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1. The motorist Eroblem 
' 

1.1 Introduction 

Suppose we consider the following problem. 

A motorist has decided to effect an accident insurance under the fol­

lowing conditions. The insurance runs for one year. The premium for 

the first year a,rnounts E0 • I:f no damages have been claimed during i 

successive years, i = 1 ,2 or 3 the premi1..1m is reduced to E,. After 
1. 

:four years of aamagefree driving no further premi11m reduction is 
• granted, so the premium • 

l.S 

*) day of' the year • The .. own risk amounts a0 • 

The ntJmber of accidents of our motorist during a time period T is 
• • 0 Q ass11rned to be Poisson distributed with parsnteter AT. The extend of' 

the damage 
• variance. 

The problem of 01.1r motorist will be to decide whether to claim a damage 

or not. He will have to develop a strategy that specifies his decisions 

in every possible situation. His strategy will be called optimal if it 

minimizes the expected costs in the long run. 

We may expect that in view of the premi11·m reduction, it will be un-

profitable to ___ .,,,,. are not Once a 

da1nage is claimed it will be profitable to claj_Jn all following damages 

that exceed a 0 during the remaining part of the year. 

Hence his decisions will also depend on the time of the yea,r and the 

premi 11m paid at the beginning of that year. So 
. .. . 

we distinguish between 

four types of years, for each premium one. 

Our task will be to determine for each type of year a function s(t) 

with the following property: If at time tan accident occurs with damages 

><) 

)( )( ) 

' 

It is no restriction to as sl1rne that this is January 1st. 

Random variables are underlined. 
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and no damages have been claimed since the last payment of premium, 

thens should be claimed ifs> s(t). 

The 

The 

strategy is completely fixed by this :function. 

optimal strategy will be the function s(t) that 

ted costs of the motorist. 

. . .. 
minimizes the expec-

In this paper, a mathematical method, called Markov-programming, is 

developed that yields the function s(t) under the ass11mptions stated 

above. Before presenting a review of the method in pa.rt 2 and its 

application to the motorists problem in part 3, some numerical results 

will be given first. 

1. 2 N1.1~rnerical results 

Suppose the following nllinerical data are given 

E -0 
1.6 

E1 1. 4 

E2 - 1. 2 -
E -

3 
1 • 1 

ao - o.4 -

Primarily the effect of the da,vnage distribution F( s) on the optimal 

strategy is investigated. Three different types of distributions have 

been used: 

a) the exponential distribution with density 

and expect at ion: 

• variance: 

f(s) - lJe-µs 

Es = 1 
µ 

Va,r s 
1 

2 
µ 

ction 

coefficient of variation: a. - Var .s.. = 1 

b) the gairirna distribution with density function 

f(s) 
k k-1 

µ s 
k-1 ! 

-·µs 
e 
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(only integer values of k were considered here) 

and e.xpectation: 

• variance: 

coefficient of variation: 

k 
Es - -

Vars 

a. -

k 
2 

µ 

Var ..a = 1 

k 

c) The lognormal distribution with density function 

f(s) 1 
r--- e 

cr 2n 

2 (ln s~µ) 
22 11 

2cr 
• 

1 
s 

2 
and expectation: Es= 

µ+,cr 
e 2 

• variance: Vars 

• • • • coefficient of variation: a. 

. 2 
2µ+2cr 

e 

Var .a,_ -
(E s) 2 

- e 
2 2µ+cr 

2 a 
e - 1. 

We compare five distributions with the same expectation. Their den­

sity functions are sketched in figure 1.2.1. They are identified as 

follows: 

I 
• 

N11rrtber of 
curve 

1 

2 

3 

4 

5 

• 

• 

• 

Type of distribution expectation coefficient of 
• • variation 

exponential 1 1 

gamma 1 
\ 

1/3 

lognormal 1 1 
f 1 1/3 '' ' l 
' 

,, 1 3 

The number of accidents in a year is Poisson distributed with expec­

tation A = 2. The corresponding optimal strategies are presented in 

figure 1.2.2. From these results it can be deduced that at least for 
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the distributions considered with the same mean and variance the optimal 

strategies are nea--,...ly the sa111e. Further, increasing the variance leads 

to less conservative claiming in these cases. 

