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Back to the Laplace definition

by J. HEMELRDK *

1. Introduction

This paper contains a plea for the return to, fundamentally, the classical (LAPLACE)
definition of probability, with the inherent circularity removed.** This is to be done
by defining a random drawing as clearly and exactly as possible and by coupling the
definition of probability to drawing one element at random from a finite set. The
transition to infinite probability fields and continuous distributions 1s seen as a
mathematical convenience, leading to the measure-theoretical model.

There 1s not much that is new in this way of introducing probability, except per-
haps the 1dea of openly returning to the classical definition instead of using it sur-
reptitiously as seems to be the custom nowadays in elementary introductions to
statistics and probability. The contention to the author 1s that there is nothing to be
ashamed of in using this approach and that it can be made as exact as 1s necessary
and possible 1n any applied science. This can be achieved by clearly distinguishing
between reality (material reality that 1s) and mathematics (the mathematical model

used to analyse reality). The gain is in simplicity and in obtaining a close connection
between theory and practice.

2. Reality and mathematical model

This paper is not concerned with mathematics in itself, but with statistics and prob-
ability as a branch of applied mathematics. The approach 1s typical for an applied
science: for a certain part of reality one has to build a mathematical model in order
to profit by the advantage which mathematics has over practice, its greater exactness
and 1ts powerful arsenal of methods and knowledge. There are two transitions in-
volved: first from reality to the model, then, after having solved the mathematical
problem within the model, back to reality. |

The 1mportance should be stressed of distinguishing clearly and consistently
between reality and the model. Confusing the model with reality 1s a fault which 1s
frequently made, sometimes with disastrous effect.

Although this is not the subject of this paper, the author cannot resist the tempta-
tion to give one famous example: the classical Greek paradoxes. In one of these it 1s
proved that Achilles cannot pass the tortoise, in another that an arrow cannot fly.
The proofs are based on a mathematical model, and have baffied mankind for some-
thing like two thousand years. However, the main condition which a mathematical
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** The author is aware of the fact that the definition proper can be traced back to earlier authors than
LAPLACE; but it 1s usually called *“LAPLACE-definition”.
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Lo tortoise 1s, of course, that Achilles does pass the tortoise.

So, if this s impossible in the model, then the model 1s a4 bad one and should not be
. The Greeks” fanth i mathematics, however, wias so great, that they never
redllv arrived at this paimnt of thought, They (or at least many of them) thought
é
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hematies more real than reality and 1t 1s this confounding of the mathematical
wdel and reality which gave rise to this paradox and to some of the others. We are

&

not, here, concerned with pomnting out what was wrong in their model: 1t 1s sufhicient
for our purpose that it must be wrong because 1t does not represent reality taithtully.

Many more examples of this Kind can be given, also from modern society ; especially
in codes of law one often meets formulations where reality and model are freel
confounded, sometimes much to the disadvantage of suspects.

The reason why 1t 1s necessary to distinguish carefully between reality and 1ts model
hat thev are so very different. On the one hand a model alwavs implies simplifica-
tton and theretore 1t can never implicitly be trusted to be adequate. There 1s a well-

known and generally applied remedy for this shortcoming: always to verify the pract-

'
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ical conclusions, drawn from the model, by means of observation or experiment. On
the other hand the model has the big advantage of exactness; only within the model
mathemuatics can be used. Without this advantage no mathematical models would be
used at all. It follows trom all this, that in applying mathematics one has to make use
of two ditferent languages (or: at least two): practical language, which is always
somewhat imprecise and vague, and mathematical language. In order to build the
model one usually starts out by describing the practical situation under consideration
in practical language. Building up the model then implies a translation of the practical
terms into mathematical ones. The system of translation used is not universal: apart
from some tundamental rules it may be different every time one builds a model.
Theretore the correspondence between practical and mathematical terms should be
clearly stated every time and the same system of translation should be used in trans-
lating back from the model to reality. ,%

The point we want to stress most, because it bears on the rest of this paper, is that
all practical language 1s more or less imprecise and ambiguous. This we have to live
with - and we do - but it should not keep us from trying to be as clear and precise as
possible. However, it would be unreasonable to demand a very high degree of exact-
ness 1n things expressed in practical language. On the other hand exactness should
certainly be msisted upon in all mathematical formulations. Therefore the reader
should be informed, at any point, of the language used at that moment. We shall try
to conform to this principle in the rest of this paper.

