STICHTING
 MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49

AMSTERDAM


```
On convexitw meserving families of probabinitw digtribution
```


On convexity preserving families of probability distributions

by W. R. van Zwet *

1. Introduction

Let F_{θ} be a family of probability distribution functions on R^{1} with parameter $\theta \in T \subseteq R^{1}$, and let X denote the union of the supports of these distributions. For $k \geqq 0$, let $\left\{g_{0}, g_{1}, \ldots, g_{k+1}\right\}$ be a set of real-valued finite functions on X that are integrable with respect to F_{θ} for all $\theta \in T$ and define

$$
\begin{equation*}
\chi_{i}(\theta)=\int g_{i}(x) d F_{\theta}(x), \quad i=0,1, \ldots, k+1 \tag{1.1}
\end{equation*}
$$

Following S. Karlin and W. J. Studden in [3] with a minor modification, we shall say that $\left\{g_{0}, g_{1}, \ldots, g_{k+1}\right\}$ constitute a weak complete Tchebycheff system (WCTsystem) if for each $0 \leqq m \leqq k+1$ and all $x_{0}<x_{1}<\ldots<x_{m} \in X$ the determinant

$$
\begin{equation*}
\operatorname{det}\left[g_{i}\left(x_{j}\right)\right]_{i, j=0, \ldots, m} \geqq 0 \tag{1.2}
\end{equation*}
$$

the system is called a complete Tchebycheff system (CT-system) if the inequality is always strict. The difference between this definition of a WCT-system and the one given in [3] is that we retain the case where $g_{0}, g_{1}, \ldots, g_{m}$ are linearly dependent on X for some $m \leqq k+1$; in that case any choice of g_{m+1}, \ldots, g_{k+1} will trivially satisfy definition (1.2). We shall also express inequalities (1.2) by saying that g_{k+1} is generalized convex with respect to the WCT-system $\left\{g_{0}, \ldots, g_{k}\right\}$.

Our discussion of WCT-systems will involve the related concept of total positivity (cf. [1]). A function $f(x, \theta)$ on $X \times T$ is said to be totally positive of order $n\left(T P_{n}\right)$ if for every $1 \leqq m \leqq n$, all $x_{1}<x_{2}<\ldots<x_{m} \in X$ and all $\theta_{1}<\theta_{2}<\ldots<\theta_{m} \in T$,

$$
\begin{equation*}
\operatorname{det}\left[f\left(x_{i}, \theta_{j}\right)\right]_{i, j=1, \ldots, m} \geq 0 \tag{1.3}
\end{equation*}
$$

The first question that comes to mind in this context is whether one can find conditions on the family F_{θ} that ensure that $\left\{\chi_{0}, \chi_{1}, \ldots, \chi_{k+1}\right\}$ will be a WCT-system on T whenever $\left\{g_{0}, g_{1}, \ldots, g_{k+1}\right\}$ constitutes a WCT-system on X. If the family F_{θ} possesses densities $p(x, \theta)$ with respect to a σ-finite measure μ with spectrum X and hence

$$
\chi_{i}(\theta)=\int g_{i}(x) p(x, \theta) d \mu(x)
$$

this question is easily answered. We have for each $0 \leqq m \leqq k+1$ (cf. [1])

$$
\operatorname{det}\left[\chi_{i}\left(\theta_{j}\right)\right]=\int_{x_{0}<x_{1}<\ldots<x_{m}} \ldots \int_{i} \operatorname{det}\left[g_{i}\left(x_{j}\right)\right] \operatorname{det}\left[p\left(x_{i,} \theta_{j}\right)\right] d \mu\left(x_{0}\right) \ldots d \mu\left(x_{m}\right)
$$

where in each determinant i and j run from 0 to m. It follows that the condition that p is $T P_{k+2}$ is certainly sufficient; since we require that $\left\{\chi_{0}, \ldots, \chi_{k+1}\right\}$ will inherit the WCT-property for every WCT-system $\left\{g_{0}, \ldots, g_{k+1}\right\}$, the condition is essentially also

[^0]necessary (by "essentially" is meant that for any $\theta_{1}<\ldots<\theta_{m}$ the defining inequality (1.3) need not hold on a set of product-measure 0). We note that the fact that F_{θ} are probability distribution functions is not used in establishing the condition.