Secondly the effect of the expected number of accidents is investigated. 

In figure 1.2.3 the optimal strategy is given for A - 2 (curve 1) and 

A= 4 (curve 6). In both cases the dam.age distribution is exponential 

with expectation 1. An increase of the nl1atber of accidents leads to 

more conservative clajming especially in the beginning of the year. 
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In problems of the type to which Markov-programming can be applied 

there is always a question of a physical system. In our case the system 

comprises the car and the accident insurance. 

At each point of time t the system is in some state x. In the mathemati­

cal model the state xis represented by a point in a finite dimensional 

Cartesian space, called the state space X, 
a a a --Ji--

Apart :from deterministic transformations the state of the system is 

subject to random transitions, Owing to these transitions the system 

performs a random walk through the state space X. If the decisionma.ker 

does not intervene, such a walk is said to be a realisation of the 
It • Q "" -- ... .. _natur_a.l. E,ro.ces.s. A condition for application of Markov-programming is 

that for each initial state the underlying natural process can be des-
• 

cribed by a st87tionary_ _str.on
1
g ;Ma

1
rko_v;,-E,roc,e

11

s,s. 

A stationary Markov-process is characterized by the following property: 

''Suppose the system will be in state x at a fixed time t then the 

probability of being in some set of states A at time t+s depends only 

on A, x and s''. In formula: 

t+s 
(2.1) P (A; x, t) 

In this paper a stationary Markov-process is called strong if the above 

relation remains true when tis not given beforehand but will be fixed 

by the random t.irne the system enters an arbitrary but given closed set 

of states in X. In other words: states, assumed by the system before 

the state xis reached, are irrelevant for future transitions when x 

is completely specified. Further the distribution of the transition 

probabilities is independent of t, even i:f t is random in the sense we 
Q 

mentioned above. 

In our motorist problem, the natural process results from the passage 

of time and the occurence of accidents. The assumption that the number 

of accidents in a time interval Tis Poisson distributed with constant 

para1t1~ter and the ass1.1rned independence between successive damages to­

gether imply that the natural process in our problem is a stationary 

strong Markov-process • 

• 
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In general the decisionmaker will try to influence the natural process 

by interventions, basically a finite number in a finite interval. 

After such an intervention the system is transferred into some other 

state. Between interventions the system is subject to the natural 

process. For that reason the natural process has to be defined for each 

initial state. It is convenient to assume that at each point of time a 
-· 

decision is made. The decision will be prima1~ily to decide whether to 

intervene or not and secondly which intervention to choose. In the case 

the decision is not to intervene we will speak of a null-decision. Once -
it is decided to intervene in some state x we will have to decide among 

the different possibilities which intervention is going to be effected. 

We shall assume that in every state x there exists a set D(x) of possible 

decisions d, Mathematically a decision is defined by the probability dis­

tribution of the state into which the system is transferred (by the 

decision!). A null-decision in the state xis a probability distribution 
• 4 • ;;;i .. 

concentrated in x itself. In the motorist problem decisions lead to 

deterministic transitions. Consequently, these decisions are also defined 

by ''concentrated'' probability distributions but now in the new state. 

As soon as to every state a decision (including null-decisions) has been 

attached we have a _st
1
r.a~egy_. Hence a strategy shall specify the set of 

states where the decisionmaker will intervene and in addition to this 

it determines the probability distribution of the state just after the 
• • intervention. 

The resultant of the natural process and the transitions dictated by 

the ~trategy is called the decision-process. Under certain general 

conditions it can be proved that the decision-process is also a stationary 

strong Markov-process. 

With regards to the decision-process in the state space a set of socalled 

transient states can be differentiated from one or more simple ergodic 

sets. The set of transient states has the property that with probability 

1 the system will never return to this set once it has left it. Ergodic 

sets are characterized by the :fact that once the system ass1Jrnes a state 

of such a set it remains in that set forever with probability 1. 



9 

A simple ergodic set cannot be subdivided into disjunct ergodic sets. 

In general a decomposition of the state space in a set of transient 

states and simple ergodic sets is not completely exhaustive. 

