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1. The motorist problem

1.1 Introduction

Suppose we consider the following problem.
A motorist has decided to effect an accident insurance under the fol-
lowing conditions. The insurance runs for one year. The premium for

the first year amounts E.. If no damages have been claimed during 1

O.
successive years, 1 = 1,2 or 3 the premium is reduced to E.. After
four years of damagefree driving no further premium reduction 1is

granted, so the premium remains E_.. The premium is due on the first

3
day of the year *) . The own risk amounts &q

The number of accidents of our motorist during a time period T 1is
assumed to be Poilisson distributed with parameter AT. The extend of
¢ )

the damage s has distribution function F(s) with finite mean and

varliance.

The problem of our motorist will be to decide whether to claim a damage
or not. He will have to develop a strategy that specifies his decisions
1n every possible situation. His strategy will be called optimal if it
minimizes the expected costs in the long run.

We may expect that in view of the premium reduction, i1t will be un-

profitable to claim damages which are not much larger than a Once a

damage 1s claimed 1t will be profitable to claim all followigg damages
that exceed 2, during the remaining part of the year.

Hence his decisions will also depend on the time of the year and the
premium paid at the beginning of that year. So we distinguish between
four types of years, for each premium one.

Our task will be to determine for each type of year a function s(t)

with the following property: If at time t an accident occurs with damage s

) It is no restriction to assume that this is January 1st.

%) Random variables are underlined.



and no damages have been claimed since the last payment of premium,

then s should be claimed if s > s(t).

The strategy 1s completely fixed by this function.

The optimal strategy will be the function s(t) that minimizes the expec-
ted costs of the motorist.

In this paper, a mathematical method, called Markov-programming, 1is
developed that yields the function s(t) under the assumptions stated
above. Before presenting a review of the method in part 2 and its

application to the motorists problem in part 3, some numerical results

will be given first.

1.2 Numerical results

Suppose the following numerical data are given

By = 1.6
B, = 1.4
E2 = 1.2
E3 = 1.1
ao=0.h

Primarily the effect of the damage distribution F(s) on the optimal

strategy 1s investigated. Three different types of distributions have

been used:

a) the exponential distribution with density function

f(s) = pe H°
and expectation: E g = -ﬂ—
. ]
variance: Var s = )
M
coefficient of wvaristion: a = Var g‘ = 1
& s)

b) the gamma distribution with density function
k k-1
s

£ls) = "y

~US



(only integer values of k were considered here)

and expectation: Es= %
. k
varliance: Vari§_=.m§.
M
| . . 4 Var 5 1
coefficient of variation: o = > T T
(E g Kk

c) The lognormal distribution with density function

2
(ln s—p)
f(s) = 1 e 20 "%
o} \/211
+102
and expectation: B s= e 2
2 2

. + +
variance: Var s = 2“ =G - 2“ °

coefficient of variation: /Var \/
(E 5)2

We compare five distributions with the same expectation. Their den-

sity functions are sketched in figure 1.2.1. They are identified as
follows:

Type of distribution| expectation |coefficient of

variation
1 ; exponential ‘ 1 | 1
2 gamma, f 1 [ " 1/3
3 lognormal ; 1 T
L " g 1 1/3
5 i

1"

1 3

The number of accidents 1n a year 1s Poisson distributed with expec-
tation A = 2. The corresponding optimal strategies are presented in

figure 1.2.2. From these results it can be deduced that st least for



the distributions considered with the same mean and variance the optimal
strateglies are nearly the same. Further, increasing the variance leads

To less conservative claiming in these cases.

cecondly the effect of the expected number of accidents is investigated.
In figure 1.2.3 the optimal strategy is given for A = 2 (curve 1) and

A = L4 (curve 6). In both cases the damage distribution i1is exponential
with expectation 1. An increase of the number of accidents leads to

more conservative claiming especially in the beginning of the year.
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figure 1.2.1
The five used damage distributions
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2. Markovwgrogramming

In problems of the type to which Markov-programming can be applied
there 1s always a question of a physical system. In our case the system
comprises the car and the accident insurance.

At each point of time t the system is in some state x. In the mathemati-
cal model the state x 1s represented by a point in a finite dimensional
Cartesian space, called the state space X,

Apart from deterministic transformations the state of the system is
subject to random transitions. Owing to these transitions the system
performs a random walk through the state space X. If the decisionmaker
does not intervene, such a walk is said to be a realisation of the
natural process. A condition for application of Markov-programming is
that for each 1nitial state the underlying natural process can be des-
cribed by a statlionary strong.Mérkov-Brocess.

A stationary Markov-process is characterized by the following property:
"Suppose the system will be in state x at a fixed time t then the
probability of being in some set of states A at time t+s depends only
on A, x and s''. In formula:

Pt+s

(2.1) (A x, t) = P°(A; x, 0) = P°(A; x).