3. The statistical domain: randomizers

(Practical language). Mathematical statistics is a part of applied mathematics. There
1s no real need to say more about that, for we are not aiming at giving a definition
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of mathematics. The point is to outline the domain of statistics, i.e. the part of reality
where statistics can be fruitfully applied. This may roughly be done as follows:
statistics (and probability) can be applied in situations where individual outcomes
show an element of unpredictability.

This brings us straight to the point: statistics aims at predicting in situations
where individual outcomes are — to a greater or smaller extent — unpredictable. We
have to analyse this concept, unpredictability, as far as possible.

The best way to do this seems to be to look for the most perfect form of unpredict-
ability we know, unpredictability in vitro so to speak, and this we find in games of
chance. These are based on some sort of randomizer, e.g. a roulette or some other
kind of lottery, and since the randomizer is fundamental for our definition of prob-
ability, we shall give 1t our close attention.

A randomizer 1s a machine; a mechanical or electronic gadget which, when activated,
gives one of a known finite set of results, one of the numbers O, 1, ..., k—1 say. If we
want to 1ndicate that there are k& possible outcomes we will call 1t a k-randomizer. The
main property of a proper randomizer 1s, that its individual outcomes are unpredict-
able 1n the highest possible degree. Somewhat more precisely this can be expressed as
follows: all methods of prediction, with or without knowledge or use of past results,
are equivalent; none of them has an advantage over the others; there is no systematic
difference in the number of hits they score. Or: there i1s no gambling system against a
randomizer; it 1S impossible to win systematically when playing fairly against it. This
concept was already used by VON MIsgs, but he worked 1t out in a rather impractic-
able way. It can also be expressed as follows: if the randomizer i1s given any odds over
the player, however small, then the player will lose systematically.

This abundant use of different expressions of one fundamental idea is a sign of
weakness. It seems to be impossible to give a really satisfying close definition of a
randomizer in words. The reason for this can be detected by scrutinising the above
descriptions: all of them are of a negative character, even though some of them are
syntactically positive. The essential property of a randomizer is a negative one: its
unpredictability.

There 1s, however, one very simple and effective way of defining material things:
exemplification. Thus the unit of mass is defined as the mass of a certain piece of
metal kept in an institute in Sévres. And so we may say: a good roulette is a good
randomizer, and everybody will understand this. Also, it is not difficult to make one
yourself. The easiest way is perhaps to use a die, of indifferent quality, and to throw it
two times in succession. Distinguishing only “even’ (and denoting this by 0) and
““odd” (1), there are four possible outcomes: 00, 01, 10 and 11. The results 00 and 11
do not count; if you get one of these you have to throw twice again. If you get 01 or
10, omit the last digit. The whole process then has two possible outcomes: 0 and 1,
and there you have a very good 2-randomizer. If sufficient precautions are taken in
the method of throwing, which it is easy to realise, the individual results are indeed
very highly unpredictable. Instead of a die one may use a coin or even a button. The
bias, which may be present in one throw is eliminated by using a pair and only noting
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the order of two different results. The principle of this trick is that, although it may
be difficult to attain directly a very high degree of unpredictability mechanically, 1t 1s
much easier to design an experiment “without memory”’, where successive resuits do
not influence one another.

At this point the objection is usually made, that a randomizer, however skilfully or
ingeniously made, nevertheless will never be a perfect randomizer. This 1s, of course,
true. But it 1s true of everything: nothing is perfect in this world. The question 1s not
whether an instrument is perfect — because it never is — but whether 1t serves its pur-
pose. And there the proof of the pudding is in the eating. The proof that randomizers
can be made adequate for at least one of their purposes lies in the fact that the people
of Monaco do not pay any taxes: the randomizers in Monte Carlo take care of that
part of the economy of the princedom.

Another objection, equally justified and equally futile, is that even a perfect
randomizer could never be proved to be so. This is true, because 1t 1s impossible to
prove that something (in this case a winning gambling system) does not exist. It 18
e.g. impossible to prove that ghosts do not exist, or psychokinesis. But if 1t does
exist, that can be proved. If a machine is not a randomizer this can be proved by
finding two methods of prediction which are not equivalent. Every statistictan will here
recognize the train of thought of the testing of a null-hypothesis.

Thus if a randomizer is to be used for a specific purpose, e.g. in the design of an
experiment, and if one wants to test the randomizer before using it in the experiment,
then one should test it by means of a statistical test which is also specific for this
purpose.