The set of intervention states plays a prominent part in the decision­

process. For a strategy z the set of intervention states will be denoted 

by A. 
z 

Let I (n = 1, 2, ••• ) be the sequence of future intervention states, if -n 
the strategy z is applied, • The sequence I (n = 1,2, ••• ) constitutes -n ' 
a stationary Markov-process with a discrete time parameter. The probabi-

lity distribution of I , given the initial state x, will be denoted by -n 

(2.2) z; x) - *) n - 1,2, ••• 

Often it can be proved that the stationary distribution of the ''inter­

vention state Ioo'' exists and is given by 

(2.3) cp (A ; z; x) 
1 n 

lim - l 
Il-KO n k 1 

z; x). 

It can also be proved that, if x 1 and x2 are initial states from the 

same simple ergodic set, the stationary distri:tions are equal; i.e. 

(2.4) cp(A; z• X) = , 1 

The optimal strategy has to be chosen according to some criterion. Which 

criterion has to be used? Let us consider a realization of the process. 

Such a walk w through the state space X may be represented by a point 

w in the space of all possible walks n. Applying strategy z au.ring walk 

w we denote the costs in a time period T by ~(w; z). If T ~ 00 , in most 

cases lim (w; z) = 00 .Another disadvantage is that the walk w is not 
T ►oo 

known in advance. By considering the average costs per time unit we can 

overcome these objections. For this criterion one can prove the following 

theorem: 

. --
*) A is some set of states in Az. 

This probability distribution can be extended to the whole space by 

taking 

z; x). 



an simple ergodic set, then 

(2.5) lim 
T>oo T 

10 

z) 

exists with probability 1 and is equal to 

cp(dI; z· , k(I; z) 
A 

(2.6) z , 
¢(dI; z· :> t(I; z) 

A z 

where k(I; z) denotes the expected costs during- and t(I; z) the 

expected lenght of- the time period between the intervention state I 

and the next intervention state assumed by the system. In this paper 

the criterion for optimality deals with the average costs per unit of 

z is the applied 
.. . 

time and is denoted by the - -
strategy and x 0 is the initial state. If x 0 belongs to a simple ergodic 

set, the criterion ction is defined by 

¢(dI; z· , k(I; z) 
A 

(2.7) z -- • 
¢ ( dI; z· 

' 
t(I; z) 

A z 

(2.8) 

1 but is unknown until one of the simple ergodic sets has been entered; 

the limit (2. 5) is equal to that o:f the entry state. 

Consequently, 

variable. 

Let us assume that there are 

E (r 1, 2, ••• , m). It is 
r 

entering the ergodic set E, r 

x 0 a random 

w 0 

m simple ergodic sets, denoted by 

easily verified that the probability 
. .. 
is given z· :, 

of 
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1 1 

If x 0 is a transient state the e,xp,ecte.d average costs per unit of time 

are given by 

m 
(2.9) 

• where e 1s some r 
Obviously, (2.9) 

(2.10) 
A z 

-
state in E c,f. 

r 
• lit Qi Q 

is identical with 

' JA 

;A 

(2.8) • 

<t, ( dI; z· 
' 

z 

<t, ( dI ; z· 
' 

z 

We now define the criterion function 

( 2. 11 ) --
A z 

This definition comprises (2.7). 

y) k(I; z) 

y) t(I; z) 

A z 

by 

¢(dI; z; y) k(I; z) 

<P ( dI ; z ; y ) t ( I ; z ) 
• 

A strategy is 

if for each x 

called oEtinial with respect to a class Z of strategies, 
1 

(2.12) min r(z; x) 
ze:Z 

To determjne the criterion function r(z; x) we need to know the functions 

k(I; z) and t(I; z), These two functions still depend on the strategy 

z. We now show that it is possible to define the function r(z; x) with 

the aid of two somewhat different functions k(x; d) and t(x; d). Both 

functions do not depend on the strategy applied, but apart from the state 

x only on the decision d made in x. 

