STICHTING MATHEMATISCH CENTRUM
 2e BOERHAAVESTRAAT 49 AMSTERDAM

SP 98

S 370

Kumar Jogdeo
W. Molenaar
Δ - Monotone Arrangements of Real Numbers.

1966
Δ-Monotone Arrangements of Real Numbers*
Kumar Jogdeo ${ }^{* *}$ and W. Molenaar
Courant Institute, N. Y. and Mathematisch Centrum, Amsterdam

Summary

Is it possible to arrange a given sequence of $M N$ real numbers into an $M \times N$ matrix such that all second differences as defined by (2) are non-negative? The answer is affirmative for $M=2$ and arbitrary N, and also for $M=N=3$. In these cases there is a uniform rule, valid for all sequences, stating for each i the position in the matrix assigned to the 1 -th smallest number of the given sequence. For $M=3$ and $N=4$ the answer is again affirmative,but for this and larger matrices no such uniform rule is valid for all sequences simultaneously. The problem for larger M and N is open.

[^0]Given a set of N arbitrary real numbers, it is always possible to label them $a_{1}, i=1,2, \ldots, N$, such that
(1)

$$
\Delta_{1}=a_{1+1}-a_{i} \geq 0, \quad i_{i}=1, \ldots, N-1
$$

An attempt to generalize this statement for two dimensions raises the following question. Given a set of MN arbitrary real numbers, is it always possible to label them as $a_{1 j}, \mathcal{I}=1, \ldots, M ; j=1, \ldots, N$, such that

$$
\Delta_{i j}=a_{i+1, j+1}-a_{i+1, j}-a_{1, j+1}+a_{1 j} \geq 0 ;
$$

(2)

$$
\text { for } 1=1, \ldots, M-1 ; j=1, \ldots, N-1
$$

The problem rephrased in matrix notation becomes: given a set of $\mathbb{M N}$ arbitrary real numbers, is it possible to arrange them into an $M \times N$ matrix such that for every 2×2 submatrix, the sum of the numbers on the main diagonal is larger than or equal to the sum of the entries on the other diagonal? A matrix having this property may be called a Δ-monotone matrix.

From now on we reserve the name "square" for a 2×2 matrix consisting of four neighbor elements $a_{i j}, a_{i+1, j}$, $a_{i, j+1}, a_{i+1, j+1}$. On first sight Δ-monotonicity seems stronger than (2), as it refers to all 2×2 submatrices and not only to the squares. But it is obvious that a second difference in any 2×2 submatrix can be written as
the sum of such differences in the squares of which it consists.

A sufficient, but not necessary, condition for (2) is that $a_{i j} \geq a_{i+1, j}$ and $a_{i+1, j+1} \geq a_{i, j+1}$. If we place arrows originating in the larger number and pointing to the smaller, the configuration of Fig. l (called a vertical arrangement, V) ensures a nonnegative difference. The same holds for Fig. 2 (horizontal arrangement, H).

Fig. I
$a_{i j} \longrightarrow a_{i, j+1}$

Fig. 2

Let the given $\mathbb{M N}$ numbers be arranged in a non-decreasing sequence

$$
\begin{equation*}
\mathrm{b}_{1} \leq \mathrm{b}_{2} \leq \cdots \leq \mathrm{b}_{\mathrm{MiN}} \tag{3}
\end{equation*}
$$

Then the case $M=2, N$ arbitrary can be solved by a sequence of horizontal arrangements (Fig. 3) and the case $M=3$, $N=3$ by two horizontal and two vertical, ones (Fig. 4).

$$
\begin{aligned}
& \mathrm{b}_{2 \mathrm{~N}} \rightarrow \mathrm{~b}_{2 \mathrm{~N}-1} \rightarrow \mathrm{~b}_{2 \mathrm{~N}-2} \cdots \mathrm{~b}_{\mathrm{N}+2} \rightarrow \mathrm{~b}_{\mathrm{N}+1}
\end{aligned}
$$

Fig. 3

Fig. 4

The arrangements displayed in Figures 3 and 4 are based exclusively on the indices of the ordered numbers as given by (3): there is a function $F(m)=(j, k)$ mapping the indices $m=1, \ldots, \mathbb{M N}$ onto the pairs (j, k) for $j=1, \ldots, M$ and $k=1, \ldots, N$. For example in Figure 4, $F(9)=(1,1), F(4)=(1,2)$ etc. Such an arrangement of $M N$ numbers into a Δ-monotone matrix will be called a "uniform" solution implying thereby that It holds irrespective of the magnitudes of the numbers.