In this paper a stationary Markov-process is called strong if the above
relation remains true when t 1s not given beforehand but will be fixed
by the random time the system enters an arbitrary but given closed set
of states 1n X. In other words: states, assumed by the system before
the state x 1s reached, are irrelevant for future transitions*ﬁhen‘x
1s completely specified. Further the distribution of the transition
probabilities i1s independent of t, even if t is random in the sense we
mentioned above,

In our motorist problem, the natural process results from the passage
of time and the occurence of accidents. The assumption that the number
of accidents 1n a time interval T i1s Poisson distributed with constant
parameter and the assumed independence between successive damages to-

gether imply that the natural process in our problem is a stationary

strong Markov-process.



In general the decislonmaker will try to influence the natural process
by 1nterventions, basically a finite number in a finite interval.

After such an intervention the system is transferred into some other
state. Between 1nterventions the system is subject to the natural
process. For that reason the natural process has to be defined for each
1nitial state, It 1s convenient to assume that at each point of time a
decision 1s made. The decision will be primarily to decide whether to
1ntervene or not and secondly which intervention to choose. In the case
the decision is not to intervene we will speak of a null-decision. Once
1t 1s decided to intervene in some state x we will have to decide among
the different possibilities which intervention is going to be effected.
We shall assume that 1in every state x there exists a set D(x) of possible
decisions d. Mathematically a decision is defined by the probability dis-
tribution of the state into which the system is transferred (by the
decision!). A null-decision in the state x is a probability distribution
concentrated in x 1tself. In the motorist problem decisions lead to

deterministic transitions. Consequently, these decisions are also defined

by "concentrated" probability distributions but now in the new state.

As soon as to every state a decision (including null-decisions) has been
attached we have a strategy. Hence a strategy shall specify the set of
states where the decisionmaker will intervene and in addition to this
1t determines the probability distribution of the state just after the
intervention.

The resultant of the natural process and the transitions dictated by

the strategy 1s called the decision-process. Under certain general

conditions 1t can be proved that the decision-process is also a stationary

strong Markov-process.

With regards to the decision-process in the state space a set of socalled
transient states can be differentiated from one or more simple ergodic
sets. The set of transient states has the property that with probability
1 the system will never return to this set once it has left it. Ergodic
sets are characterized by the fact that once the system assumes a state

of such a set 1t remains in that set forever with probability 1.



A simple ergodic set cannot be subdivided into disjunct ergodic sets.

In general a decomposition of the state space in a set of transient
states and simple ergodic sets is not completely exhaustive.

The set of intervention states plays a prominent part in the decision-
process. For a strategy z the set of intervention states will be denoted
by.Az.

Let_gn(n =1, 2, +..,) be the sequence of future intervention states, 1f
the strategy z 1s applied. . The sequenceagﬂ(n = 1,2, ...) constitutes
a stationary Markov-process with a discrete time parameter. The probabi-
lity distribution of I , given the initial state x, will be denoted by
>)

(2.2) p(n)(A; Z 5 X) n=1,2,...

Often 1t can be proved that the stationary distribution of the "inter-

vention state I« exists and is given by
n
.1 k -
(2.3) ¢(A s z; x) = lim — E p( )(A; Z3 X).
11 ->00 k=1

It can also be proved that, if x, and X, are initial states from the

1
same simple ergodic set, the stationary distritions are equal: i.e.

(2.4) d(A; 23 x,) = ¢(A; z; X, ) «

The optimal strategy has to be chosen according to some criterion. Which
criterion has to be used? Let us consider a realization of the process.

Such a walk w through the state space X may be represented by a point

w 1n the space of all possible walks Q. Applying strategy z during walk

w we denote the costs 1n a time period T by kT(w; z)., If T > «, in most

cases lim.kT(w; z) = »,Another disadvantage is that the walk w is not
Moo

known 1n advance. By considering the average costs per time unit we can

overcome these objections. For this criterion one can prove the following

theorem:

- . .
).A 1S some set of states 1n.AZ.

This probability distribution can be extended to the whole space by

taking
P(n)(A; z3 X) = p(n)(Af\AZ; Z: X).



1f w denotes a walk of the system, starting in Xns Xgq being a state of
an simple ergodic set, then
kT(W; Z )

(2.5) lim =

Moo
exists with probability 1 and is equal to
f d(dI; z; xo) k(I; z)
Az
(2.6) —
J (a3 z; x4) t(I; z)
A
Z
where k(I; z) denotes the expected costs during- and t(I; z) the
expected lenght of~ the time period between the intervention state I
and the next intervention state assumed by the system. In this paper
the criterion for optimality deals with the average costs per unit of
time and is denoted by the function r(z; xo),‘where z 1s the applied
strategy and x. 1s the initial state. If X belongs to a simple ergodic

O
set, the criterion function is defined by

[ $(dI; z; xo) k(I; z)
A
(2.7) r(z; xo) e
J $(aT; z3 x4) t(I; z)
A
Z

For two states X, and x,. of the same simple ergodic set we have [h.f. (2.h)]

2

(2.8) r(z; x1) = r(z; xz).

