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Back to the Laplace definition 

by J. HEMELRIJK * 

1. Introduction 

This paper contains a plea for the return to, fundamentally, the classical (LAPLACE) 

definition of probability, with the inherent circularity removed.** This is to be done 
by defining a random drawing as clearly and exactly as possible and by coupling the 
definition of probability to drawing one element at random from a finite set. The 
transition to infinite probability fields and continuo11s distributions is seen as a 
mathematical convenience, leading to the measure-theoretical 1nodel. 

There is not much that is new in this way of introducing probability, except per
haps the idea of openly returning to the classical definition instead of using it sur
reptitiously as seems to be the custom nowadays in elementary introdt1ctions to 
statistics and probability. The contention to the author is that there is nothing to be 
ashamed of in using this approach and that it can be made as exact as is necessary 
and possible in any applied science. This can be achieved by clearly distinguishing 
between reality (material reality that is) and mathematics (the mathematical model 
used to analyse reality). The gain is in simplicity and in obtaining a close connection 
between theory and practice. 

2. Reality and mathematical model 

This paper is not concerned with mathematics in itself, but with statistics and prob
ability as a branch of applied mathematics. The approach is typical for an applied 
science: for a certain part of reality one has to build a mathematical model in order 
to profit by the advantage which mathematics has over practice, its greater exactness 
and its powerful arsenal of methods and knowledge. There are two transitions in
volved: first from reality to the model, then, after having solved the mathe1natical 
problem within the model, back to reality. • • 

The importance should be stressed of distinguishing clearly and consistently 
between reality and the model. Confusing the model with reality is a fault which is 
f req1.1ently made, sometimes with disastrous effect. 

Although this is not the subject of this paper, the author ca11not resist the tempta
tion to give one famous example: the classical Greek paradoxes. In one of these it is 
proved that Achilles cannot pass the tortoise, in another that an arrow cannot fly. 
The proofs are based on a mathematical model, and have baffled mankind for some
thing lil<e two thousand years. However, the main condition which a mathematical 
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** The aL1thor is aware of the fact that the definition proper can be traced back to earlier authors than 
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111.~iit:I .i1i)tiit1 t·t1it1i! 1~. tt1~1t tl·1c princip~1l JJ,.1ints (lt"' tl1c p41rt ()t" reillity· it represer1ts 

"i,i,ti!"''i tx~ 1-t~11rc"l't1tc~t 1·~11t!1t"t1ily 111 tt1e i11,.1tiel. 11· O{>t~ ti1e11 tl1e ffit)del is fl()t suitttble 
t'\'t" tlit· "1tt1,1t1,·l1·1. it I:"!~• h~itl rtl('lticl,, <lf it is h,1tily llitlltileti. ··r·t1e prir1ci{J(1I (">()int (lt~ ~• 
r .. ll"c hct\\C('rl :\1..'.r11llt·" ,lt1t.l ~, t.,,rtt,isc is .. ,)t· cc)t1rse~ tl1~tt 1\cl1illes <it>t1

"'" p,1ss tl1e t()ft<Jise. 

S,,. it' tt11~ 1~ i111p",~..,1hic ifl tl1c itl(llici, tl1en the r11(1del is ~i. b~tti ,.)ne ttt1ti sh{)Uld nt)t be 
t,\Ci.i. "I't,e (:irct·ks' t~11ti1 1n 111~ither11~1ttl~S~ i1t)\\'C>\cr, \\41s st) g1◄e,1t, tl1~1t they ne\·er 
re~1ily itrri,c, .. i ~tt tt11~ pt,i11t \,t· ti1"-'L1gl1t. ·rt1ey (,.,r [it le~1st 111,111)' l)t" tl1en1) thougl1t 
it·1~.1tl1er11,tt~('Si r11,1rc rc~tl tl1~1t1 r·c~iiity' ~1r1tl it is ti1is C(Jt1f"t)unding ()f"' tl1e tn.t1.then1~1tici.tl 
111t,tiel ~tnt.i reitlit~ \\l11r...·t1 g~t\C' rise 111.) this p~1r,tti()X ~tn<.i tl) S()n1c (.)t' tl1e others. We ~ire 