An arrangement of the numbers will be said to have "circularity" or a "circular path" if it is possible to start
from a corner of a square and arrive at the same place after following a path directed by the arrows.

The following theorems show that the arrow device has only limited value and that a uniform solution is impossible for $M \geq 3$ and $N \geq 4$.

Theorem 1. A uniform solution cannot have circularity anywhere.

Proof: Circularity implies that all the numbers in that path are equal which in turn implies that the solution is not uniform,

Theorem 2. Every square in a uniform solution has to have either horizontal or vertical arrangement.

Proof: Suppose one of the squares is neither circular nor has the horizontal or vertical arrangement.

For example consider

Fig. 5

Further, suppose that the solution written in the functional form is such that $F(\ell)=(i, j)$, where $b_{1} \leq \cdots \leq{ }^{b_{\ell}} \leq{ }^{b_{\ell+1}}{ }^{\leq}$ $\ldots \leq b_{M N}$. Obviously the indices which are mapped into $(1, j+1)$, $(i+1, j)$ and $(i, j+1)$ are larger than ℓ. Now, if the set of $M N$
numbers 1 s chosen to be $\mathrm{b}_{1}=\mathrm{b}_{2}=\ldots=\mathrm{b}_{\ell}=0$ and $\mathrm{b}_{\ell+1}=\ldots$ $=b_{\mathbb{M N}}=1$; the square under consideration destroys Δ monotonicity. The same argument holds for the other squares which do not have vertical or horizontal arrangements.

Theorem 3. A uniform solution can have at most one vertical arrangement in a row and at most one horizontal arrangement in a column. Thus a uniform solution can have at most M-I vertical and $N-1$ horizontal arrangements.

Proof: Suppose there are two squares with the vertical arrangement in the same row. Obviously these cannot be adjacent. Suppose they are separated by a chain of squares with the horizontal arrangement. This, however, leads to circularity (see Figures $6 a$ and $6 b$) which is not admissible. in a uniform solution by Theorem 1 . This shows that the assertion regarding the vertical arrangements holds. That for the horizontal arrangements follows in the same manner.

Fig. $6 a$

Fig. 6b

Theorem 4. A uniform solution for $M \geq 3$ and $N \geq 4$ (or for $\mathrm{M} \geq 4, \mathrm{~N} \geq 3$) does not exist.

Proof: There are (M-I)(N-I) squares and by Theorem 3 at most $\mathrm{M}+\mathrm{N}-2$ of these can have the vertical or the horizontal arrangements. The nonexistence of a uniform solution follows from Theorem 2.

Above theorems of course do not imply that Δ monotone arrangements are not possible.

However it seems reasonable to suppose that it will be increasingly difficult to find a Δ-monotone arrangement as M and N increase. The absence of a uniform rule shown in Theorem 4 does not mean however that it is a hopeless task.

Theorem 5. Any sequence of 12 real numbers can be arranged into a Δ-monotone 3×4 matrix.

Proof: In Figures 7, 8, 9 all squares have the horizontal (H) or the vertical (V) arrangement except for those marked *. It follows that the arrangement in Fig. 7 works as soon as $\mathrm{b}_{8}-\mathrm{b}_{7} \geq \mathrm{b}_{4}-\mathrm{b}_{3}$. Similarly, the rule of Fig. 8 works as soon as $b_{12}-b_{11} \geq b_{8}-b_{7}$. In the remaining case $\left(b_{4}-b_{3}>b_{8}-b_{7}>b_{12}-b_{11}\right)$ the rule of $F i g .9$ works.

$b_{1} \quad b_{4} \quad b_{8} \quad b_{9} \quad b_{4} \quad b_{5} \quad b_{8} \quad b_{12} \quad b_{1} \quad b_{2} \quad b_{12} \quad b_{11}$
Fig. 7
Fig. 8
Fig. 9

The problem for larger M and N is still open. So far no counterexample for $M=N=4$ has been found, and it seems probable that the proof of Theorem 5 could be extended to cover this case. However, each figure now leads to three inequalities as only 6 of the 9 squares can be made H or V (Theorem 3).

As a passing remark it should be noted that the possibility of Δ monotone arrangement remains invariant under the shift and scale transformations of the given sequence of numbers. Also a convex combination of two Δ monotone matrices is Δ monotone.

[^0]: Report $S 370$ (SP 98) of the Mathematisch Centrum, Amsterdam.
 ** This work represents results obtained at the Courant Institute of Mathematical Sciences, New York University, under a Ford Foundation grant for probability and statistics.