In view of this general result it is hardly surprising that recent discussions of convexity preserving properties (cf. [1] and [2]) have been confined to families of densities that are totally positive of the appropriate order. However, one usually does not discuss the class of all WCT-systems of a given order but restricts attention to a relatively small subclass (e.g. the case where $g_{i}=g_{1}^{i}$ for $i=0,1, \ldots, k$). Also one often imposes additional restrictions on the family F_{θ} to ensure that for those systems $\left\{g_{0}, \ldots, g_{k+1}\right\}$ that are considered, $\left\{\chi_{0}, \ldots, \chi_{k+1}\right\}$ will also belong to some restricted class.

In sections 3 and 4 of this paper we investigate how far the $T P_{k+2}$ condition for p can be relaxed in two such restricted cases that seem to be important in practice. Like section 1 , the second section is of an expository character.

2. Convexity of order \mathbf{k}

Let f be a real-valued finite function defined on an arbitrary set $Y \subseteq R^{1}$. For $k \geqq 0$ we shall say that f is convex of order $k\left(C_{k}\right)$ if f is generalized convex with respect to the CT-system $\left\{1, y, y^{2}, \ldots, y^{k}\right\}$, i.e. if for all $y_{1}<y_{2}<\ldots<y_{k+2}$
$D_{f}\left(y_{1}, \ldots, y_{k+2}\right)=\left|\begin{array}{ccccc}1 & y_{1} & y_{1}^{2} & \ldots y_{1}^{k} & f\left(y_{1}\right) \\ 1 & y_{2} & y_{2}^{2} & \ldots y_{2}^{k} & f\left(y_{2}\right) \\ \vdots & & & & \vdots \\ 1 & y_{k+2} & y_{k+2}^{2} \ldots y_{k+2}^{k} & f\left(y_{k+2}\right)\end{array}\right| \geq 0$.
For $k=0,1,(2.1)$ reduces to the ordinary definitions of non-decreasing or (measurable) convex functions. Generally speaking (2.1) is an extension of the concept of non-negative $(k+1)$-th derivative. C_{k} functions were extensively studied by T. Popoviciu in [6]. We note that S. Karlin [1] refers to C_{k} functions as convex of order $(k+1)$.

If P_{m} denotes a polynomial of degree at most m, then equivalent definitions of the C_{k} property are obviously:
(A) (cf. [1]). For every $P_{k}, f-P_{k}$ changes sign at most $(k+1)$ times on Y. If it does have $(k+1)$ sign-changes, the signs occur in the order $(-)^{k+1},(-)^{k}, \ldots,+,-,+$ for increasing values of the argument.
(B) For every $y_{1}<y_{2}<\ldots<y_{k+2} \in Y$, the P_{k+1} having $P_{k+1}\left(y_{i}\right)=f\left(y_{i}\right)$, $i=1,2, \ldots, k+2$, has non-negative coefficient for its $(k+1)$-th degree term.
There is also a close connection with differences. Let

$$
\begin{align*}
& \Delta_{h}^{1} f(y)=f(y+h)-f(y) \\
& \Delta_{h}^{m} f(y)=\Delta_{h}^{1} \Delta_{h}^{m-1} f(y)=\sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j} f(y+j h) \tag{2.2}
\end{align*}
$$

and generally

$$
\begin{equation*}
\Delta_{h_{1}, \ldots, h_{m}}^{m} f(y)=\Delta_{h_{m}}^{1} \Delta_{h_{1}, \ldots, h_{m-1}}^{m-1} f(y)=\sum_{j=0}^{m}(-1)^{m-j} \sum_{1 \leqq i_{1}<i_{2}<\ldots<i_{j} \leqq m} f\left(y+\sum_{\nu=1} h_{i_{\nu}}\right) . \tag{2.3}
\end{equation*}
$$

Furthermore let

$$
\begin{equation*}
D_{f}^{*}\left(y_{1}, \ldots, y_{k+2}\right)=\frac{D_{f}\left(y_{1}, \ldots, y_{k+2}\right)}{\prod_{1 \leqq i<j \leqq k+2}\left(y_{j}-y_{i}\right)} \tag{2.4}
\end{equation*}
$$

since the denominator is positive for $y_{1}<y_{2}<\ldots<y_{k+2}, D_{f}$ may be replaced by D_{f}^{*} in definition (1.1). The following relation between D_{f}^{*} and differences may be proved by induction on k.