That 1s: a test which is especially sensitive for those deviations from randomness
which tend to invalidate the experiment one has in mind. The fact that in general such
a test will be less sensitive for other deviations from randomness 1s of no 1importance,
as these do not invalidate the experiment. As a matter of fact, what one needs for
specific purposes 1s not absolute randomness, but relative randomness, with respect
to the specific situation. But this is a subject in itself which is outside the scope of
this paper.

Let us now abstract from the imperfections of material randomizers and consider
an 1deal one. Whatever 1s true for an i1deal one will then be approximately true for a
good one.

The equivalence of all systems of prediction for a randomizer implies that none of
1ts possible outcomes occurs systematically more often than another. For, if in a 10-
randomizer O occurs systematically more often than 5, say, then the system of always
predicting O would be better than always predicting 5. Thus the unpredictability leads
logically to equal frequencies. This point is so important that it 1s worth while to en-
large on it. What do we mean it we say that 0 occurs systematically more often than
5? Not that this is true in every finite sequence, but that one can safely and repeatedly
predict more zero’s than fives in a, future, long sequence. The vagueness in this for-
mulation is the vagueness of all practical formulations. It is also inherent in the
formulation of the experimental law of large numbers. Nevertheless it is clear enough
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if one gives an example: any reasonably well-made and well-thrown dice will system-
atically more often show a number < 4 than > 4. Perhaps the term *‘equal frequen-
cies™’, used above, should be avoided in this context, because in practice frequencies
are usually unequal. What is meant is, strictly speaking, the absence of systematic
differences between the frequencies of the results of a randomizer. An exact formula-
tion of all this is only possible within a mathematical model: the theoretical law of
large numbers; but this is only a mode! for the experimental one. Our conclusion 18
that a randomizer must satisfy the experimental law of large numbers, otherwise 1t
would not be a randomizer. Thus the law of large numbers may be used as one of the
ways to test a randomizer experimentally. If a machine satisfies this law, this 1s not
sufficient to guarantee that it is a randomizer (counter-example: your watch). Un-
predictability is a much stronger requirement than equality of frequencies in the long
run. The moral of this i1s twofold. First: unpredictability of individual results 1s
fundamental in a randomizer, the experimental law of large numbers is a logical
consequence and therefore secondary. Second: unpredictability of individual results
can only exist together with (approximate) predictability of frequencies 1n the long
run. Complete unpredictability does not exist in repeatable experiments. This makes
statistics possible!

A number produced by a randomizer is often called a random number. This leads
time and again to considerable confusion. For if a A-randomizer can produce the
numbers O, ..., k—1, then these are all random numbers. One should never, strictly
speaking, use the adjective ““random’ for one number, or for a finite sequence of
numbers. Infinite sequences we need not be concerned about, because in practice
everything 1s finite, including sequences. The proper term, to be used instead of
“random’ 1s: “‘obtained from a randomizer™ or ‘“randomly obtained”. It is not the
number or the sequence that i1s random but the machine that has produced them is a
randomizer. It the adjective “random’ i1s understood in this way, there i1s no objection
to its use as an abbreviation. We use it in this sense.

[t 1s not difficult to see that a sequence of n» random numbers from a k-randomizer
iIs one random vector from a »#-dimensional randomizer with &” possible outcomes,
all vectors of » numbers, each from {0, ..., k—1}. It is also a k"-randomizer, for the
unpredictability of individual outcomes remains unimpaired. Also, deleting some
of the possible outcomes of a randomizer and asking for a new number if one of
these occurs, does not impair the unpredictability of the other ones. These two prop-
erties enable us to use a k-randomizer as a k'-randomizer for any positive integers
k > 1landk’.

The predictability, implicit in unpredictability of individual outcomes, is not
confined to frequencies in sequences of random numbers. Arithmatic operations with
random numbers also increase the predictability of results. For example, although a
pair of random numbers is also a random pair, the sum of two random numbers is
already much less unpredictable.

