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Summary

Is 1t possible to arrange a given sequence of MN
real numbers Into an M x N matrix such that all second

differences as defiﬁedby (2) are non-negative? The

answer 1s afflrmative for M = 2 and arbitrary N, and also

for M = N = 3, In'these cases there ls a uniform rule,
valld for all sequences, stating for each 1 the position
in the matrix assigned to the 1-th smallest number of

the given sequence. For M = 3 and N = 4 the answer i1s
again affirmative,but for thils and larger matrices no such
“uniform rule is valid for all sequences slmultaneously.

The problem for larger M and N i1s open.

* Report S 370 (SP 98) of the Mathematisch Centrum,
Amsterda.m.

**This work represents results obtalilned at the Courant

Instltute of Mathematlcal Sclences, New York,University,
under a Ford Foundatlon grant forprobabi}ity and
statlstics.



Glven a set of N arbitrary real numbers, 1t is always

posslible to label them.ai, i=1,2,...,N, such that

(1) Ay = ag.q - ay >0, i=1,...,N-1.

An attempt to generallze thls statement for two
dimensions ralses the following question. Given a set of
MN arbitrary real numbers, 1s 1t always possible to label
them as aij’ i1=1,...,M; J=1,...,N, such that

A +a,, > 0 ;

13 T 441,341 T 441,59 T 24, 341 13 =

(2)
for 1+ =1,...,M-1; 3 =1,...,N-1.

The problem rephrased 1n matrix notatlon becomes:
given¥a set of MN arbitrary real numbers, is 1t possilble
-~ to arrange them into an M ¥ N matrix such that for every
2 x 2 submatrix, the sum of the numbers on the mailn dlagonal
is larger than or equal to the sum of the entries on the

other diagonal? A matrix having thils property may be called

a A-monotone matrilx.

f

From now on we reserve the name "square" for a 2 x 2

matrix consisting of four neilghbor elements aij’ai+l,j’
ai,3+l’ai+l,j+l‘ On first slight A-monotoniclty seems
stronger than (2), as 1t refers to all 2 x 2 submatrices

and not only to the squares. But it is obvlious that a

second difference in any 2 x 2 submatrix can be wrltten as



the sum Of such differences in the squares of which it

conslsts.
A sufficient, but not necessary, condition for (2)
13 2 8141, 4 andai+1’J+1_z 33, 541" If we place
arrows originating in the larger number and pointing to
the smaller, the configuration of Filg. 1 (called a vertical

arrangement, V) ensures a nonnegative difference. The

same holds for Fig. 2 (horizontal arrangement, H).

213 24, j+1 a4 3 S A N

[ v 1 ;

—

8141, B441, 441 A141, 4 L I+

Flg. 1 l‘ Fig. 2

Let the given MN numbers be arranged in a non-decreasing

sequence

(3) * by = by 2 0. = by

Then the case M = 2, N arblitrary can be solved by a Sequence
of horizontal arrangements (Fig. 3) and the case M = 3,

N = 3 by two horizontal and two vertical, ones (Fig. 4).
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The arrangements displayed in Figures 5 and 4L are based
exclusively on the indices of the ordered numbers as given
by (3): there is a‘ ”f!unction F(m) = (j,k) mapping the indices
m=1,...,MN onto tﬁé pairs (j,k) for 3 =1,...,M and k =1,...,N.
For example in Figure 4, F(9) = (1,1), F(4) = (1,2) etc.
Such an arrangement of MN numbers into a A-monotone matrix
wlill be called a "uniform" solution implying thereby that

it holds irrespective of the magnitudes of the numbers.

An arrangement of the numbers 'will be sald to have

"oiprcularity" or a "circular path" 1f it 1s possible to start



from a corner of a square and arrive at the same place after
followling a path directed by the arrows.

The following theorems show that the arrow device has

only limited wvalue and that a uniform solution 1s lmpossilble for
M>3and N > 4,

Theorem 1. A uniform solution cannot have cilrcularit

+

aanhere.

Proof: Cilrcularity implies that all the numbers in that path

are equal which in turn implies that the solution 1s not uniform,

Theorem 2. Every square in a uniform solution has to have

either horizontal or vertical arrangement.

PrOOf: Suppose one of the squares is nelther clrcular nor

has the horizontal or vertical arrangement.

For example consider

(1,3) ——=— (1, J+1)

b

(1+1, ) —=—— (141, J+1)

Fig. b5

Further, suppose that the solution written 1n the functional

form 1ls such that F(L) = (133);Where'blﬂi ';'-:.bﬂ-ﬁibﬂ+1*:*

v oo 2 by Obviously the indices which are mapped into (i, j+1),

(1+1,3) and (1,J+1) are larger than f. Now, 1f the set of MN



numbers 1s chosen to be bl = b.2 ==, .. = bz = 0O and b£+l =

= blV[N = 1; the square under consideration destroys A monotonicity.
The same argument holds for the other squares which do not have

verticgl or horizontal arrangements.

Theorem 3. A unlform solutlion can have most one vertical
arrangement in a row and most one horizontal arrangement
in a column. Thus a uniform solution can have at most M-1

vertical and N-1 horizontal arrangements.

Proof: Suppose there are two squares wlth the vertlcal
arrangement in the same row. Obvliously these cannot be
‘adjacent. Suppose they are separated by a chain of squares
with the horizontal arrangement. This, however, leads to
circularity (see Filgures 6a and 6b) which 1ls not admlssible

in a uniform solution by Theorem 1. This shows that the

assertion regarding the vertical arrangements holds. That

Theorem 4. A uniform solution for M > 3 and N-> 4 (or for

M : 4, N > 3) does not exist.

i




Proof: There are (M-1)(N-1) squares and by Theorem 3 at most

M+N-2 of these can have the vertical or the horizontal

arrangements. The nonexistence of a uniform soluti@in

ffollows f'rom Theorem 2.

Above theorems of course do not imply that A monotone

arrangements are not possible.

However 1t seems reasonable to:suppose that 1t will be
Increasingly difficult to find a A-monotone arrangement )
M and N lncrease. The absence of a uniform rule shown in

Theorem 4 does not mean however that 1t 1s a hopeless task.

Theorem 5. Any sequence of 12 real numbers can be a.rra'nged

into a A-monotone 3 x 4 matrix..

Proof: In Figures 7, 8, 9 all squares have the horizontal (H)f

or the vertical (V) arrangement except for those marked *.
It follows that the arrangement in Fig. 7 works as soon as
b8 - b7 __>__ blL - b3. Similarly, the rule of Fig. 8 works as

soon as b,, = byq > bg - b7. In the remalnlng case

(by, - by > bg - b, >‘»‘b12 - b;4) the rule of Fig. 9 works.

l b. b.r b. Dby b
byjp P33 Py Py by Pz Pp Dy 10 Pg Py b3
H ‘H V v ' H H v ~H %

b, by b, bg by Dbg by Dby by bg bg by
v ~ * H H vV @ * H Vv %
by by Dbg by by by bg Py by Do Dbyp Dy

[



The problem for larger M and N is still open. So far
no counterexample for M = N = 4 has been found, and it seems
probable that the proof of Theorem 5 could be extended to
cover this case. However, each f‘iéure now leads to three
inequalities as only 6 of the 9 squares can be made H or V
(Theorem 3).

As a passing remark i1t should be noted that the possiblllity
of A monotone arrangement remains Invarlant under the shift
and scale transformations of the glven sequence of numbers. Also:

a convex combination of two A monotone matrices i1s A monotone.



