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1. Introduction. Let F be a continuous distnbution function on R! that 1s
strictly increasing on the (finite or infinite) open interval I where 0 < F < 1,
and let ¢ denote the inverse of F. Forn = 1,2, --- and 0 < N < 1, let

(1.1) va(A\) = [T(n 4+ 1)/T(A\(n + D)T1 = N)(n + 1))] Jo G(y)yH
(]_ _— y)(l“k)(n-}-l)“l dy.

Obviously, if X;., denotes the 7th order statistic of a sample of size n from the
parent distribution ¥, then

vo(2/(n + 1)) = EX;.,, 1= 1,2, , n.

We shall call v,(A) the expected value of the A-quantile of a sample of size n from
F, even though this interpretation is meaningless when A(n 4 1) is not an integer.
We shall assume that for some A the integral converges for sufficiently large n,
which ensures that the same will hold for every 0 < N < 1. By making minor
changes in W. Hoeffding’s proof in [2], one shows that v, converges to Gon (0, 1)
forn — .

Consider another continuous dlstrlbu’mon function F that 1s strictly mcreasmg
on the interval I* where 0 < F* < 1, and let G™, va a..nd Xi.a be defined for F*
analogous to G, v. and X;., for F. Furthermore 1et

(1.2) $(z) = GTF(2), - ~ x e l.
In [5] the author studied the following order relations between F and F™:
(1.3) ¢ 1s convex on [;

(14) F and F* represent symmetric distributions and ¢ is concave-
convex on [.

If z; denotes the median of F, relation (1.4) implies that ¢ is antisymmetric

about zy (1.e. (2o + ) + ¢(xy — x) = 2¢(x0)) and hence that ¢ is concave for
z < x9 and convex forxz > zg.

Let ¢, be the function that maps the expected value of the A-quantiles of a
sample of size n from F on the corresponding quantities for F*:

(1‘5) - ' | - Pa(x) = 7n*7n*1($)'
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For n — o, ¢, will converge to the function ¢ on I that maps the population
quantiles of F on those of F™. It is shown in this note that if relations (1.3) or (1.4)
hold, ¢. shares the convexity or concave-convexity of ¢, and the convergence of
én t0 ¢ 1s monotone. The convexity property yields a theorem on the behavior of

the ratio of expected values of spacings of consecutive order statistics from F
and F~. Simple applications are given in Section 3.

2. The results.

TueoreEM 2.1. If condition (1.3) holds, ¢.(x) 1s convex in x for fixed n, and
non-wncreasing in n for fixed z.
Proor. FFor each fixed n the densities

(2.1) A(y) = [L(n + 1)/T(Mn + 1))T((1 — N)(n + 1))]

A{n-+1)—1 (1—A) (n+1)—1
-y (1 — y)

constitute a one-parameter exponential family for 0 < N,y < 1, and consequently
the family 1s strictly totally positive of order « in A and y (e¢f. [3]). According to a

slight elaboration of a result due to S. Karlin that is given in [4], the convexity

_ of ¢, follows from the definition of v, and v,", the total positivity of firly), the
monotonicity of F' and the convexity of ¢. Also

(2.2) a(N) = Maaa(XA += (1 = N)/(n 4+ 2)) + (1 — N)vaun(X = N/ (n + 2))

and the same holds for v,™. This is easily verified by adding integrands in ex-
pression (1.1). Hence, because of the convexity of ¢nii,

Pn+1Yn(A)
= Pna1i(AMara(N+ (1 —N)/(n + 2)) + (1 — X)‘Ynj-l(k — N (n +2)))
(2.3) = AMnp1Vnit(A+ (1 —N)/(n 4+ 2)) 4+ (1 = N)Pat1¥npn(X — N (n+2))
= Maa(A + (1 = N)/(n + 2)) + (1 — Nvaad — M (n + 2))
= vn (M), '

or, replacing v.(A) by z, bni1(T) = 'Yn*'Yn_l(x) = ¢a(z).
In the same veln we have
THEOREM 2.2. If condition (1.4) holds, ¢.(x) is antisymmetric concave-convex
‘about x, for fixed n, and non-increasing in n for fixed z > z,. |
- Proor. Obviously ¢, is antisymmetric about z,. Since ¢ is concave-convex,
G* is a concave-convex function of G and hence

My) = G (y) — a — bG(y)

can have at most three changes of sign on (0, 1) for any a and b. If it does change
sign three times, the signs occur in the order ( —, +, —, 4+ ) for increasing values

of the argument. It follows from the variation diminishing property of totally
positive kernels (cf. [3]) that

Yot (A) — a — bya(N) = [sr()fi(y) dy
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changes sign at most three times; if it does have three sign changes, the signs
occur 1n the order ( —. +—. —. -+ . Substituting y.(\) = r we find that O.(L) —
a — bx possesses the same property for any a and b. A simple geometrical argu-
ment based on the antisymmetry of ¢, shows that this implies that ¢, is concave-
convex about xo . Since for X > %

(N 4+ (1 =N)/(n+2)) 4+ N=N(n+2)) >1,
~and hence by the antisymmetry of v,

Yr+1( N (1 —N)/(n + 2)) + Yrrr(N — N/ (n + 2)) > 2x,

 the inequality of (2.3) remains valid now that ¢, is antisymmetric and concave-
- convex mstead of convex. This completes the proof.
We note that in the proofs of Theorems 2.1 and 2.2 we have only made use of

the total positivity of fi(y). Exploiting the fact that the total positivity is
strict, one finds that the convexity (or concave-convexity) in z as well as the
monotonicity 1n n of ¢.(z) are strict, unless ¢ is linear on I.