Il<)t~ l1ere. ct1t1~erneti v.,·itt1 pt,1ntir·1g l_)llt \\ t1;.1t \\',ls \\.r<1ng in tl1eir t11l)del: it is st1fl1cient 
f'i)r· i)tlr pt1rpt,sc th~tt it n1t1st he \\ft)t1g heL~,1t1se it d<)es n(:lt represent re,1lity f,1ithf"ully. 
f\1itOj· r11l,re cx,1n1ples t,t· tl1is kir1li c~1n be given. ,ilst) t"rt)m ffi()dern Sl)Ciety ~ especi,illy 
in (,'()•ties t.lt .. )~1"· ()ne t)f~ten 1neets t~c)rn1ulati<.)ns \\1l1ere rettlity1 anci n1t.)del are freely 

Ct)nt .. ,:)unded. son1et.imes r11u'-~l1 tt1 the dis,1tl\'ant,1ge ()t .. suspt;).cts. 
~1~i·1e re~iS<.)n \v hy it is necess~lf)l t() <..iistinguist1 c::1ref"'ttlly· bet\\·een re,1.lity ,1nd its lTI()(iel 

is th;.tt tl1ey are st) \'ery "iiflerent. ()n the {1ne hr1nd :.1 rnt1del ,ll\\.'ay·s implies simplific,1-
ti11.1t1 ,11·1d theret·t)re it c}1n ne\'er irnplicitl)" be trusted t() be ,tdequctte. There is ,l \\-'ell
kn()\\n an,l generitliy' itpplied remed)'' t~t)f tl1is sht)rtct)ming: ,ll\\·ays to verify the pr,1ct
ici1l Ct)nclusit)ns~ dr~1¼t1 t'rt1111 the 111t1del .. by n1e,tns of obser\':.:atit)n or experiment. On 
the t)tl1er h~tnd the r11()dei h~ts the big ad\1ant,.1ge ()t" ex~tctness ~ t1nly within the model 
rt1fttl1er11 .. 1tics c .. 1n be use(i. \\1ithl)Ut this ,1d\·:.1nt~1ge O() n1t1them,1tical models would be 

~-

used itt :.111. It t<:)lit)\\'S tr()m (1ll this., th,1t in apply·ing mathematics one has to make use 
<)t~ t\\t) Liitfere11t l;.tngu,tges ( tir: tlt le:.tst twt1): 11ra(·ti£·al /angucige., which is ,1l\Va)1S 

sclr11e\\·l1~1t im1-1recise ttnd \·,1gt1e~ t1nd 111atl1t1111atit·til la11,r;l1age. In c1rder to build the 
r1·1t)tiel ,)ne usu::,ll)1· stttrts out by describing the pr,1ctic:.1l situation ttnder co11sideration 
i11 pr,1ctic:.1l l,tnguage. Buildi11g up the Ol()del then i111plies tl tr:.1nslatit1n of .. the practictil 
tern1s intt1 n1,1tl1em,ltic:.1l t)nes. The syste1n t1f" tr,1nslati()Il used is not universal; apart 
f'rt1n1 S()n1e t'ur1dtament,tl ru.les it m,1v be difl'erent e'v·erv time one builds a model. . . ~ 

Tl1erett)re the cor1·espon(ien<.~e between pr,1ctic,1I and mathem,ttical terms should be 

clearl~r" st~1teci C\'ery time t1nd the S<ln1e s1stem (1f tr,1nsl,1tion shot1ld be used in trans
lf1ti11g b,1ck f'"rt1n1 tl1e mt)del tel re,tlit,'. 