Lemma 2.1

If Π denotes the set of permutations $\pi=[\pi(1), \pi(2), \ldots, \pi(k+1)]$ of the numbers $1,2, \ldots, k+1$, then

$$
\begin{equation*}
\Delta_{h_{1}, \ldots, h_{k+1}}^{k+1} f(y)=\prod_{i=1}^{k+1} h_{i} \sum_{\pi \in \Pi} D_{f}^{*}\left(y, y+h_{\pi(1)}, \ldots, y+\sum_{\nu=1}^{k+1} h_{\pi(\nu)}\right) . \tag{2.5}
\end{equation*}
$$

We note that for $h_{1}=h_{2}=\ldots=h_{k+1}=h$, (2.5) reduces to

$$
\begin{equation*}
\Lambda_{h}^{k+1} f(y)=(k+1)!h^{k+1} D_{f}^{*}[y, y+h, \ldots, y+(k+1) h] . \tag{2.6}
\end{equation*}
$$

It follows from lemma 2.1 that if f is C_{k} on Y, then for all $h_{1}, h_{2}, \ldots, h_{k+1}>0$,

$$
\begin{equation*}
\Delta_{h_{1}, \ldots, h_{k+1}}^{k+1} f(y) \geqq 0 \tag{2.7}
\end{equation*}
$$

whenever defined, i.e. whenever all $y+\sum_{\nu=1}^{j} h_{i_{\nu}} \in Y$.
In the special case that Y is an interval there is also a converse result and the following definition of the C_{k} property is equivalent to (2.1) in this case:
(C) f is (Lebesgue)-measurable and for $h>0, y \in Y, y+(k+1) h \in Y$,

$$
\begin{equation*}
\Delta_{h}^{k+1} f(y) \geq 0 \tag{2.8}
\end{equation*}
$$

In this case, however, the C_{k} property is hardly a generalization of non-negative $(k+1)$-th derivative at all. In fact, if Y is an open interval and $k \geqq 1$, definition (2.1) ensures continuity of f on Y and is equivalent to
(D) f is $(k-1)$ times continuously differentiable and $f^{(k-1)}$ is convex on Y.

Finally we consider the special case where Y is a set of consecutive integers. For integer $h>0$

$$
\begin{equation*}
\Delta_{h}^{k+1} f(y)=\sum_{h_{1}=0}^{h-1} \ldots \sum_{h_{k}+1}^{h-1} \Delta_{1}^{k+1} f\left(y+\sum_{j=1}^{k+1} h_{j}\right) . \tag{2.9}
\end{equation*}
$$

Combining (2.6) and (2.9) we find that the C_{k} property may be defined in this case by
(E) For all $y, y+k+1 \in Y$

$$
\begin{equation*}
\Delta_{1}^{k+1} f(y) \geqq 0 \tag{2.10}
\end{equation*}
$$

For further details concerning the definitions given above the reader is referred to [6].
Let f_{1} and f_{2} be real-valued finite functions on Y. We shall say that f_{2} is C_{k} with respect to f_{1} on Y if there exists a C_{k} function f on $f_{1}(Y)$ such that $f_{2}=f\left(f_{1}\right)$ on Y. If f_{1} is non-decreasing on Y and f_{2} is constant on any set where f_{1} is constant, this reduces to

$$
\left|\begin{array}{cccccc}
1 & f_{1}\left(y_{1}\right) & f_{1}^{2}\left(y_{1}\right) & \ldots & f_{1}^{k}\left(y_{1}\right) & f_{2}\left(y_{1}\right) \tag{2.11}\\
1 & f_{1}\left(y_{2}\right) & f_{1}^{2}\left(y_{2}\right) & \ldots & f_{1}^{k}\left(y_{2}\right) & f_{2}\left(y_{2}\right) \\
\vdots & & & & & \vdots \\
1 & f_{1}\left(y_{k+2}\right) & f_{1}^{2}\left(y_{k+2}\right) & \ldots & f_{1}^{k}\left(y_{k+2}\right) & f_{2}\left(y_{k+2}\right)
\end{array}\right| \geq 0
$$

for all $y_{1}<y_{2}<\ldots<y_{k+2} \in Y$.