If X is a transient state the limit (2,5) still exists with probability

1 but i1s unknown until one of the simple ergodic sets has been entered;
the limit (2.5) is equal to that of the entry state.

Consequently, if x, is a transient state, (2.5) is at X, & random

variable.

Let us assume that there are m simple ergodic sets, denoted by

Er (r = 1, 2, «osy m). It is easily verified that the probability of

entering the ergodic set Er’ starting in X 1S given'by¢(Er; Z 3 xo).
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If X5 1s a transient state the expected average costs per unit of time

are given by

m
(2.9) ) ¢(Er; Z 3 xo) r(z; er),
r=1

r
Obviously, (2.,9) is identical with

where e_ 1s some state in Er [é,f. (2.8)].

(2.10) ; o(dys z; xo)
‘A
z

We now define the criterion function r(z: xO) by

| eta1s 25 3) k(13 2)

' A

(2.11) r(z; xo) =f ¢(dy: z; xo) 2 .
A _ $(aIl; z; y) t(I; 2)

A
Z

Z

This definition comprises (2.7).
A strategy 1s called optimal with respect to a class Z of strategies,

1f for each x

(2.12) r(zO; x) = min r(z; x)
z&Z

To determine the criterion function r(z; x) we need to know the functions

k(I; z) and t(I; z), These two functions still depend on the strategy
z., We now show that it 1s possible to define the function r(z; x) with

the aid of two somewhat different functions k(x; d) and t(x; d). Both

functions do not depend on the strategy applied, but apart from the state

X only on the decision d made 1n x.

To this end we consider a set.AO,not empty. The set A, consists of

O

states where each strategy zeZ dictates an intervention. Hence, if.AZ

1s the intervention set of an arbitrary strategy z€Z,

(2.13) A D A,
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In this paper 1t 1s assumed that in the natural proces from each
initial state the set A, can be reached within a finite time with

probability 1. For each state x and every decision deD(x) we consider

O : : L
two walks denoted by W and Wd.Durlng WO the system will be subgject

to the natural process until a state of AO has been reached.
Q d .
During W the decision d transforms the system to the random state u

(with probability distribution 4). From state u the walk.wd will be

inniigk

subject to the natural process. It follows from (2.13) that for each

strategy z the system will reach the set AG via or 1n an intervention

state I€ A (figure 2.1).

a :
W 0
s
Schematical representation of the walk
and WO.
figure 2,1
Let for thewalk.wo ko(x) and to(x) be the expected costs and the expec-

ted duration respectively. Let for the walk W™ k1(x; d) and t1(x;d)

be the expected costs and the expected duration respectively. We now
define the functions k(x; d4) and t(x; d) to be the difference in ex-

pected costs and expected duration between the walks Wd andWO. In

formula:

(2.1L4) k(x; d) = k1(x; i) -~ ko(x).

(2.15) t(x; 4) = t.(x; d) ~ t,(x).

For nulludecisionswd and'wo are 1dentical and consequently:
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(2.16) k(x; 4d)

Il
O

(2.17) t(x; d)

I
-

Note that the functions k(x; d) and t(x; d) do not depend on a parti-
cular strategy.

It follows from their definitions that K(Io; 2) and t(Iw; z) are iden-
tical to the expected cost and duration of the part of the walk Wd
between the intervention states E?and £@+1 (see figure 2.2)'*)
Both stateslg? andl£@+1 are distributed according to the same limiting
distribution ¢(A; z; y). Hence, with respect to the i1nitial state y, the
expected costs (duratioﬁ)from £w and those (that) from I, to.AO are
(is) equal. -

Schematical representation of thewwalkwdand‘wo.

figure 2,2
This implles:
(2.18) $(AdIwy 23 V) k(Iwy 2z) = J 0(Alws 25 y)o k(Io: z2(Is))
“A A
Z Z
(2.19) J $(AIw; 25 y) t(Iw; 2) = | ¢(dTe; 23 y)o t(Taw; z(Is))
A ‘A
Z Z

where z(I,) denotes the decision dictated by the strategy in state I.
It follows from (2.18) and (2.19) that instead of (2.11) the ceriterion
function r(z; xo) can also be defined by

*) What 1s 1n a notation?



[ | |
¢(dly z3 y) k(Iy z(I))

Z

- - A
(2.20) riz; xq) = | ¢lays 23 x,) ———mm————————
JAZ ¢(dIl; z3 y) t(I; z(I))
‘A
Z

It follows from (2.8) that the criterion function r(z; x) does not

pronounce upon the most profitable initial state. We like a preference

function €(z; x) having the property that for two states x, and X,

in the same simple ergodic set the difference in total expected costs

1s gilven by
(2.21) c(z: x2) ~ c(z3 x1).