To conclude, we repeat that the fundamental idea of a randomizer is of a negative
nature: complete unpredictability of individual outcomes. It does not seem possible
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to get rid of this negative character. If this is true, it 1s useless to try. There is also
another reason why it is perhaps better not to try. This i1s, that the main characteristic
of a statistical situation, 1.e. a situation where statistics can be applied, 1s of the same
nature: it contains unpredictable elements. We can describe the domain of statistics
as those practical situations, where observations or experiments behave, completely
or in part, as if a randomizer were at work. This will sometimes be explicitly true, e.g.
in random sampling or in randomized experiments, sometimes implicitly and 1n a
very complicated way. Thus, if one observes the last numbers of the mileage of cars
parked along an arbitrary street (without garages and car-factories), one has a
rather complicated 10-randomizer.

In other cases one may have a situation which can be represented by a model with
a randomizer, even though the practical situation i1s of a deterministic nature. The
most extreme case of this 1s the use of pseudorandom numbers, generated by a re-
cursion. It may be remarked here, that the question whether the unpredictability of
a statistical phenomenon arises from ignorance of the observer or from some more
fundamental cause, is not relevant at all in our context. A situation which might be
analysed by means of deterministic method by somebody who knows quite a lot
about 1t, may be analysed statistically by a person who knows less about it, so much
less that for him some things are unpredictable which are predictable for the other.
Both analyses are valid, although one may expect the best informed person to get the
farther reaching and more definite results. Like everything else unpredictability 1s a
relative concept and the questions whether perhaps ““in the end” everything in this
world 1s determined by causes and whether something like ‘“chance’ really exists
(whatever that may mean), do not enter the picture at all. That is why the use of the
word ‘“‘chance’ has been avoided 1n this paper.

To apply statistics 1n situations without random elements is not, in the opinion of

the author, a promising activity. This is why he proposes to replace the principle of
indifference by the positive requirement of the presence (explicit of implicit, real or
imaginary) of a randomizer.

4. Relative frequencies on finite sets

The content of this section is trivially simple, so we can be short. (Mathematical
language) Let
Q2 ={w,, w,, ..., 0y} (1)

be a finite set of elements and let 4, B, ..., denote subsets of 2.

Let N(A), N(B), ... denote the number of elements in these subsets. Then we
define the relative frequency f(A) of A on £ by

J(A4) = N(A)/N. (2)
The following well-known properties then hold

0<Lf(4) £1 for every A < £2 (3)

£(Q) =1 (4)
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(AU B)=f(A)-f(B) if AN B=o. (5)

Conditional relative frequencies, under the condition C, where C is a non-empty

subset of {2, are defined as relative frequencies on C instead of {2. Two subsets 4 and
B are called orthogonal on £ if

S (A n B)=jf(4) f(B) (6)
and, if B 1s non-empty, this 1s equivalent to
S (A|B) = f(A4) (7)

where f (A|B) i1s the conditional relative frequency of A under condition B.

5. Probability

(Practical language) Consider the following situation. A set of N objects is given and
a randomizer. By means of the randomizer we are going to choose one object from

the set. Some of the objects have a property A, the others do not. Will the object,
indicated by the randomizer, have property A4?

In this situation we will say that there 1s a probability P(A4) of 4 occuring, with
P(A4) = N(A4)/N, (8)

N(A) being the number of objects having property A.

This clearly i1s the Laplace definition, but now only to be used if there is a ran-
domizer at work.

(Translation into mathematical language) The mathematical model for the above
statistical situation is a set £2, of section 4. The element to be pointed out by the

randomizer 1s indicated by @.* The use of an underlined symbol will always indicate
a randomizer at work.

(Mathematical language) To the notions given in section 4 an undefined new
entity , called a random element of L2, is added and, for every 4 < £2, another un-
defined notion w € A, called a (possible) event and we define

P(w € A) = f(A), )

the probability of w € A4.
The rules for events are the usual ones, e.g.

weEA and weB—we AN B,

etc. They are indentical to the rules for w not underlined.
From definition (9) and (3), (4) and (5) now follows:

0 <PlweAd <1 for every A4 <« Q (3")
Plwef) =1 (4')
Plwe A u B)=Plwe A + Plwe B) if AN B=og. (5)

* Or another notation which distinguishes clearly between random and non-random.
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The latter may equivalently be written:
Plwe A or we B) = P(we 4A) + P(w € B) if AN B=o (5')

and it A N B = 07 1s often replaced by the expression “if we 4 and we B are
mutually exclusive’. The abbreviation P(A4) for P(w e A) is often used.
Further elaboration is straightforward. E.g. the events w e 4 and we B will be

called independent if, and only if, A and B are orthogonal, etc. The model, thus
obtained, 1s called a finite probability field.