3. Preserving convexity of order \mathbf{k}

Returning to the setup of section 1 , we let g be a real-valued finite function on X that is integrable with respect to F_{θ} for all $\theta \in T$ and define

$$
\chi(\theta)=\int g(x) d F_{\theta}(x)
$$

We shall say that the family F_{θ} preserves convexity of order k if χ is C_{k} on T whenever g is C_{k} on X, i.e. whenever g is generalized convex with respect to $\left\{1, x, \ldots, x^{k}\right\}$ then χ is generalized convex with respect to $\left\{1, \theta, \ldots, \theta^{k}\right\}$. In [1] S . Karlin has shown that if densities $p(x, \theta)$ with respect to μ exist, then a sufficient condition for F_{θ} to preserve convexity of order k is that p is $T P_{k+2}$ and that whenever g is a polynomial of exact degree $m \leqq k$, then χ is also a polynomial of exact degree m. According to the result of section 1 the first part of this condition ensures that χ is generalized convex with respect to the WCT-system

$$
\int x^{i} d F_{\theta}(x), \quad i=0,1, \ldots, k
$$

whereas the second part ensures that this is equivalent to generalized convexity with respect to $\left\{1, \theta, \ldots, \theta^{k}\right\}$.

However, this condition is not necessary. For $k=0$ a condition that is necessary as well as sufficient was given by J. Krzyz in [4]:

Lemma 3.1

χ is non-decreasing on T whenever g is non-decreasing on X if and only if the family F_{θ} is stochastically increasing (i.e. $F_{\theta}(x)$ is non-increasing in θ for every fixed x).

Since the $T P_{2}$ property of p is equivalent to monotone likelihood ratio, KrZyz's condition is weaker than KARLIN's for $k=0$ (cf. [5]).

For general k it is also easy to find a necessary and sufficient condition, provided that we restrict attention to those C_{k} functions g that can be extended to a C_{k} function on an open interval containing X. Since the convex functions constitute a convex cone spanned by the linear functions and functions of the form

$$
h(x)=\left\{\begin{array}{lll}
0 & \text { for } & x \leqq x_{0} \\
x-x_{0} & \text { for } & x>x_{0}
\end{array}\right.
$$

we find from definition D of section 2 that the convex cone of C_{k} functions is spanned by the polynomials P_{k} of degree at most k and functions of the form

$$
h_{k}(x)=\left\{\begin{array}{lll}
0 & \text { for } & x \leqq x_{0} \\
\left(x-x_{0}\right)^{k} & \text { for } & x>x_{0}
\end{array}\right.
$$

For $k=0$ this is obviously also true. It follows that it is sufficient as well as necessary to require that χ be C_{k} whenever g is of one of the forms mentioned above. However, if g is a polynomial of degree at most k, then so is $-g$ and as a result both χ and $-\chi$ are required to be C_{k}, which implies that χ is also a polynomial of degree at most k. Hence we have proved

Lemma 3.2

χ is C_{k} on T whenever g is C_{k} on an open interval containing X, if and only if for every x_{0}

$$
\int\left(x-x_{0}\right)^{k} d F_{\theta}(x)
$$

is C_{k} on T and whenever g is a polynomial of degree at most k the same holds for χ.
We note that for $k \leqq 1$ the condition that the C_{k} function g can be extended to a C_{k} function on an open interval containing X is always satisfied. For $k=0$ the lemma reduces to lemma 3.1.

Although for $k \geqq 1$ lemma 3.2 seems to be fairly useless for practical purposes, the results obtained so far do seem to indicate that there exists a large class of C_{k} preserving families that do not possess any total positivity properties. The results in the remainder of this section exhibit a number of these families.

