

PROOF 

For each fixed n the densities 

r ( n+ 1 ) ~----.;... ---r 1-A n+1 

constitute a one-parameter exponential fwnily for 

0 < A,Y < 1, and consequently the family is strictly totally 

positive of order 00 in A and y (cf. 

slight elaboration of a result due to S. 

0 0 

given in 4~, the convexity of 

• • nition of v 'n 
* and y , the total n 

¢ follows n 

popitivity 

" According to a 

from the defi

the 

monotonicity of F and the convexity o~ ¢. Also 

(2.2) 

)( 

and the same holds for y. This is easily verified by 
n 

adding integrands in expression (1.1). Hence, because of 

the convexity of ~n+ 1, 

(2.3) 

~ 

n+ 

or, replacing y (A) by x, 
n 

* 1 < Y Y- (x) 
n n 

cp (x). 
n 

• 
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In the same vein we have 

THEOREM 2.2 

If condition ( 1.4) holds, q> (x) is antisymtnetric concave
n 

convex about x0 for fixed n, and non-increasing inn for 

fixed x > x 0 . 

I 

PROOF 

Obviously <P is n 
0 • 

antisymmetric about x
0

• Since~ is concave-

* convex, G • is a concave-convex • ~ction of G and hence 

h(y) 
)( 

G (y) - a - bG(y) 

can have at most three changes of sign on (0,1) for any a 

and b. If it does change sign three tjmes, the signs occur 

in the order(-,+,-,+) for increasing values of the argu

ment. It follows from the variation djminishing property 

of totally positive kernels (cf. _3_) that 

r1 

0 

* y (A) - a - by (A)= 
n n 

changes sign at most three tjmes; if it does have three 

sign changes, the signs occur in the order(-,+,-,+). 

Substituting y (A) 
n 

x we find that 

<P (x) - a 
n 

bx 

possesses the saxne property for any a and b. A simple 

• • geometrical argument based on the antisyminetry of 

shows that this implies 

x 0 • Since for A > 1 
~ 

' ' 

that <P is concave-convex 
n 

n+2 . > 1 , 

and hence by the antisyrmnetry o:f y 
n+1 

<Pn 

about 



1-A + 

5 

> 2x 
0 

the inequality of (2.3) remains valid now that¢ is antin 

syrn1r1etric and concave-convex instead of convex. This com-

pletes the proof. 

• We note that in the proofs of theorems 2.1 and 2.2 

we have only made use of the total positivity of 

' 

Exploiting the fact that the total • • • • positivity 1.s strict one 

finds that the convexity (or concave-convexity) in x as 

• • well as the monotonicity inn of¢ (x) are strict, 
n 

unless 

¢ is linear on I. 

The quantities y (A) for non-integer A(n+1) were 
n 

introduced to facilitate the discussion of A-quantiles 

for fixed A and varying n. However, in considering the 

convexity of ¢n for fixed n, we may as well restrict 

ourselves to the case where i = A(n+1) is an integer. 

Theorem 2.1 then states that if condition (1.3) holds, 

• " . i.e. if 
)( 0 

G is a convex function * of G, then EX. 1S a 
i :n 

convex function of EX. for varying i and fixed n, 
1 :n 

~ 

(2.4) 
EX. -

1+1 :n 
EX. -

1+1 :n 

)( 

EX. 1:n 
EX. 1:n 

• i.e. 

is non-decreasing in i for fixed n. We recall that the 

proof of this assertion rests solely on the fact that the 

fa.mily (2.1), which for i - A(n+1) becomes 

(2.5) ---, y 1-y , 
i-1 ! n-i • 

is totally positive of order infinity in i and y for 
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fixed n. However, the family (2.5) is also totally 

positive of order infinity inn and (1-y) for fixed i. 

One easily verifies that this . . * 1.mpl1.es that EX. 
l.: n 

• is also 

a convex function of EX. for varying n and fixed i. 
J.: n 

Since EX. is decreasing inn for fixed i, it follows 
l.: n 

that 

* EX. 
1:n 

EX. 
i:n 

)4 

- EX. 1.:n+1 
- EXo 1:n+1 

is non-increasing inn. Using formula (2.2) for A(n+1) = i, 

• 
l.. e • 

(2.6) EX. 
i:n 

• 
1. 

= -- EXo + n+1 1+1 :n+1 
n+1-i 

n+1 
EX. , 

1:n+1 

0 • 

and the corresponding expression for 
X .. 

EX. , we find 1:n 
)( 

EX. 
i:n 

EX .. 
i:n 

)( 

- EXi:n+1 
- EX. 1.:n+1 

* * EX. 
1.+1 :n+1 

- EX. 1.:n+1 
EX. 

1.+1 :n+1 EX. ' 
1.: n+ 1 

and hence (2.4) is non-increasing inn. 

By considering the distribution functions 

)l -X-
1 - F (-x) and 1 - F(-x) instead of F and F one easily 

shows that 

* 
(2.7) 

EX . -n-1.+1 :n 
EX . -

n-1.+1 :n 

)( 

EX . 
n-1.:n 

EX . 
n-1.:n 

is non-increasing in i and non-decreasing inn. The 

fo:t".tner conclusion is of course equivalent to the 

monotonicity in i of (2.4). We have proved 

Theorem 2.3 

If condition (7.3) holds, the quantities (2.4) are non-

decreasing in i and non-increasing inn, whereas (2.7) is 
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• • non-decreasing inn. 

We note that the last assertion of the theorem may also be 

proved directly by using the total positivity of (2.5) in 

i and y for fixed (n-i) and applying (2.6). 

It may be of interest to point out the similarity of 

theorem 2.3 to inequalities that were recently obtained by 

R.E. BARLOW and F. PROSC~ ~1~ for the case where 

F(O) * F (0) = 0 and¢ is starshaped (i.e. ¢(x)/x non-

decreasing on I). By total positivity arguments similar to 

those given above they show that 

* EX. 
1:n 

EX. 
i: n 

is non-decreasing in i and non-increasing inn, whereas 

• 0 • 

is non-decreasing inn. 

3. APPLICATIONS 

* EX . 
n-1:n 

EX . 
n-1:n 

Let F be the uniform distribution function on (0,1). Then 

for 0 <A< 1, 

* ¢ ..... G and cp 
n 

* *· " . *. . = y. If F is differentiable on I, it satis-
n 

• • 0 

fies conditions 

creasing on I><, or symmetric and uni1nodal respectively. Conse-

quently we have: 

The expected value of the A-quantile of a srunple of size n 

from a distribution with non-increasing density is a non-
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m • 

1.ncreas1.n,g \,4.1,,Lction of n; i.r the density :is a.·· , etric and 

unimodal the conclusion remains valid for ). > j. Moreover, 

)( >@ 

1+ :n 
4 ' 

- EX. J 1:n 
""' 1.a non-

decreasing in i and non-increu ing in n I vhereu 

>( 

(n+1) (EX 
n-i+1 :n 

;, 

- EX . ) i.s non-decreaain.g in n. n-1:n 

As a second example consider the case vhere F denotes 

the exponential distribution function. Then condition ( 1. 3) 

is satis:ried if the distribution F has increasi.ng failure 

rate 

q(x) = F' (x) -1 - F x ·. 

- ). We have (cf. similar resulta in ·.1. ): 

If F has increasing faill.1re rate, then ( n-i ) ( EX • . - EX • ) 
1+1 :n 1:n 

is non-increasing in i and non-decreasing inn, vherea.s 

n. 

For other cases vhere relations (1.3) or (1.4) are 

satisfied and the results of this pa.per may be applied, the 

reader is referred to 
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