STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49

AMSTERDAM
AFDEIING STAFISTIEK

How to survive a fixed number of fair bets.
W. Molenaar and E. A. van der Velde
(s 374)

TMO

HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS ${ }^{1}$

By W. Molenaar and E. A. van der Velde
Mathematisch Centrum, Amsterdam

Suppose a gambler with initial capital b_{0} wants to maximize his probability of still having a positive capital after n_{0} successive independent bets, under two conditions: (a) the minimal stake is one dollar; (b) bets are fair and their probbility of success is at most $\frac{1}{2}$.

A bet is determined by the stake c and the odds k : the gambler wins $k c-c$ with probability $1 / k$ and loses c otherwise. If b_{m-1} denotes the gambler's capital after $m-1$ bets, he must choose for the m th bet $c_{m}\left(1 \leqq c_{m} \leqq b_{m-1}\right)$ and k_{m} ($k_{m} \geqq 2$). For simplicity of presentation we make the inessential restriction that all b_{m}, c_{m} and k_{m} are integers. In a fair roulette (without zero) k can only be a divisor of 36 . A bet $c=1, k=2$ is called conservative.

A situation is a pair (n, b) where b is the capital and n the number of bets to go. A strategy for (n_{0}, b_{0}) is a rule prescribing which bet should be made in the initial situation (n_{0}, b_{0}) and in each situation which may evolve from it. Under the stated conditions there exists for each (n_{0}, b_{0}) a (possibly non-unique) optimal strategy which leads to a (unique) maximal probability of survival (pos) denoted by $p\left(n_{0}, b_{0}\right)$. The independence of bets implies that for $n>1$ and $b \geqq 1$
$p(n, b)=\max _{c, k}\{(1 / k) p(n-1, b+k c-c)+(1-1 / k) p(n-1, b-c)\}$.
Theorem 1. The pos $q(n, b)$ for the conservative strategy (i.e. $c=1$ and $k=2$ in each situation) is for every $n \geqq 1$ a concave function of b.

Proof. The theorem holds for $n=1$ as $q(1,0)=0, q(1,1)=\frac{1}{2}$ and $q(1, b)=1$ for $b \geqq 2$. We proceed by induction. The definition of q implies that

$$
\begin{equation*}
q(n-1, \beta) \geqq q(n, \beta) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
q(n, b)=\frac{1}{2} q(n-1, b+1)+\frac{1}{2} q(n-1, b-1) . \tag{2}
\end{equation*}
$$

Substituting (1) with $\beta=b \pm 1$ into (2) we obtain $q\left(n, \lambda \beta_{1}+(1-\lambda) \beta_{2}\right)$ $\geqq \lambda q\left(n, \beta_{1}\right)+(1-\lambda) q\left(n, \beta_{2}\right)$, first for $\lambda=\frac{1}{2}$ and then by well known arguments for all $\lambda \varepsilon(0,1)$ and all β_{1}, β_{2} such that both sides of the inequality are defined.

Theorem 2. The conservative strategy is optimal for all n_{0} and b_{0}.

[^0]

Proof. This is trivial for $n_{0}=1$. Suppose it holds for $n_{0}=n-1$. The pos from (n, β) for the bet (c, k) followed by $(n-1)$ conservative bets is represented by the ordinate of the point of intersection P of the vertical in β and the chord connecting the points on the graph of $q(n-1, \cdot)$ with abscissae $\beta-c$ and $\beta+k c-c$ (see Figure 1). As the function is concave, the choice $c=1, k=2$ is seen to be optimal under our conditions $c \geqq 1, k \geqq 2$.

Remark 1. Very similar and somewhat more general results were obtained independently by Freedman [2].

Remark 2. $q(n, b)$ is determined recursively from (2) and the boundary conditions $q(n, 0)=0$ for all $n, q(0, b)=1$ for all $b \geqq 1$. No closed expression for q seems to exist, but we have

$$
q(n, b)=\sum_{j=n+1}^{\infty} \lambda_{j}{ }^{(b)}
$$

where $\lambda_{j}{ }^{(b)}$ are the well-known first passage probabilities for the symmetric random walk given in [1]; p. 254-256.

Remark 3. Suppose bets are unfair, in the sense that there is a fixed $\alpha<1$
such that the gambler gains $k c-c$ with probability α / k, and loses c otherwise. It then turns out that bold bets become attractive for small α. For $n_{0}=3$, $b_{0}=1$ the conservative strategy is only optimal for $\alpha>2-2 / 3^{\frac{1}{2}} \approx .84$. For $n_{0}=13, b_{0}=1$ an initial bet $c_{1}=1, k_{1}=3$ must be made even for an ordinary roulette with one zero ($\alpha=36 / 37$).

REFERENCES

[1] Feller, W. (1957). An Introduction to Probability Theory and Its Applications (2nd edition). 1 Wiley, New York.
[2] Freedman, 1). (1967). Timid play is optimal. Ann. Math. Statist. 38 1281-1283.

[^0]: Received 5 December 1966.
 ${ }^{1}$ Report S 374 (Sp 101), Statistische Afdeling, Mathematisch Centrum, Amsterdam.