Theorem 3.1

Let F_{0} and F be distribution functions with characteristic functions φ_{0} and φ respectively, and suppose that F is infinitely divisible and has $F(-0)=0$. If for $t \geqq 0, F_{t}$ denotes the distribution function corresponding to $\varphi_{0} \cdot \varphi^{t}$, then the family F_{t}, $0 \leqq t<\infty$, preserves convexity of all orders.

Proof

Let G_{t} denote the distribution function corresponding to φ^{t} and let $X_{t}(\mathrm{t} \geqq 0)$ be a stochastic process with non-negative stationary independent increments for which $X_{0}, X_{s+t}-X_{s}$ and $X_{t}(s, t \geqq 0)$ have distribution functions F_{0}, G_{t} and F_{t} respectively. For fixed $t \geqq 0$ and $h>0$ define

$$
Z_{i}=X_{t+i h}-X_{t+(i-1) h}, \quad i=1,2, \ldots, k+1
$$

$Z_{1}, Z_{2}, \ldots, Z_{k+1}$ are independent and identically distributed random variables that are also independent of X_{t}. Hence, because of the exchangeability of Z_{1}, \ldots, Z_{k+1},

$$
\begin{aligned}
& E\left[\left.\sum_{j=0}^{k+1}(-1)^{k+1-j}\binom{k+1}{j} g\left(X_{t+j h}\right) \right\rvert\, X_{t}=x\right]= \\
= & E\left[\sum_{j=0}^{k+1}(-1)^{k+1-j}\binom{k+1}{j} g\left(x+Z_{1}+\ldots+Z_{j}\right)\right]= \\
= & E\left[\sum_{j=0}^{k+1}(-1)^{k+1-j} \sum_{1 \leqq i_{1}<\ldots<i_{j} \leqq k+1} g\left(x+Z_{i_{1}}+\ldots+Z_{i_{j}}\right)\right]= \\
= & E\left[\Lambda_{Z_{1}, \ldots, Z_{k+1}}^{k+1} g(x)\right] .
\end{aligned}
$$

Since $Z_{1}, \ldots, Z_{k+1} \geqq 0$ with probability 1 , the last expression is non-negative for every C_{k} function g and all x by (2.7). As a result

$$
\Delta_{h}^{k+1} \chi(t)=E\left[\sum_{j=0}^{k+1}(-1)^{k+1-j}\binom{k+1}{j} g\left(X_{t+j h}\right)\right] \geqq 0
$$

for all $t \geqq 0$ and $h>0$. As χ is a measurable function defined on the interval $[0, \infty)$, it is C_{k} by definition C of section 2.

If we consider only integer values of t in theorem 3.1, we may drop the assumption that F is infinitely divisible without affecting the proof. The C_{k} character of χ on the integers now follows from $\Delta_{1}^{k+1} \chi \geqq 0$ by definition E of section 2 . Specializing to the case where F_{0} is degenerate at 0 we obtain

Corollary 3.1

Every family $F_{n}, n=1,2, \ldots$, of n-fold convolutions of a distribution function F_{1} having $F_{1}(-0)=0$ preserves convexity of every order.

We note that the fact that F_{n} preserves convexity or order k was proved by S. KARLin and F . Proschan in [2] under the additional assumption that F_{1} possesses a density p that is a Pólya frequency density of order $k+2$ (i.e. $p(x-y)$ is $T P_{k+2}$ in x and y).

Another special case of theorem 3.1 is obtained by assuming F to be degenerate at 1 , in which case the theorem reduces to:

Every location parameter family $F_{\theta}(x)=G(x-\theta),-\infty<\theta<\infty$, preserves convexity of every order.

This result is of course rather trivial. Without invoking theorem 3.1, it follows at once from

$$
\Delta_{h}^{k+1} \chi(\theta)=\Delta_{h}^{k+1} \int g(x+\theta) d G(x)=\int \Delta_{h}^{k+1} g(x+\theta) d G(x)
$$

In the same manner one easily verifies:
Every scale parameter family $F_{\theta}(x)=G(x / \theta), 0<\theta<\infty$, preserves convexity of every odd order. If moreover $G(-0)=0$, then the family preserves convexity of all orders.