• 
The point \\'C w,1nt t() stress n1t)St, bec~1use it bears on the rest of this paper, is that 

~ill prt1ctical lt1ngu,1ge is more or less i111precise and an1 biguous. This we have to live 
\\'ith -- and \\'e d<J -·-· but it sl1l)tllli nt.1t keep us from try·ing to be ,ls cle,1r and precise as 
pt)ssible. 1-lt)\\·e\·er. it wc)Ul(i be unre,ison,ible tt) demt1nd a very high degree of exact
ness in things expresseci in pr~-lcticfil l,1nguage. On the other hand exactness should 
cert~tinly be i11sisted upon in all m,1thematical t~orn1t1lations. The ref ore the reader 
sh(1uld be i nt .. <.)rrneci~ at tln)'' point~ t)f the l,1nguage used at th,it mor11ent. We shall try 
t() '-'t)nt"c)rn1 t() this principle in the rest t)f this paper. 

3. The statistical domain; randomizers 

(l>r·,ictical l,111gt1age). ~1~tthernatical st,1tistics is ::1 p::1rt of' ,1pplied mathematics. There 
is nt1 re,11 nee<.i to s,ty n1c.)re ~lbt)Ut that, ft1r \Ve ;;1re n<..1t aiming at giving ,1 definition 
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of mathematics. The point is to outline the domain of statistics, i.e. the part of reality 
where statistics can be fruitfully applied. This may roughly be done as follows: 
statistics (and probability) can be applied in situations where individual outcomes 
5how an element of unpredictability. 

This brings us straight to the point: statistics aims at predicting in situations 
where individual outcomes are - to a greater or smaller extent - unpredictable. We 
have to analyse this concept, unpredictability, as far as possible. 

The best way to do this seems to be to look for the most perfect form of unpredict
ability we know, unpredictability in vitro so to speak, and this we find in games of 
chance. These are based on some sort of randomizer, e.g. a roulette or some other 
kind of lottery, and since the randomizer is fundamental for our definition of prob
ability, we shall give it our close attention. 

A randomizer is a machine; a mechanical or electronic gadget which, when activated, 
gives one of a known finite set of results, one of the numbers 0, 1, ... , k-1 say. If we 
want to indicate that there are k possible outcomes we will call it a k-randomizer. The 
main property of a proper randomizer is, that its individual outcomes are unpredict
able in the highest possible degree. Somewhat more precisely this can be expressed as 
follows: all methods of prediction, with or without knowledge or use of past results, 
are equivalent; none of them has an advantage over the others; there is no systematic 
difference in the number of hits they score. Or: there is no gambling system against a 
randomizer; it is impossible to win systematically when playing fairly against it. This 
concept was already used by VON MISES, but he worked it out in a rather impractic
able way. It can also be expressed as follows: if the randomizer is given any odds over 
the player, however small, then the player will lose systematically. 

This abundant use of different expressions of one fundamental idea is a sign of 
weakness. It seems to be impossible to give a really satisfying close definition of a 
randomizer in words. The reason for this can be detected by scrutinising the above 
descriptions: all of them are of a negative character, even though some of them are 
syntactically positive. The essential property of a randomizer is a negative one: its 
unpredictability. 

There is, however, one very simple and effective way of defining material things: 
exemplification. Thus the unit of mass is defined as the mass of a certain piece of 
metal kept in an institute in Sevres. And so we may say: a good roulette is a good 
randomizer, and everybody will understand this. Also, it is not difficult to make one 
yourself. The easiest way is perhaps to use a die, of indifferent quality, and to throw it 
two times in succession. Distinguishing only ''even'' ( and denoting this by 0) and 
''odd'' (1), there are four possible outcomes: 00, 01, 10 and 11. The results 00 and 11 
do not count; if you get one of these you have to throw twice again. lf you get 01 or 
I 0, omit the last digit. The whole process then has two possible outcomes: 0 and 1, 
and there you have a very good 2-randomizer. If sufficient precautions are taken in 
the method of throwing, which it is easy to realise, the individual results are indeed 
very highly unpredictable. Instead of a die one may use a coin or even a button. The 
bias, which may be present in one throw is eliminated by using a pair and only noting 
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the order of two different results. The principle of this trick is that, althot1gh it may 
be difficult to attai11 directly a very high degree of unpredictability mechanically, it is 
mtich easier to design an experiment ''without memory'', where successive results do 
not influence one another. 