1f the state space can be decomposed in a set of transient states

and m disjunct simple ergodic sets Ej and 1f states ej are arbitrarily

chosen states 1n Ej’ let a function c(z; x) be defined by

c(zy x) = k(x; z2(x)) - r(z; x) t(z; z(x)) +
(2.22)

+ J p(1)(dI; z3 x) c(zy I).
A

Z

(2.23) c(z; ej) = 0 J=1, 2, «ve, m.

It can be proved that a preference function ¢(z; x) of the type mentioned

- above 1s defined by
(2.24) c(zy x) = c(z; x) + ko(x) - r(z; x)'to(x);

Presently it will appear that the functions r(z; x) and c(z; x) are

all-important. They can be obtalned simultaneously by solving the

following functional equations:

(2.25) r(z; x)

I

[ P(T)(dls z3 x) r(z; 1),
A

Z

(2.22) c(z; x) = k(x; z(x)) -~ r(z; x) t(x; z(x)) +

+ f p(1)(dI; z3 x) c(zy I),
A

Z



15

(2.23) c(z; ej) = 0 i =1, 2,

li" m’

where ej 1s an arbitrarily chosen state in the simple ergodic set Ej'

Summarizing: Independent of the strategy to apply the functions

k(x; d) and t(x; d) can be defined. As soon as a strategy z and a set

of points eje.Ej (J = 1, ««v, m) have been chosen, the functions r(z; x)
and c(z; x) are unambiguously defined by (2.25), (2.22) and (2.23).

Note that, if x¢#A lc.f, (2.16) and (2.17)] we have

(2.26) c(z; x) = J p(1)(dI; z; x) clz; I).

A
Z

Now the properties of the optimal strategy will be outlined. Further based

on these properties an iteration procedure will be constructed.

The 1teration procedure yields a sequence of strategieaz(l) (1 =1, 2, ¢os)

of which,under certain conditions,the following interestingproperties

can be proved:

a) r(z : X) i_r(z . X)
(2.27) |
b) lim.r(z(l); x) = min r(z; x)
1 o0 7E7

where Z 1s the class of all admissible strategies. Proofs and conditions
are given in[ﬂj and will be omitted here. We will restrict ourselves
to some definitions and to a glance at the procedure. We start with

a bare catalogue of definitions. Suppose that 1n the 1initial state

X the decision d i1s made. If decision d transforms the system into the

random state u and i1f after d the strategy z is applied, then functions

(-

r(d.z; x) and c(d.z; x) are defined as follows:
def
(2.28) r(d.z; x) = E{r(z;_g){d}

(2.29) c(d.z; x) %€ x(x; a) - r(d.z; x) t(x; ) + Bfe(z; u)laj,
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We easlly verify that for both null-decision and 4 = z(x), we have

(2.30) r(d.z; x) = r(z; x)
(2.31) c(d.z; x) = c(z; x)

Suppose the system 1s now in x and let v be the first state in a

closed set A assumed by the system, then the functions r(A.z; x) and

c(A.z; x) are defined by :

dgf

(2.32) r(A.z; x) E{r(z; v)|x; A}

dgf

(2.33) c(A.z; x) E{c(z; E)Ix; At.

Besides we define the classiKZ of all closed sets A:DAO satisfying:

{x|r(A.z; x) < r(z3; x)} U
(2.34)

L ix|r(Acz; x) = r(z; x); c(A.z; x) :ﬁc(z; x)} = X,

where X denotes the state space. We easily verify that,AZEZKZ.
Finally we define the following subsets:

(2.35) D (x) &% ld|laeD(x); r(d.z; x) = min r(d .z; x)]
z A€ D(x)

and

(2.36) A' = [ ) A,
2 AfK

In order to galn an insight into the principle of solution, we consider
the following problem:

Suppose a declsionmaker has to make his decisions in accordance with

a strategy z. In the initial state however he i1is free to choose a
decision d. Which decision 1s the most profitable?

The decisionmaker certainly looks for that particular decision which
minimizes the expected average costs per unit of time. Each fall in

these costs leads to an infinite saving in an infinite period of time.
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1f he selects 1n x a decision 4, the expected average costs per unit

of time are given by r(d.z; x). So the decisionmaker has to solve the
problem [c.f. (2.28)]

(2.37) min r(d.z; x).
deD(x)

With respect to the effect of the initial state 1n the total expected
costs we 1ntroduced a preference function ¢(z; x); this function can

be defined by (2.24), With respect to the effect of a decision d in the

1nitial state x we need a preference function ¢(d.z; x) such that the

difference 1n the total expected costs can be expressed by
(2.38) c(d.z; x) = &(z3 x).

This difference has to be attributed to the decision d. It can be proved

that the difference is also measured by [c.f. (2.29)]:
(2.39) c(dezy x) = c(z3 x)

A possible fall in costs will in general be finite.