4. Invariant convexity preserving families

Let g_{1}, g_{2}, χ_{1} and χ_{2} be defined as in section 1 . We shall say that the family F_{θ} is invariant convexity preserving if, whenever g_{1} is non-decreasing and g_{2} is convex with
respect to g_{1} on X, then χ_{1} is non-decreasing and χ_{2} is convex with respect to χ_{1} on T. In terms of WCT-systems we may express this property by requiring that for every WCT-system of the form $\left\{1, g_{1}, g_{2}\right\}$ the corresponding system $\left\{1, \chi_{1}, \chi_{2}\right\}$ is also a WCT-system.
In the first place this definition asserts that the family F_{θ} preserves the monotonicity of g_{1} and hence by lemma 1 the family is stochastically increasing; F_{θ} also preserves convexity (of order 1) provided that the parameter is subjected to a suitable nondecreasing transformation

$$
\eta=\eta(\theta)=\int x d F_{\theta}(x)
$$

Moreover, this convexity preserving property is invariant under non-decreasing transformations g_{1} of the random variable, the appropriate monotone transformation of θ then becoming χ_{1}. It is precisely because of this invariance that we do not require that F_{θ} be convexity preserving with respect to θ itself, i.e. that η be linear in θ. This property would be destroyed by non-linear transformations g_{1} anyway and would only result in fixing a possibly awkward parametrization.

From the general result of section 1 it follows that F_{θ} is invariant convexity preserving if the density p is $T P_{3}$. The following theorem provides a necessary and sufficient condition.

Theorem 4.1

Define $\bar{F}_{\theta}(x)=1-F_{\theta}(x)$. The family F_{θ} is invariant convexity preserving if and only if $\left\{1, \bar{F}_{\theta}\left(x_{1}\right), \bar{F}_{\theta}\left(x_{2}\right)\right\}$ is a WCT-system on T for every fixed pair $x_{1}<x_{2}$.

Proof

The condition asserts that for $x_{1}<x_{2}$ and $\theta_{0}<\theta_{1}<\theta_{2}$,

$$
\left|\begin{array}{ll}
1 & \bar{F}_{\theta_{0}}\left(x_{1}\right) \tag{4.1}\\
1 & \bar{F}_{\theta_{1}}\left(x_{1}\right)
\end{array}\right| \geq 0,\left|\begin{array}{lll}
1 & \bar{F}_{\theta_{0}}\left(x_{1}\right) & \bar{F}_{\theta_{0}}\left(x_{2}\right) \\
1 & \bar{F}_{0}\left(x_{1}\right) & \bar{F}_{\theta_{1}}\left(x_{2}\right) \\
1 & \bar{F}_{\theta_{2}}\left(x_{1}\right) & \bar{F}_{\theta_{2}}\left(x_{2}\right)
\end{array}\right| \geq 0 .
$$

The first inequality means that F_{θ} is stochastically increasing and we have already remarked that this is necessary and sufficient for χ_{1} to be non-decreasing whenever g_{1} is. We may therefore assume that $\bar{F}_{\theta}(x)$ is non-decreasing in θ for every fixed x and restrict attention to the second inequality.

Let g_{1} be non-decreasing and let $g_{2}=f\left(g_{1}\right)$ where f is convex on $g_{1}(X)$. Since a convex function can be extended to a convex function on an interval, the same reasoning that we used in the proof of lemma 3.2 shows that we need only be concerned with functions f that are linear and functions f of the form

$$
f(y)=\left\{\begin{array}{lll}
0 & \text { for } & y \leqq y_{0} \tag{4.2}\\
y-y_{0} & \text { for } & y>y_{0}
\end{array}\right.
$$

Without loss of generality we may assume that $y_{0}=g_{1}\left(x_{0}\right) \in g_{1}(X)$. For linear f, χ_{2} is linear and hence convex with respect to χ_{1}. Only functions f of the form (4.2)
remain to be considered and as a result we have the following necessary and sufficient condition for a stochastically increasing family F_{θ} to be invariant convexity preserving:

For every non-decreasing g_{1} and every $x_{0} \in X$,

$$
\chi_{2}(\theta)=\int_{x_{0}}^{\infty}\left[g_{1}(x)-g_{1}\left(x_{0}\right)\right] d F_{\theta}(x)
$$

is convex with respect to $\chi_{1}(\theta)$.
By an approximation argument one shows that it is sufficient to consider only those functions g_{1} that are left-continuous, non-decreasing step-functions assuming finitely many values. But then the above condition becomes:
For all $m=1,2, \ldots$, all $x_{1}<x_{2}<\ldots<x_{m}$, all $\alpha_{i}>0, \mathrm{i}=1,2, \ldots, m$, all $1 \leq i_{0} \leq m$ and all c,

$$
\begin{equation*}
\sum_{i=i_{0}}^{m} \alpha_{i} \bar{F}_{\theta}\left(x_{i}\right) \tag{4.3}
\end{equation*}
$$

is convex with respect to

$$
\begin{equation*}
\sum_{i=1}^{m} \alpha_{i} \bar{F}_{\theta}\left(x_{i}\right)+c \tag{4.4}
\end{equation*}
$$

Since (4.4) is non-decreasing in θ and (4.3) is constant on any set where (4.4) is constant, the determinantal convexity definition (2.11) for $k=1$ applies. By subtracting from the second column in this determinant we find that convexity of (4.3) with respect to (4.4) is equivalent to

$$
\begin{align*}
& \left|\begin{array}{ccc}
1 & \sum_{i=1}^{i_{0}-1} \alpha_{i} \bar{F}_{\theta_{0}}\left(x_{i}\right) & \sum_{i=i_{0}}^{m} \alpha_{i} \bar{F}_{\theta_{0}}\left(x_{i}\right) \\
\vdots & & \vdots \\
1 & \sum_{i=1}^{i_{0}-1} \alpha_{i} \bar{F}_{\theta_{2}}\left(x_{i}\right) & \sum_{i=i_{0}}^{m} \alpha_{i} \bar{F}_{\theta_{2}}\left(x_{i}\right)
\end{array}\right|= \tag{4.5}\\
& =\sum_{i=1}^{i} \sum_{j=i_{0}}^{i_{0}-1} \alpha_{i} \alpha_{j}\left|\begin{array}{ccc}
1 & \bar{F}_{\theta_{0}}\left(x_{i}\right) & \bar{F}_{\theta_{0}}\left(x_{j}\right) \\
\vdots & & \vdots \\
1 & \bar{F}_{\theta_{2}}\left(x_{i}\right) & \bar{F}_{\theta_{2}}\left(x_{j}\right)
\end{array}\right| \geq 0 .
\end{align*}
$$

By choosing $i_{0}=m=2$ we find that condition (4.1) is necessary; since every term in (4.5) has $x_{i}<x_{j}$ it is also sufficient. This completes the proof of the theorem.

It may be of interest to compare the sufficient condition that F_{θ} possesses a $T P_{3}$ density $p(x, \theta)$ with the necessary and sufficient condition of the theorem. One easily shows that the $T P_{3}$ assumption for p implies that $\bar{F}_{\theta}(x)$ is $T P_{3}$, or
$\left|\begin{array}{ll}\bar{F}_{\theta_{0}}\left(x_{0}\right) & \bar{F}_{\theta_{0}}\left(x_{1}\right) \\ \bar{F}_{\theta_{1}}\left(x_{0}\right) & \bar{F}_{\theta_{1}}\left(x_{1}\right)\end{array}\right| \geq 0,\left|\begin{array}{lll}\bar{F}_{\theta_{0}}\left(x_{0}\right) & \bar{F}_{\theta_{0}}\left(x_{1}\right) & \bar{F}_{\theta_{0}}\left(x_{2}\right) \\ \bar{F}_{\theta_{1}}\left(x_{0}\right) & \bar{F}_{\theta_{1}}\left(x_{1}\right) & \bar{F}_{\theta_{1}}\left(x_{2}\right) \\ \bar{F}_{\theta_{2}}\left(x_{0}\right) & \bar{F}_{\theta_{2}}\left(x_{1}\right) & \bar{F}_{\theta_{2}}\left(x_{2}\right)\end{array}\right| \geq 0$,
for $x_{0}<x_{1}<x_{2}$ and $\theta_{0}<\theta_{1}<\theta_{2}$. By letting x_{0} tend to $-\infty$ we see that (4.6) implies (4.1). Hence the condition that $\bar{F}_{\theta}(x)$ be $T P_{3}$ is also sufficient for F_{θ} to be invariant convexity preserving.
If we restrict ourselves to the special case where the parameter set T is an interval and $\bar{F}_{\theta}(x)$ is differentiable with respect to θ, it turns out that theorem 4.1 involves a $T P_{2}$ instead of a $T P_{3}$ condition.