At this point the ob_jection is usually made, that a randomizer, however skilfully or 
ingeniously made, nevertheless will never be a perfect randomizer. This is, of course, 
true. But it is true of everything: nothing is perfect in tl1is world. The question is not 
whether an instrument is perfect -- because it never is - but whether it serves its pur
pose. And there the proof of the pudding is in tl1e eating. The proof that randomizers 
can be made ac.iequate for at least one of their pt1rposes lies in the fact that the people 
of Monaco do not pay any taxes: the randomizers in Mo11te Carlo take care of that 
part of the economy of the princedom. 

Another objection, equally justified and eqt1ally futile, is that even a perfect 
randomizer could never be proved to be so. This is true, because it is impossible to 
prove that something (in this case a winning gambling system) does not exist. It is 
e.g. impossible to prove that ghosts do not exist, or psychokinesis. But if it does 
exist, that can be proved. If a n1achine is not a randomizer this can be proved by 
finding two methods of prediction which are not equivalent. Every statistician will here 
recognize the train of thought of the testing of a null-hypothesis. 

Thus if a randomizer is to be used for a specific purpose, e.g. in the design of an 
experiment, and if one wants to test the randomizer before using it in the experiment, 
then one shot1ld test it by means of a statistical test which is also specific for this 
purpose. 

That is: a test which is especially sensitive for those deviations from randomness 
which tend to invalidate the experiment one has in mind. The fact that in general such 
a test \.Vill be less sensitive for other deviations from randomness is of no importance, 
as these do not invalidate the experiment. As a matter of fact, what one needs for 
specific purposes is not absolute randomness, but relative randomness, with respect 
to the specific situation. But this is a subject in itself which is outside the scope of 
this paper. 

Let us now abstract from the imperfections of material randomizers and consider 
an ideal one. Whatever is true for an ideal one will then be approximately true for a 
good one. 

The equivalence of"' all systems of prediction for a randomizer implies that none of 
its possible outcomes occurs systematically more often than another. For, if in a 10-
randomizer O occurs systematically more often than 5, say, then the system of always 
predicting O would be better than always predicting 5. Thus tl1e unpredictability leads 
logic·alf;,, to equal freqt1encies. This point is so important that it is worth while to en
large on it. What do we mean if we say that O occurs systematically more often than 
5? Not that this is true in every finite sequence, but that one can safely and repeatedly 
predict more zero's than fives in a, futt1re, long sequence. The vagueness in this for
mulation is the vagL1eness of all practical formulations .. It is also inherent in the 
formt1lation of the experin1ental law of large numbers. Nevertheless it is clear enough 
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if one gives an example: any reasonably well-made and well-thrown dice will system
atically more often show a number ~ 4 than > 4. Perhaps the term ''equal frequen
cies"', used above, should be avoided in this context, because in practice frequencies 
are usually unequal. What is meant is, strictly speaking, the absence of systematic 
differences between the frequencies of the results of a randomizer. An exact formula
tion of all this is only possible within a mathematical model: the theoretical law of 
large numbers; but this is only a ,node/ for the experimental one. Our conclusion is 
that a randomizer must satisfy the experin1ental law of large numbers, otherwise it 
would not be a randomizer. Thus the law of large numbers may be t1sed as one of the 
ways to test a randomizer experimentally. ff a machine satisfies this law, this is not 
sufficient to gt1arantee that it is a randomizer (counter-example: your watch). Un
predictability is a much stronger requirement than equality of frequencies in the long 
run. The moral of this is twofold. First: unpredictability of individual results is 
fundamental in a randomizer, the experimental law of large numbers is a logical 
consequence and therefore secondary. Second: unpredictability of individual results 
can only exist together with (approximate) predictability of frequencies in the long 
run. Complete unpredictabilit~l' cloes not exist in repeatable e.1;periments. This makes 
statistics possible! 