To this end we consider a set A0 ,not empty. The set A
0 

consists ~f 

states where each strategy z€Z dictates an intervention. Hence, 

is the intervention set of an arbitrary strategy z~Z, 

(2.13) 

if A z 
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In this paper it is asst1med that in the natt1ral proces from each -
initial state the set A0 can be 

probability 1. For each state x 

reached within a finite time with 

and every 

two walks denoted and Wd. • WO During 

decision dED(x) we consider 

the system will be subject 

to the natural process until a state of A0 has been reached. 

d transforms the system to the random state u 

(with probability distribution d). _ be 

subject to the natural process. It rollows from (2.13) that for each 

strategy z the system will 

state I€.A (figure 2.1). z 

u 

Schematical 
• t I 7 I & I ■ l I I 

Let O 

ted 

·-
·I 

•=• 
.. -. ,, 

A z 

X 

representation 
$ I ■ IS& tS&i 

0 
and W • 

figure 2, 1 

of 
I 

d the walk W 
a , a s b ■ a 1 

be the 

define 

expected costs and the expected duration respectively. We now 

the functions k(x; d) and t(x; d) to be the difference in ex-

pected costs and 

formula: 

(2.14) k(x; d) = 

(2.15) t(x; 

.. · d d WO 0 d t" 1 For null-decisions W an are 1 en ica and consequently: 



(2.16) 

(2.17) 

k(x; d) = O. 

t(x; d) - O. 

13 

Note that the functions k(x; d) and t(x; d) do not depend on a parti­

cular strategy. 

It follows from their definitions that k(Ioo; z) and t(Ioo; z) are iden-

between the 

Both states Ioo and Ioo+1 are distributed according to the same limiting 

distribution <P(A; z; y). Hence, with res~ect to the initial state y, the 

expected costs 

(is) equal. 

u 

• • • This implies: 

- - - - -

are 

• 
' ,_,, I ,_ ....... A 

;;;11 -

z ~---.... 

-.,,,. I J# 

,.,, -,,,., 
0 -·- ...., 

and w0 • 
P 1 n t l 

(2.18) ¢(dioo; z; y) k(Ioo; z) = <P ( diao; z; y) • k (I~; z ( Ioo) ) 

(2.19) 

A z 

A z 

~(dioo; z; y) t(Ioo; z) -

A z 

A 
z 

where z(Ioo) denotes the decision dictated by the strategy'in 

It follows from (2.18) and (2.19) that instead of (2.11) the 

also be defined by 

' 

is in a notation? 

state loo. 
., . 

criterion 
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r 
cp ( dI; z .. , y) k(I; z (I)) 

A 
(2.20) r(z; cp ( dy; z - z· - , 

JA ¢(dI; z .. y) t(I; z (I)) z , 
JA 

z 

It follows from (2.8) that the criterion function r(z; x) does not 

pronounce upon the most profitable initial state. We like a preference 

in the sa1ne simple ergodic set the difference in total expected costs 
. .. 
1s given by 

(2.21) c(z; 

If the state space can be decomposed in a set of transient states 

and m disjunct simple ergodic sets E. and if states e~ are arbitrarily 
J J 

chosen states in E., let a function c(z; x) be defined by 
J 

c(z; x) = k(x; z(x)) - r(z; x) t(z; z(x)) + 

(2.22) 

(2.23) 

+ 
A z 

c(z; e .. ) = 0 
J 

z; x) c(z; I). 

" J 1 , 2, ••• , m. 

It can be proved that a preference 

above is defined by 

~ction c(z; x) of the type mentioned 

(2.24) c(z; x) 

Presently it will appear that the -..ctions r(z; x) and c(z; x) are 

all-important. They can be obtained simultaneously by solving the 

following ~ctional equations: 

(2.25) 

(2.22) 

r(z; x) 

c(z; x) 

+ 
A z 

A z 

z; x) r(z; I), 

k(x; z(x)) - r(z; x) t(x; z(x)) + 

z; x) c(z; I), 



• 
• 

(2.23) c(z; e~} = 0 
J 

1 5 

j = 1 , 2, ••• , m, 

StJmrnarizing: Independent of the strategy to apply the functions 

k(x; d) and t(x; d) can be defined. As soon as a strategy z and a set 

of points eQ~E. (j = 1, •• ,, m) have been chosen, the functions r(z; x) 
J J 

and c(z; x) are unarnbiguously defined by (2.25), (2.22) and (2.23). 
-

Note that, if c,f, (2.16) and (2.17)_ we have z 

(2.26) c(z; x) 
A z 

Now the properties of the optimal strategy will be outlined. Further based 

on these properties an iteration procedure will be constructed. 

