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HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS!?

By W. MoLENAAR AND E. A. VAN DER VELDE

Mathematisch Centrum, Amsterdam

Suppose a gambler with initial capital by wants to maximize his probability
of still having a positive capital after ny successive independent bets, under two
conditions: (a) the minimal stake is one dollar; (b) bets are fair and their prob-
bility of success is at most 1.

A bet is determined by the stake ¢ and the odds k: the gambler wins k¢ — ¢
with probability 1/k and loses ¢ otherwise. If b, denotes the gambler’s capital
after m — 1 bets, he must choose for the mth bet ¢, (1 = ¢n = b)) and k.,
(km = 2). For simplicity of presentation we make the inessential restriction
that all b, , cm and k,, are integers. In a fair roulette (without zero) & can only
be a divisor of 36. Abet¢c = 1, k = 2 1s called conservative.

A situation i1s a pair (n, b) where b is the capital and n the number of bets
to go. A strategy for (ne, bo) 1s a rule prescribing which bet should be made in the
initial situation (ng, bo) and in each situation which may evolve from it. Under
the stated conditions there exists for each (ny, by) a (possibly non-unique)
optimal strategy which leads to a (unique) maximal probability of survival

(pos) denoted by p (7m0, bo). The independence of bets implies that for n > 1
and b = 1

p(n,b) = max.; { (1/k)p(n — 1,b+kec—¢c)+ A —-1/K)p(n — 1,b — ¢)}.

THEOREM 1. The pos q(n, b) for the conservative strateqy (i.e.¢c = 1 and k = 2
wn each sttuation) 1s for every n = 1 a concave funciion of b.
Proor. The theorem holds for n = 1 as ¢g(1, 0) = 0, ¢(1, 1) = 1

2

and ¢(1,b) = 1 for b = 2. We proceed by induction. The definition of ¢ implies
that

(1) gin — 1, B8) 2 g(n, B)
and
(2) gn,b) = 3g(n — 1,0+ 1) 4+ 3gin — 1,0 — 1).

Substituting (1) with 8 = b 4 1 into (2) we obtain g(n, A\81 + (1 — X\)Bs)
= Ag(n, B1) + (1 — N)g(n, B2), first for A\ = % and then by well known argu-

ments for all A € (0, 1) and all 8., 82 such that both sides of the inequality are
defined.

THEOREM 2. The conservative strategy s optimal for all ne and bg .
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where \;* are the well-known first |

random walk given in [1]; 5
REMARK 3. Suppose
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such that the gambler gains k¢ — ¢ with probability «/k, and loses ¢ otherwise.
I+ then turns out that bold bets become attractive for small a. For ny = 3,
b, = 1 the conservative strategy is only optimal fora > 2 — 2/ 3" ~ .84. For
ne = 13, by = 1 an initial bet ¢, = 1, by = 3 must be made even for an ordinary

roulette with one zero (a = 36/37).
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