A numbe1· produced by a randomizer is often called a rando111 nu,11ber. This leads 
time and again to considerable confusion. For if a k-randomizer can produce the 
numbers 0, ... , k- I., then these are all random numbers. One should never, strictly 
speaking, use the adjective ''random.,' for one number, or for a finite sequence of 
numbers. Infinite sequences we need not be concerned about, because in practice 
everything is finite, including sequences. The proper term, to be used instead of 
''random'' is: ''obtained from a randomizer'' or ''randomly obtained''. It is not the 
number or the sequence that is random but the machine that has produced them is a 
randomizer. If the adjective ''random'' is understood in this way, there is no objection 
to its use as an abbreviation. We use it in this sense. 

It is not difficult to see that a sequence of 11 random numbers from a k-randomizer 
is one random vector from a n-dimensional randomizer with k 11 possible outcomes, 
all vectors of n nu1nbers, each from { 0, ... , k-1 J·. It is also a kn-randomizer, for the 
unpredictability of individual 011tcomes remains unimpaired. Also, deleting some 
of the possible outcomes of a randomizer and asking for a new number if one of 
these occurs, does not impair the unpredictability of the other ones. These two prop
erties enable us to t1se a k-randomizer as a k' -randomizer for any positive integers 
k > I and k'. 

The predictability, implicit in unpredictability of individual outcomes, is not 
confined to frequencies in sequences of random numbers. Arithmatic operations with 
random numbers also increase the predictability of res11lts. For example, althougl1 a 
pair of random numbers is also a random pair, the sum of two random numbers is 
already much less unpredictable. 

To conclude, we repeat that the fundamental idea of a randomizer is of a negative 
• 

nature: complete unpredictability of individual outcomes. It does not seem possible 
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to get rid ot' this negative character. If this is true, it is ·L1seless to try. There is also 
,1nother reason why it is perhaps better not to try. This is, that the main characteristic 
of a statistical siti,atio11, i.e. a situation where statistics can be applied, is of the same 
nature: it contains unpredictable elements. We can describe the domain of statistics 
as those practical situations, where observations or experiments behave, completely 
or in part, as if a randomizer were at work. This will sometimes be explicitly true, e.g. 
in random sampling or in randomized experiments, sometimes implicitly and in a 
very complicated way. Tht1s, if one observes the last numbers of the mileage of cars 
parked along an arbitrary street (without garages and car-factories), one has a 
rather complicated 10-randomizer. 

In other cases one may have a situation which can be represented by a model with 
a randomizer, even though the practical situation is of a deterministic nature. The 
most extreme case of this is the use of pseudorandom numbers, generated by a re
cursion. It may be remarked here, that the question whether the unpredictability of 
a statistical phenomenon arises from ignorance of the observer or from some more 
fundamental cause, is not relevant at all in our context. A situation which migh·t be 
analysed by means of deterministic method by somebody who knows quite a lot 
about it, may be analysed statistically by a person who knows less about it, so mt1ch 
less that for him some things are unpredictable which are predictable for the other. 
Both analyses are valid, although one may expect the best informed person to get the 
farther reaching and more definite results. Like everything else unpredictability is a 
relative concept and the questions whether perhaps '~in the end'' everything in this 
world is determined by causes and whether something like ''chance'' really exists 
(whatever that may mean), do not enter the picture at all .. That is why the use of the 
word ''chance'' has been avoided in this paper. 

To apply statistics in situations without random elements is not, in the opinion of 
the author, a promising activity. This is why he proposes to replace the principle of 
indifference by the positive requirement of the presence (explicit of implicit, real or 
imaginary) of a randomizer. 