Theorem 4.2

Let T be an interval and let $q(x, \theta)=(\partial / \partial \theta) \bar{F}_{\theta}(x)$ be defined on T for all x . Then the family F_{θ} is invariant convexity preserving if and only if q is $T P_{2}$.

Proof

The first inequality in (4.1) is equivalent to $q \geq 0$. Since $\bar{F}_{\theta}\left(x_{2}\right)$ is constant on any set where $\bar{F}_{\theta}\left(x_{1}\right)+\bar{F}_{\theta}\left(x_{2}\right)$ is constant and the latter is non-decreasing in θ, the second inequality of (4.1) asserts that $\bar{F}_{\theta}\left(x_{2}\right)$ is convex with respect to $\bar{F}_{\theta}\left(x_{1}\right)+\bar{F}_{\theta}\left(x_{2}\right)$. This in turn is equivalent to $q\left(x_{1}, \theta_{1}\right) q\left(x_{2}, \theta_{2}\right)-q\left(x_{1}, \theta_{2}\right) q\left(x_{2}, \theta_{1}\right) \geq 0$ for $x_{1}<x_{2}$ and $\theta_{1}<\theta_{2}$.

It is tempting to ask whether theorem 4.2 can be generalized. One conceivable generalization would deal with invariant C_{k} preserving families F_{θ}, i.e. families for which χ_{1} is non-decreasing and χ_{2} is C_{k} with respect to χ_{1} whenever g_{1} is non-decreasing and g_{2} is C_{k} with respect to g_{1}. However, even a cursory inspection shows that only trivial examples of such families exist. The necessary requirement that χ_{2} be a polynomial in χ_{1} of degree at most k whenever g_{2} is a polynomial in g_{1} of degree at most k, can not be satisfied for every non-decreasing g_{1} except in a trivial manner.

A more promising generalization is to consider families F_{θ} that transform WCTsystems $\left\{1, g_{1}, \ldots, g_{k+1}\right\}$ into WCT-systems $\left\{1, \chi_{1}, \ldots, \chi_{k+1}\right\}$. If one restricts attention to the case where X and T are intervals and g_{i} and F_{θ} satisfy certain regularity conditions, one shows in a fairly straightforward manner that a necessary and sufficient condition on F_{θ} is that q be $T P_{k+1}$, thus generalizing lemma 3.1 and theorem 4.2 to the case where $k \geqq 2$. We may conclude that although something may be lost for $k \geq 2$, the basic reason that theorems 4.1 and 4.2 work is not the fact that $k=1$ in that case, but that $g_{0} \equiv 1$ and that F_{θ} are probability distribution functions.

References

[1] Karlin, S. (1963), Total positivity and convexity preserving transformations. Convexity: Proc. Symp. Pure Math. 7, 329-347, Amer. Math. Soc., Providence.
[2] Karlin, S. and F. Proschan (1960), Pólya type distributions of convolutions. Ann. Math. Statist. 31, 721-736.
[3] Karlin, S. and W. J. Studden (1966), Tchebycheff systems: with applications in analysis and statistics. John Wiley \& Sons, New York, London, Sydney.
[4] Krzyz, J. (1952), On monotonity-preserving transformations. Ann. Univ. Mariae Curie-Sklo-́ dowska Sect. A 6, 91-111.
[5] Lehmann, E. L. (1959), Testing statistical hypotheses. John Wiley \& Sons, New York.
[6] Popoviciu, T. (1945), Les fonctions convexes. Herman et Cie, Paris.

[^0]: This research was supported in part by the Office of Naval Research Contract Nonr-3656 (18) while the author was visiting at the University of California in Berkeley. Report S 387 (SP 106) of the Statistical Department of the Mathematical Centre at Amsterdam.

 * University of Leiden