Consequently, if more than one decision d minimizes r(d.z; x), the
decisionmaker can use his freedom by minimizing (2.39) with respect to
these equivalent decisims; or,what is the same, by minimizing the
function c(d.z; x) with respect to deDZ(x). [c.f. (2.35)] .
Summarizing: Essentially the decisionmaker has to solve the following
two problems.

1) To minimize the d-function r(d.z; x) with respect to d€ D(x).

2) To minimize the d-function c(d.z; x) with respect to dGEDZ(x).

If these two problems have been solved for each x, then to each x a
minimizing decision d can be added. If z(x) belongs to Dz(x) and also
minimizes c(d.z; x), let the decision z(x) be chosen. The relation
between states and decisions 1s nothing else than a strategy. Let
this strategy be denoted by Z g The following i1mportant result can now

be proved:

(2.40) r(z,; x) <r(z; x)

12
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S50 the solution of the decisionproblem mentioned above also offers a
new strategy; a strategy being at least as good as strategy z.
Let us examlne the new strategy. It follows from (2.30) and (2.31)

that all intervention states of strategy z are also intervention states

of strategy Z o

Hence

(2.41) Az1:—:)Az’

In &her words 1n the initial state the decisionmaker can change but not
defer the 1ntervention dictated by the original strategy z.

This 1mportant result leads us to a second decisionproblem.. Suppose

that the decisionmaker has to make his decisions in accordance with a
strategy z. But he 1s allowed to determine the point of time whereupon
the strategy comes into operation. This will be done by choosing a closed
set A; the strategy comes 1nto operation at the moment the system

enters the set A for the first time. Which set 1s the most profitable?
The decisionmaker certainly looks for a delay that minimizes the expected
average costs per unit of time. This implies that sets A will be

considered which satisfy for each x [e.f. (2.32)]

(2.42) r(A.z; x) < r(z; x).

Again each fall in the average costs leads to an infinite saving in
an 1nfinite period of time. With respect to the effect of a delay in
the total expected costs we need a preference function ¢(A.z; x) such

that the difference 1n expected costs, measured by
(2.43) ¢(A.z; x) - ¢(z; x),

can be attributed to the delay. It can be proved that this difference
1s also given by'[b.f. (2.33)]

(2.44) c(Aez; x) - c(zy x).

Consequently, sets A which satisfy for each x
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(2.45) r(A.z; x) = r(z; x)
and
(2.46) c(A.z3; x) < c(z; x)

wi1ill also be considered.

Summarizing: Closed sets A having the property [é.f. (2.3h1]

X = {x|r(A.z; x) < r(z; x)} U {x|r(A.25 x) =
(2.L47)

= r(z; x); c(A.z; x) < c(z; x)}

will be considered. If Kz 1s the class of all closed sets A satisfying
(2.47) and if

(2.48) A' = ) A
€K

belongs to Kz, then obviously the set A; 1s the solution of the second

decision problem,

It can be proved that the strategy z, defined by

2

z(x) if xcA'NA
Z 9z

(2.49) ZQ(X) =

null-decisions otherwise
satisfies:
(2.50) r(z2; x) <r(z; x).

From the solutions of the two decision problems considered here above

we now deduce the following properties of the optimal strategy z

5
(2.51) min r(d.zO; X) = r(zO; X )
deD(x)
(2.52) min c(d.zO; x) = c(zO; X )
deDZO(X)
(2.53) A, =A

0 0°
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The 1teration procedure runs as follows:

Pregaratorz part
Determine the (x; d)-functions k(x; d) and t(x; 4).

Iterative approach
(n=1)

Let =z th

be the strategy obtained at the (n~1)— cycle of the iteration
procedure.

1) Determine the function r(z(nﬁ1) (n-1);

s x) and c(z x) by solving
the functional equations (2.25), (2.22) and (2.23).

2) a) Determine the functions r(d,z(n”1) (n-1)

s x) and c(d.z
using the relations (2.28) and (2.29).

; X ) by

b) Determine for each x&X the subset of minimizing decilsions

Dz(n”1)(X)‘

c) Minimize for each x€X the d~function c(d.x: z), subject to

deDZ(n“])(X)-

d) Add to each state x a solution of c¢). If zn_T(x) 1s a solution

of c¢), this decision will be added to the state X. [ﬁhis 1nstruc-

tion has been made in order to advance the convergence of the
sequence of strategies {2(1), 2(2), .o }].

As soon as the operation d) has been performed a new strategy z (n=1)

]
has been constructed.

3) Determine the functions r(z1(nﬂ1); x) and 0(21(n-1); x) by using

the functional equations (2.25), (2.22) and (2.23).

) Determine the subset A' (n) .

(n1)" The new strategy =z 1s given by
“1
21(n"1)(X) if xeA' (L 1)
(2.27) z(n)(x) = %9
null-decision otherwise
End of the n£E~cxcle.

