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_Su1nrt1:ary 

Is it possible to arrange a given sequence of MN 
' 

real n111nbers into an M )( N matrix such that all second 
• 

differences as defined by 2) are non-negative? The 

answer is afrirmative for M 2 and arbitrary N, and also 

f'or M N 3. In these cases there is a uniform rule,· 

valid ror all sequences, stating f'or each i the position 

in the matrix assigned to the i••th smallest number of' 

the given sequence. For M 3 and N 4 the answer is 

again arrirmative,but ror this and larger matrices no such 

unirorm rule is valid for all sequences simultaneously. 

The problem for larger Mand N is open, 
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1,2, . .. ,N, such that 

i = 1, ... , N-1. 
·,. 

An attempt to generalize this statement I'or two 

d ensions raises the rollowing question. Given a set of 
" 

arbitrary real numbers, is it always possible to label 

them as i 1, .. . ,M; j 1, ... ,N, such that 

• 

2) 
• 

:for ·1 1, ... ,M-1; j 
• 

The problem rephrased in 

• 

+ 

• 

1, ... ,N-1 . 

> 0 • 
' 

matrix notation becomes: 

given a set of' :MN arbitrary real numbers, is it possible 

to arrange them into an M ~ N matrix such that ror every 

2 x 2 submatrix, the sum or the numbers on the main diagonal 
, 

is larger than or equal to the sum or the entries on the 

other diagonal? A matrix having this property may be called 

a 6-monotone matrix . 
• 

From now on we reserve the name ''square'' f'or a 2 x 2 . , 

matrix consisting o~ 

On first sight ~-mono~onicity seems 

stronger than 2), as it rerers to all 2 x 2 submatrices 

and not only to the squares. But it is obvious that a 

second a1rrerence in any 2 x 2 aubmatrix can be written as 

• 
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• 

the sum or such differences in the squares or which it 
' 

consists. 
• 

• 

A surricient, but not necessary, condition ror (2) 
• 

is If we place 
• 

arrows originating in the larger number and pointing to 

the smaller, the configuration of Fig. 1 called a vertical 

arrangement, V) ensures a nonnegative difference. lhe 

same holds I'or Fig. 2 horizontal arrangement, H). 

V 

F:l.g ~ 1 

Let the given 

sequence 

Then the case M 

H 
• 

7 

+1 • 

Fig. 2 

numbers be arranged in a non-decreasing 

• 

2, N arbitrary can be solved by a sequence 

or horizontal arrangements (Fig. 3) and the case M 3, 

4) , N 

' 

• 

• 

• 
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• 
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Fig. 4 

The arrangements displayed in Figures 3 and 4 are based 

exclusively on the indices of the ordered numbers as given 
\: I 

by 3: there is a function Fm)= j,k) mapping the indices· 

4 

m 1, ... , onto the pairs (j,k) for j 1, . ., . ., M and k =1, ... , N. 

For exa1nple in Figure 4, F ( 9 ). (1,1), F 4) (1,2) etc. 

Such an arrangement of MN numbers into a ~-monotone matrix 

will be called a ''uniform'' solution implying thereby that 

it holds irrespective of the magnitudes of the numbers. 

An arrangement of the numbers ·will be said to have 

'' circularity'' or a '' circular pa th'* if it is possible to start 

• 

' 

• 
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from a corner of a square and arrive at the same place after 

following a path directed by the arrows. 

The rollowing theorems show that the arrow device has 

only 1 uited value and that a uniform solution is 
• 

M > 3 and N > 4. 

Theorem 1. A uni~orm solution cannot have circularit 
' ·i-

, an yw ~ere. 

Proof: Circularity implies that all the numbers in that path 

f'or 

' 

are equal which in turn implies that the solution is not uniform, 
• 

Theorem 2. ,Eyery. _ squar~ . i_n a unit'orm solution has to have 
p ■ 7 97 I a 1 7 P 

I 

either ,h9rizon~al o~_ ~ertical arrang_~m~~~· 

• 

' 
Proof: Suppose one of the squares is neither circular nor 

• 

has the horizontal or vertical arrangement . 
• 

For example consider 

• 

--1, j ) ---< I i, j+l.) 

. -

i+l,j) ----c·! .••····• i+l, j+l 
• 

• • 

Fig. 5 • 

Further, suppose that the solution written in the t'unctional 
• 

• • 
• 

foI1rn is such that F J, 

•• • < b • Obviously the indices which are mapped into 1,j+l, 

5 
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numbers is • • • 0 and fl • • 

l; the square under consideration destroys~ monotonicity . 

. The same argument holds ror the other squares which do not have 

vertical or horizontal arrangements. 

Theorem 3. A unirorm solution can have at most one vertical 
• 

arran-ement in a row and at most one horizontal arran ement 
• 

in a column. Thus a unit'orm solution can have at most M-1 
• 

vertical and N-1 horizontal arrangements. 

Proot': Suppose there are two squares with the vertical 

arrangement in the same row. Obviously these cannot be 

adjacent. Suppose they are separated by a chain or squares 
. 

with the horizontal arrangement. This, however, leads to 

circularity see Figures 6a and 6b) which is not admissible 
• • • • 

in a uniform solution by Theorem 1. This shows that the 
• 

assertion regarding the vertical arrangements holds. That 

for the horizontal arrangements f'ollows in the sar,ne manner. 

7 I ): 

V H V V H H V 
....(1 Ii 

~ n e --1 I I 

• • 

Fig. 6a Fig. 6b 

• • 
• • 

Theorem 4. A unirorm solution ror M > 3 and N·> 4 or for 
• • 

M > 4, N > 3 does not exist. 
• 

.. 

• 

• 

• 
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Proof: There are M-1 N-1 squares and by Theorem 3 at most· 

M+N-2 or these can have the vertical or the ho~izontal 

arrangements. The nonexistenpe or a uniform solutiCn 
' 

follows from Theorem 2. ' 

Above theorems of course do not imply that 6 monotone 

arrangements are not possible. 

However it seems reasonable to·suppose that it will be 
• 

• 

increasingly difficult to find a ~-monotone arrangement as 
' 

• 

' 

M and N increase. The absence of' a uni:ror·rn rule shown in 

• 

' 

Theorem 4 does not mean however that it is a hopeless task . 

• 

Theorem 5. Any s~quence _of 12 .~ea~ .numb,ers,,, ,can pe. ~r,ra~g"".ed 
I 

into a ~-monotone 3 ~ 4 matrix .. 
• 

Proor: In Figures 7, 8, 9 all squares have the horizontal H -

or the vertical V) arrangement except t'or those marked*· 

It £allows that the arrangement in Fig. 7 works as soon as 
.. . 

S ilarly, the rule or Fig. 8 works as 
• 

soon as - _ - In the remaining case 

the rule o~ Fig. 9 works . 
• 

• 

•• 

b . 
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The problem ror larger Mand N is still open. So far 

no counterexa.,nple f'or M N 4 has been found, and it seems 

probable that the proor 9f Theorem 5 could be extended to 
• 

cover this case. However, each figure now leads to three 

inequalities as only 6 or the 9 squares can be made Hor V 

Theorem 3) . ' 

As a passing remark it should be noted that the possib:tlity 

or 6 monqtone arrangement remains invariant under the shift 

' 

and scale transf'ormations o:f' the given sequence of n,11nbers. Also· 

a convex combination of two~ monotone matrices is 6 monotone, 
• 

• 