6. Comment

(Practical language) Thus wearrive painlessly ata finite model for probability theory.
For practical purposes this should be sufficient - for in practice everything is finite —
but if we stopped here we should cut off the main part of mathematics and this we do
not want to do. So in a later stage we have to generalize our model. But some remarks
about the finite model have to be made first.

According to the above definition of probability this term can only be used for
one random drawing from a (finite) set £2. Every more complicated problem has to be
reduced to this situation, e.g. by using product-fields for independent random drawings.
This 1s completely in accordance with the measure-theoretical way of introducing
probability, with this difference only, that there there is no need to go back to equal
probabilities for the elements of £2. If £ is infinite this is, moreover, impossible.
Remaining, for the moment, in the finite domain, it 1s clear that all probabilities will
have rational values and that, on the other hand, all rational probabilities can be
constructed.® A general, rational and finite, probability field can be obtained from
(2 by bunching together relevant elements of (2, i.e. by dividing £2 into N’ (<N)
distinct subsets and mapping these onto a new set (2, preserving probabilities. This
1s a well-known method 1n measure theory too.

An objection, which has often been made to the Laplace definition is, that often it
1S impossible 1n practice to indicate the “‘equally probable’ cases which are needed
to compute the probabilities involved. The usual example 1s a throw with a biased die.
This difficulty 1s not pertinent for our setup. The reason why we wish to use the
notion of probability for the possible results of a biased die is, that its behaviour is
equivalent to drawing an element at random from a set of, say, tickets, each of which
carries one of the numbers 1, 2, ..., 6. The die being biased, the relative frequencies of
the numbers 1n this set are unequal and, in most cases, unknown. But the model is
clearly pertinent. If it were not, 1.e. if a biased die behaved fundamentally different from
such a lottery, then probability would not be a pertinent notion for that die.

An important point in applying statistics 1s the way back from the mathematical
model to practice. The main point is, of course, the translation of a probability, e.g.
a confidence coefficient, 1 —« say. This is usually done by means of the frequency

* One should not forget that real numbers do not *‘exist” in practice, where they are always broken
off after a finite number of decimals, but only in mathematics.
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Interpretation but it seems more elegant to put that interpretation in the second place,
where it belongs, and to use the fundamental idea of a randomizer. The practical
explanation would then be as follows. If you use this method of analyzing your data,
you will get an answer that may be right or wrong. It will not be possible to be certain
whether it is right or wrong. Imagine that at the same time when you apply the method,
a randomizer draws one element from a set of elements, consisting of a fraction « of
“black™ and I —a of ““white’” elements. If a “white’” element is drawn the answer is
right, otherwise 1t is wrong. But you are not allowed to look at the element drawn by
the randomizer. This seems to describe the nature of a confidence coefficient very
precisely. It also emphasizes strongly that the confidence coefficient refers to the
method used and not to the individual result obtained. This is an important point,
for one should never say, as is often done, that the result obtained has a probability
| —a of being right; it is the method of obtaining the result which the probability 1 —«
refers to.

Of course the frequency interpretation may be used as a help, because a randomizer
obeys the law of large numbers. But this is only secondary and using the above
approach probability can also be applied to unique situations, 1.e. situations where
repeatability is absent or practically irrelevant. Moreover, in this way a set-up 1S
obtained which in principle allows the introduction of Bayesian and subjectivistic
points of view, as far as these can be represented by (imaginary) randomizers. It

seems to the author that this could certainly be done to a great extent, although he
does not feel inclined to do so himself.

7. Generalisation of the model

It would be very awkward to stop at finite probability fields, for finite mathematics
is only a small and awkward part of mathematics. But generalisation to the measure-
theoretical model is now straightforward. The main feature is the generalization ot
property (5°) to an enumerable sequence of events and this, having no real analogue
in practice — where, it can never be said often enough to mathematicians, everything
is finite — should be done in the form of an axiom. So then it 1s perhaps better to
introduce the whole model axiomatically. But the link between practice and mathe-
matics is strengthened by first introducing probability in the way indicated here and
it also has definite didactical advantages.

One consequence one can draw, for the measure-theoretical method, from the
above considerations and which, I think, would be a definite improvement, 1s to
introduce the random element w of £ into the measure-theoretical model at the
moment when probability is introduced. This would be a clear landmark separating
probability theory from measure theory proper.
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