The quantities vy,(N\) for non-integer AN(n + 1) were introduced to facilitate
the discussion of N-quantiles for fixed N\ and varying n. However, in considering
the convexity of ¢, for fixed n, we may as well restrict ourselves to the case
where 2 = A(n - 1) is an integer. Theorem 2.1 then states that if condition (1.3)
holds, i.e. if G™ is a convex function of @, then EX7., is a convex function of
EX;.. for varying ¢ and fixed n, i.e.

(2-4) | (EX?-Hm i EX?n)/(EXH—In - E-Xim)

1s non-decreasing in 7 for fixed n. We recall that the proof of this assertion rests
solely on the fact that the family (2.1), which for 2 = A(n 4+ 1) becomes

(2.5) Fin(y) = Y/ — DI(n — )y (1 —y)",

is totally positive of order infinity in 7 and y for fixed n. However, the family (2.5)

is also totally positive of order infinity in n and (1 — ) for fixed 7. One easily

verifies that this implies that EX:., is also a convex function of EX;., for varying
n and fixed 7. Since FX ;.. 1s decreasing in 7 for fixed 7, 1t follows that

(BXin — EXinn1)/(EXi:n — EXiini1)
is non-increasing in n. Using formula (2.2) for AM(n + 1) = 7, l.e.
(2.6) EX:w = [/(n 4+ D]IEXiampn + [(n + 1 — 2)/(n + 1D]EXsian1,
and the corresponding expression for EX.n , we find
(EX3n — EXGnt1)/(EXin — EXinn)
— (BEXTamn — EX5n)/(EXtmss — EX i),

and hence (2.4) 1s non-lncreasing in n. . '
= By considering the distribution functions 1 — F (—=z) and 1 — F(—=z) 1n-
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stead of F and F™ one easily shows that
(2'7) (EX;l:wi-i—l:n - E-X'zmi:n)/(Eani+1:n . EXn—-«-i:n)

1s non-increasing in 7 and non-decreasing in n. The former conclusion is of course
equivalent to the monotonicity in ¢z of (2.4). We have proved

THEOREM 2.3. If condition (1.3) holds, the quantities (2.4) are non-decreasing
tn 1 and non-increasing in n, whereas (2.7) s non-decreasing in n.

We note that the last assertion of the theorem may also be proved dircetly
by using the total positivity of (2.5) in 7 and y for fixed (n — z) and applying
(2.6).

It may be of interest to point out the similarity of Theorem 2.3 to inequalities
that were recently obtained by R. E. Barlow and F. Proschan [1] for the case
where F(0) = F*(0) = 0 and ¢ is starshaped (i.e. ¢(z)/z non-decreasing on I).
- By total positivity arguments similar to those given above they show that
EXT./EX,., is non-decreasing in = and non-increasing in n, whereas EX n—iin/
EX, i 1s non-decreasing in n.

3. Applications. Let F be the uniform distribution function on (G, 1). Then
Yo(A) = A for 0 < N1,

» = G and ¢, = v.". If F* is differentiable on I™, it satisfies conditions (1.3)
or (1.4) if its density F*' is non-increasing on I, or symmetric and unimodal
- respectively. Consequently we have:
The expected value of the A-quantile of a sample of size n from a distribution
with non-increasing density is a nonmincre&sinb function of n; if the density is
' symmetnc and unimodal the conclusion remains valid for N > %. Moreover, if
F*¥ is nen-mcreasmg, (n + )(EXia — EXin) is non-decrea,smg in ¢ and
non-increasing in n, whereas (n 4+ 1)(EXn—i+1:m — EXn—i:m) is non-decreasing
in 7. .
As a second example consider the case where F~ denotes the exponential

distribution function. Then condition (1.3) is satisfied if the distribution F has
Increasing fallure rate

¢(z) = F(z)/(1 — F(2))

(cf. [1] or [3]). We have (cf. similar results in [1}): If F has increasing failure
rate, then (n — 7)(EXi:» — EX,.n) 1s non-increasing in ¢+ and non-decreasing
in 7, whereas (EX,_it1:n — EX,_:i:n) 1s non-increasing in n.

- For other cases where relations (1.3) or (1.4) are satisfied and the results of
this paper may be applied, the reader is referred to [5].
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