4. Relative frequencies on finite sets 

The content of this section is trivially simple, so we can be short. (Mathematical 
langt1age) Let 

Q == { W 1 , (.V 2, • • ·, U) N } ( 1 ) 

be a finite set of elements and let A, B, ... , denote subsets of Q. 

Let N(A), N(B), ... denote the number of elements in these subsets. Then we 
define the relativefreque11cJ,'f (A) of A on Q by , 

.t· (A) = N (A)/ N. 

The following well-known properties then hold 

0 ~f(A) ~ l 

f(Q) == 1 

for every A c Q 
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f(A u B) =f(A)+f(B) if An B = 0. (5) 

Conditional relative frequencies, under the condition C, where C is a non-empty 
subset of Q, are defined as relative frequencies on C instead of Q. Two subsets A and 
B are called orthogonal on Q if 

f(A n B) =f(A) f"(B) 

and, if B is non-empty, this is equivalent to 

f (AIB) = f (A) 

where/ (Al B) is the conditional relative frequency of A under condition B. 

5. Probability 

(6) 

(7) 

(Practical language) Consider the following situation. A set of N objects is given and 
a randomizer. By means of the randomizer we are going to choose one object from 
the set. Some of the objects have a property A, the others do not. Will the object, 
indicated by the randomizer, have property A? 

In this situation we will say that there is a probability P(A) of A occuring, with 

P(A) = N(A)/N, (8) 

N(A) being the number of objects having property A. 
This clearly is the Laplace definition, but now only to be used if there is a ran

domizer at work. 

(Translation into mathematical language) The mathematical model for the above 
statistical situation is a set Q, of section 4. The element to be pointed out by the 
randomizer is indicated by @. * The use of an underlined symbol will always indicate 
a randomizer at work. 

(Mathematical language) To the notions given in section 4 an undefined new 
entity (J), called a random element of Q, is added and, for every A c: .Q, another un
defined notion (J) EA, called a (possible) event and we define 

P((J) EA)= f(A), 

the probability of w EA. 
The rules for events are the usual ones, e.g. 

w E A and (J) E B < > (J) E A r. B, 

etc. They are indentical to the rules for w not underlined. 
From definition (9) and (3), ( 4) and (5) now follows: 

0 ~P(wEA) ~ 1 for every Ac Q 

P(wE.fJ) = 1 

P(w EA u B) = P(@ EA) + P((J) EB) if An B = 0. 

* Or another notation which distinguisl1es clearly between random and non-random. 
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The lc1tter 1n,1y eq uivr1lently be written: 

P(w E A or Q) E B) = P(w E A) + P(w E B) if An B = 0 (5'') 

tlnd ''if A n B = 0'' is often replaced by the expression ''if w EA and w E B are 
1nL1tually exclusive''. The abbreviation P(A) for P(w EA) is otten used. 

FL1rther el,tbor,1tion is straightforward. E.g. the events w E A and @ E B will be 
called indepe11det1t if, and only if, A and B are orthogonal, etc. The model, thus 
obtained, is called ,l finite JJrobabilitJ' .field. 

6. Comment 

(Practical language) Thus we arrive painlessly at a finite model for probability theory. 
For practical purposes this should be sufficient - for in practice everything is finite -
but if we stopped here we should ct1t off the main part of mathematics and this we do 
not want to do. So in a later stage we have to generalize our model. But some remarks 
about the finite model have to be made first. 

According to the above definition of probability tl1is term can only be used for 
011e random drawing from a (finite) set Q. Every more complicated problem has to be 
reduced to this situation, e.g. by using product-fields for independent random drawings. 
This is completely in accordance with the measure-theoretical way of introducing 
probability, with this difference only, that there there is no need to go back to equal 
probabilities for the elements of Q. If Q is infinite this is, moreover, impossible. 
Remaining, for the moment, in the finite domain, it is clear that all probabilities will 
have rational values and that, on the other hand, all rational probabilities can be 
constructed.* A general, rational and finite, probability field can be obtained from 
Q by btinching together relevant elements of Q, i.e. by dividing Q into N' ( <N) 
distinct subsets and mapping these onto a new set Q', preserving probabilities. This 
is a well-known method in measure theory too. 