The functions r(z(n”1); c) and c(z(n~1)

s X) are determined by functional
equations. If these equations cannot be solved analytically they often

can be solved numerically by Monte Carlo methods.
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The way 1n which the set A (n1) 21 be determined depends heavily

%1

on the structure of the decision problem considered. In the boundary
points of the minimizing set Aé 1t will often be indifferent whether
to intervene or not, In the motorist problem, by example, we will see
that this property leads to a differential equation for the optimal

boundary of the set of states in which claims should be suppressed.
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3. Application to the motorists problemnm

In this section 1t is shown how the motorist problem can be solved with
Markov-programming. |

Primarily we shall have to define in detail the state space, the natural
process, the set of i1ntervention states and the set AO. Secondly we
shall determine the k- and t- functions and finally the c- functions

from which the optimal strategy i1s established.

3.1 Definition of the state space

At each point of time the following information will be of interest:

(1) whether an eventual damage is covered or not.

(2) whether an accident happens or not.

(3) the amount of the last paid premium E., 1 =0, 1, 2, 3.

(4) the date and time of the day considered.

(5) the extent of the damage.

(6) whether a damage has been claimed since the last payment of premium

or not.

The followling state space is suggested:

PR wve o s | - v —
‘E‘O 'E1 ES ‘EB

1L 7T T2y 22 23 2L Tt »

12 13

The state space
fig. 3.1

At the t—axilis we distinguish:
a) Four points, namely By, E;» E; and E,. In these states the corres-

ponding premium has to be paid (January 1); damages are no longer

covered by 1nsurance.

b) Four intervals of one year *0, namely 11 <t < 11 + 1 ( 1 = 1,2,3,4).
*) C

11 = 12, 1f 1 = 2

11 = 13, if i = 3.
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I'he t-component of the state runs through 11 <t < 1i + 1, if and

only 1f the last premium pald was B. 4>

been claimed that year and the coming losses are still covered by

one or more damages have

insurance.,

c) Four intervals of one year, namely 2i < t < 2i + 1 (i = 1,2,3,L4).
The t-component of the state runs through 21 <t < 21 + 1, 1f and
only 1f the last premium paid was Ei_1,‘§9_damages have been claimed

that year and the coming damages are still covered by insurance.

The s-variabele 1s zero unless at least one damage has been claimed
that year and moreover the coming damages are still covered by insurance.

In that case the s-component denotes the extent of the last claim.

The u-variabele 1s zero unless at least one damage has been claimed
that year and moreover the coming damages are still covered by insurance.
In that case the u-component denotes the time elapsed since the first

claim that year.

Note that the s- and u-components of the state can only be different
from zero if 11 <t < 11 + 1(1i = 1,2,3,4). Consequently the state space

consists of

E ik B

a) 4 points Eys Eqs Eys Eoo
b) a 3-dimensional subspace (t.,s,u) with 11 < t < 15,

c) 1-dimensional intervals 21 <t < 21 + 1 (1 = 1,2,3,4).

We are now 1in the position to describe the natural process. This process

can start in each state of the state space. In accordance with the

premium paid the system runs through one of the time-intervals

21 <t <2i + 1 (1 = 1,2,3,4), if no damage has been claimed that year.
If no accident will happen during the rest of the year, at the end of
the year the system 1s transferred to E.. Since 1in the natural process

1 _
no premiums are paid the system will stay there for ever. *J.

*) In the natural process no premiums will be paid. On the other hand

the system can start in such a state that losses are covered by insu-

rance for some time. This 1s no contradiction! It would be a contra-~

diction i1f we had said: In the natural process no premiums have been

paid.



However, 1f at t' (t' < 2i + 1) an accident occurs the system 1s trans-
ferred to (t' - 10, s', 0), where s' denotes the loss incurred. Since
during the natural process, irrespective of their extents, all losses

are claimed, the system will stay in the 3-dimensional part of the state
space for the rest of the year. From now on the u-component is 1lncreasing
with time. The s~component will only change 1f a second, third etc.
accident happens. At the end of the year the system is transferred to
ZEO’where 1t stays for ever.

If 1n the 1nitial state (t, s, u) a damage has already been claimed

that year and coming damages are still covered by insurance the descrip-

tion of the development in the state of the system is similar to that
of the final part of a walk considered here above.

We now consider the decision-mechanism.

a) In the points EO’ E1, E2 and. E3 two decisions are feasible: the
null-decision and the decision that involves the payment of the
premium.Ei. Respective transformations are E. » E, and E; -~ (21+1,0,0).

b) In the 3-dimensional space (t,s,u) only null-decisions are feasible,
unless u = 0. If u = 0 an accident just occurs and consequently the
decisionmaker can suppress the claim if he wants. In that case the
system is transferred back to (t + 10,0,0). Note that a clalm corres-
ponds with a null decision. This 1s in accordance with the fact that
1n the natural process all damages are claimed.

Since the u-component denotes the time elapsed since the first claim,

1t may happen that an accident occurs when u > 0. The decision not

to claim the damage 1s of course a bad decision and for that reason
1t 1is considered to be infeasible.

¢) To states satisfying 21 <t < 21 + 1 (1 = 1,2,3,4), only null-decisions
are added-.

In figure 3.2 states have been marked with more than one feasible

decision.
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21 22 23 24

fig. 3.2

States with more than one feasible decision

From now on we shall only consider strategies which dictate payment

of premium 1n the states Ei’ 1 = 0,1,2,3. Consequently these states

may be chosen as elements of the set AO. We may add 1f we want the

set of states (t,s,u) for which 11 < t < 11 + 1, s < a, and u = 0,
because every nossible strategy will dictate a suppression of the claim
in this set. However restriction of the set AO to the states Ei’
i=0,1,2,3, leads to more simple expressions for the k(x:;d) and t(x;d)

funections. So we choose:

3
(3.1.1) A, = L
{'=

3.2 The determination of the k(x3;d) and t(x;d) functions

Let us consider the intervention which results from an accident occuring

T time units after paying pre:mium.Eﬁ_1 and suppose that no damage has
been claimed during the time i1nterval [b,T)~

After the accident has occured the system will be in state x = (11 + ;,8,0)

and the decision not to claim transfers 1t back into state 2i + r, hence

d =21 + 1. We note first that the Wd”walk after the decision d = 21 + Tt

and the‘Wo'walk are both subject to the natural process until at the end

of the year the set AO 1s reached. The'walk’wd terminates 1in state Ei
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0 :
and the W walk in EO. In both cases however the expected costs and the

expected duration are equal. The only difference in expected costs is
glven by the decision costs of no claiming which amount s - a. 1f s > a

O O
and 0 if s < a,. Consequently we have

1
-,

(3.2.1) t(x:d) t1(x;d) -~ t . (x)

O

(3.2.2) k(x:d) = k1(x;d) - k (x)

O

I

O I
D

-
),

v
(o

O

S < &
— 0

Secondly we need to consider the intervention of the payment of premium,

The system will be 1n state Ei_ and the decision of payilng premium

1

transfers 1t to state 21. Because BE: 1€ A. the expected duration as well as

O
the expected costs in the walk are zero.

d

During the W walk after the payment of premium Ei“ the system 1s sub-

]

ject to the natural process until at the end of the year the set AO 1S

reached by means of state Ei' Hence the expected duration will be one

year. Because 1n the natural process all damages are claimed we have
for the expected costs per accident, denoted by k(ao),

ra
(3.2.3) k(ao) = J

{»ao

d F(s).

0 s d F(s) + a,

0 jao

Consequently the expected costs in the natural process during the

interval [0,1] are Ak(ao).

(3.2.4) t(x:;d) 1

(3.2.5) k(x;d4) = E,_, + Ak(a,).

1—1

3.3 Determination of the optimal strateg:

It is easily verified for all strategies z& Z the Markov process in,AZ
has only one simple ergodic set. Consequently for every strategy z

and feasible decision d, we have

(3.3.1) r(d.z; x) = r(z;x) = r(z).
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Hence 1t 1s sufficient to consider the function c(z;x) , defined by the

functional equation

(3.3.2) clzx) = k(x3z(x)) - r(z) t(x;z(x)) + j p(])(dl;z;x) c(z:I).
A
Z

In order to obtain a unique solution we put

(3031»3) C(Z;EO) = Q.
Let us first consider the solution in state x = (t,s,0) with t = 11 + ¢
and s > ao. Suppose we are applyilng an arbitrary strategy z. If z

dictates to claim (null decision!) in x then the next intervention

state 1s EO' So we have

(3.3.4) c(z:x) = c(z;EO) = 0.

If we decide not to claim and future decisions are taken i1n accordance

with strategy z, then the function c(d.z;x) is given by

(3.3.5) c(d.zy x) =s - a. + c(z3;t + 10).

O

From now on we consider only the optimal strategy Zqe Let the boundary

of A Dbe given by the function s = s(t). For z, holds:

0 O
(2.52) c(zO;x) = min c(d.zO; X) .
deD(x)
For a, < s < s(t) it will be profitable not to claim; thus 4 = zo(x) =

£t + 10. It follows from (3.3.4) and (2.52)

(3.3.6) c(zy3%) < clzg3Ey) = 0.