An objection, which has often been made to the Laplace definition is, that often it 
is impossible in practice to indicate the ''equally probable'' cases which are needed 
to compttte the probabilities involved. The usual example is a throw with a biased die. 
This difficulty is not pertinent for ot1r setup. The reason why we wish to use the 
notion of probability for the possible results of a biased die is, that its behaviot1r is 
equivalent to drawing an element at random from a set of, say, tickets, each of which 
carries one of the nttmbers 1, 2, ... , 6. The die being biased, the relative frequencies of 
the numbers in this set are unequal and, in most cases, unknown. But the model is 
clearly pertinent. If it were not, i.e. if a biased die behaved fundamentally different from 
such a lottery, then probability would not be a pertinent notion for that die. 

An important point in applying statistics is the way back from the mathematical 
model to practice. The main point is, of course, the translation of a probability, e.g. 
a confidence coefficient, l -a say. This is ustially done by means of the frequency 

* One should not t~orget that real numbers do not ~~exist'' in practice, where they are always broken 
off after a finite number of decimals, but only in mathematics. 
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inte1·pretation but it see1ns more elegant to put that interpretation in the second place, 
wl1ere it belongs, and to use tl1e fundamental idea of a randomizer. The practical 
explanation would then be as follows. If you use this n1ethod of analyzing your data, 
you will get an answer that may be right or wrong. It will not be possible to be certain 
whether it is right or wrong. Imagine that at tl1e same time wl1en you apply the n1ethod, 
a randomizer draws one element from a set of elements, consisting of a t"'raction a of 
''black'' and 1-a of ''white'' elements. If a ''white"" element is drawn the answer is 
rigl1t, otherwise it is wrong. But you are not allowed to look at the element drawn by 
the randomizer. This seems to describe the nature of a confidence coefficient very 
precisely. It also e1nphasizes strongly tl1at tl1e confidence coefficient refers to the 
1nethod used and not to tl1e individual result obtained. Th.is is an important point, 
for one sl1ould never say, as is often done, that the result obtained has a probability 
l -a of being right; it is the method of obtaining the result which the probability 1-cc 
refers to. 

Of course the frequency interpretation n1ay be used as a help, because a randomizer 
obeys the law of large numbers. But this is only secondary and using the above 
approach probability can also be applied to unique situations, i.e. situations where 
repeatability is absent or practically irrelevant. Moreover, in this way a set-tip is 
obtained which in principle allows the introduction of Bayesian and st1bjectivistic 
points of view, as far as these can be represented by (imaginary) randomizers. It 
seems to the aLtthor that this could certainly be done to a great extent, althougl1 he 
does not feel inclined to do so himself. 

7. Generalisation of the model 

It would be very awkward to stop at finite probability fields, for finite mathematics 
is only a small and awkward part of mathematics. But generalisation to the measure
theoretical model is now straightforward. The main feature is the generalization of 
property (5') to an enumerable sequence of events and this, having no real analogue 
in practice - where, it can never be said often enough to mathematicians, everything 
is finite - sl1ould be done in the form of an axiom. So then it is perhaps better to 
introduce the whole model axiomatically. But the link between practice and mathe
matics is strengthened by first introducing probability in the way indicated here and 
it also has definite didactical advantages. 

One consequence one can draw, for the 1neasure-theoretical method, from the 
above considerations and which, I think, would be a definite improvement, is to 
introdtice the random element w of Q into the measure-theoretical model at the -
moment when probability is introduced. This would be a clear landmark separating 
probability theory from measure theory proper. 
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