According to the fact that c(d.zogx) is a linear function of s 1t will

be indifferent on the boundary s(t) of A whether to claim or not,
O

hence for s = s(t) we have:
(3.3.7) c(zO;(t,s,O)) = 0,
From (3.3.5) and (3.3.7) it follows that

(3.3.8) c(zO;(t,s(t), 0)) = s(t) - a, + c(zo;t + 10) = 0,
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Consequently:

(3.3.9) c(z 3t + 10) = a. - s(t)

ok 0

and in accordance with (3.3.5), by virtue of (3.3.9), for s - 8

(3.3.10) C(ZO;(t,S,O)) = s - s(t).
For s 2 ag by (3.2.1) and (3.2.2):
(3.3.11) c(zo;(t,s,O)) = c(zO;t + 10) = a

Furthermore holds for the states Ei’i = 1,2,3:

(3.3.12) c(z.3E.) = 1lim c(z.3t)

071 t121+1 O
or
(3.3.13) c(zO;Ei) = a, - lim s(t).

t+21+1
Summarlizing:
c(zo;x) =
0, erou{11it<15,s>s(t),u=O}U

{11 <t < 15, s > 0, u > O}

3
8 ~ 1lim s(t), =x€& _/ E.
t+21+1 1=1
a, - s(t), xe {11 <t <15, s <a,, u= 0]
s - s(t), xe {11 <t <15, ay s <s(t), u=0f
ao--s(t), x € {21 <t < 25}

From the functional equation (3.3.2) it follows for E. ., 1= 1,2,3,4:

(3.3.15) c(ZO;Ei_1) = k(Ei“1;2i) - r(z,) t(Eim1;2i) + clz,y; 21)
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or
(3.3.16) C(ZO;Ei“T) - 0(20521) =E. .+ Ak(ao) —~ r(ZO)-
Using the relations (3.3.14) for x = E. ., 1= 1,2,3,4
(3.3.17) s(11) = E, + Ak(ao) - r(zo) + a,
(3.3.18) s(11) = 1im s(t) + E. + Mk(a.) — r(z ). 1 = 2,3,k
. 1-1 O 0" »
t+11
(3.3.19) lim s(t) = 1lim s(t)
t 414 t+15
For x = (t,s,0) with s > a, and t = 11 + 1 follows from (3.3.2)
(3.3.20) c(zO;(t,s,O)) = k((t,s,0);t + 10) = r(zo) t((t,s,0)3t + 10)
[ Y
+ J C(ZO;Ei) re AT drt
11+1-t
1it1-t s(t+1,)
+ J Ae 1 d11 j c(zog(t+x1,y,0))dF(y)
O 0 |
Ti1+1-~t 1 [ _
+ f re T dr J c(zO;EO)dF(y)
0 S(t+I1)
According to (3.2.1), (3.2.2) and (3.3.1k4):
(3.3.21) c(zO;(t,s,O)) =s-a,te 8y - im s
tt1a+1
TR s(t+1,) .
+ J Ae ] dT1 [ (y"S(t+F1)) dF(Y)
0 Jao
-11+71 =1 At ao
...j e M aq J (8 —s(t+1,)) daF(y)
1 O ]
0 O
1f T, =t + Tas then
~2(1i+1-t)
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11+ s(t.)
t — [ _
+ ek ( re ATQ dT2 J : (y=s(1.))aF(y)
)+ 2
a
0
| 11+
\t e | ‘f
+ e Jt A e D F(ao)(ao - S(Tg))dtz.

After substituting s = s(t) and using (3.3.7) the differentiation of
(3.3.22) with respect to t leads to

OO o0

(3.3.23) -‘3—--3-;6(-55-)-= A (y - ao) dF(y) - X j (y - s(t)) ar(y).

Jao 's(t)

By partial integration this equation can also be written in the more

simple form

(3'3‘2)4) _g'__é..(...-t.:...)..: A

dt

s(t)
J (1 - F(y))dy.

20

Except for a translation in the t direction the boundary s(t) 1is

determined by (3.3.24). In other words the boundary of A, for i = 1,2,3,U4
0

are 1n the t-direction translated parts of one of the curves satisfying
(3.3.24). The location of each part on this curve has to be determined

from the relations (3.3.17) through (3.3.19). We will now show that this

1s possible.

Suppose that r(zo) is known, than s(11) is solved from (3.3.17). From

the curve s = s(t) we deduce 1lim s(t). From (3.3.18) for i = 2 we
t4+12
obtain s(12). Similarly we can compute lim s(t), s(13), 1lim s(t),

£t 413 + 414
s(14) and 1lim s(t).

t4+15
This 1mplies that if’r(zo) 1s known, the optimal strategy 1s completely

specified. As r(zo) is not known its value is determined by equation
(3.3.19).
It should be noted that the differential equation (3.3.24) has an

analytical solution in the case the damage per accident 1s exponentially
distributed. We have then for F(s) = 1 - e H°
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(3.3.25)  28(8) _ 2 ueo (3 | u(a(t)-zo),

which leads to

.Y o HE0
(3.3.26) s(t) = an +-3-Iln {1 + e)\(t-l-cl)e } 11 <t < 11 + 1
i=1,2,3,4
where the c.,1 = 1,2,3,4 are arbitrary integration constants. Note that

1
(3.3.26) determines a curve except for a translation in the t-direction.

If the distribution of the damage is not exponential we have to solve

equation (3.3.24) numerically in most cases. Of course we may also use

the iteration cycle described 1n 82.
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