of which,under 

can be proved: 

a) 

(2.27) 
b) 

1 , 2, 

certain conditions ,the following interesting properties 

lim 
• 1-+oo 

x) > r z ; x 
• 

= min r(z; x) 
Z€Z 

. . . ) 

where Z is the class of all admissible strategies. Proofs and conditions 
-

1 and will be omitted here. We will restrict ourselves 
. ., 

are given in -
to some definitions and to a glance at the procedure. We start with 

a bare catalogue of definitions. Suppose that in the initial state 

x the decision dis made. If decision d transforms the system into the 

random state u and if after d the strategy z is applied, then functions 

r(d.z; x) and c(d.z; x) are defined as follows: 

(2.28) r(d.z; x) 

(2.29) c(d.z; x) r(d.z; x) t(x; d) + m c(z; u) 
~ 

d I' 
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We easily verify that for both null-decision and d z(x), we have 

(2.30) r(d.z; x) = r(z; x) 

(2.31) c(d.z; x) = c(z; x) 

Suppose the system is now in x and let·v be the first state in a 

closed set A ass1lmed by the system, then the functions r(A.z; x) and 

c(A.z; x) are defined by: 

( 2. 32) r (A. z; E r ( z; v) x; A 

(2.33) c(A.z; x) x; A}. 

x r(A,z; x) < r(z; x) U 
(2.34) 

{x r(A.z; x) r(z; x); c(A.z; x) < c(z; 
• 

x) l - X 
• • 

where X denotes the state space. We easily 

Finally we define the following subsets: 

veri fy that A E K • z z 

(2.35) 

and 

(2.36) 

D (x) 
z 

A'= z 

def 

.AE.K z 

d dcD(x); r(d.z; x) 

A. 

~ 

min 
d'E:D(x) 

( 
}'< 

rd .z; 

, 

x)} 

In order to gain an insight 

the following problem: 

• ~ \I O tiii1 into the principle of solution, we consider 

Suppose a decisionmaker has to make his decisions in accordance with 

a strategy z. In the initial state however he is free to choose a 

decision d. Which decision is the most profitable? 

The decisionmaker certainly looks for that particular decision which 

minimizes the expected average costs per unit of time. Each fall in 

these costs leads to an infinite saving in an infinite period of time. 
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If he selects in x a decision 

of time are given by r(d. z; x). 

d, the expected average costs per unit 

So the decisionmaker has to solve the 

problem c.f. (2.28) -

(2.37) min r(d.z; x). 
dED(x) 

With respect to the effect of the initial state in the total expected 

costs we introduced a preference function c(z; x); this function can 

be defined by (2.24). With respect to the effect of a decision din the 

initial state x we need a preference function c(d.z; x) such that the 
. ~ 

difference in the total expected costs can be expressed by 

(2.38) c(d.z; x) c(z; x). 

This difference has to be attributed to t_he decision_d. It can be proved 

that the difference is also measured by ~c,f. (2.29)~: 

(2.39) c(d.z; x) - c(z; x) 

A possible fall in costs will in general be finite. 

Consequently, if more than one decision d minimizes r(d.z; x), the 

decisionmaker can use his freedom by minimizing (2.39) with respect to 

these equivalent decisic11s; or~what is the same.,by minimizing ~he 

function c(d.z; x) with respect to dE.D (x). _c.f. (2.35) . . z 
Summarizing: Essentially the decisionmak.er has to solve the following 

two problems. 

1) To minimize the d-function r(d.z; x) with respect to dED(x). 

2) To minimize the d-function c(d. z; x) with respect to d6. D (x). 
z 

If these two problems have been solved for each x, then to each x a 

minimizing decision d can be added. If z(x) belongs to D (x) and also 
z 

minimizes c(d.z; x), let the decision z(x) be chosen. The relation 

between states and decisions is nothing else than a strategy. Let 

this strategy be denoted by z 1 • The following important result can now 

be proved: 

(2.40) 
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So the solution of the decisionproblem mentioned above also of~fers a 

new strategy; a strategy being at least as good as strategy z. 

Let us examine the new strategy. It follows from (2.30) and (2.31) 

that all intervention states of strategy z are also intervention states 

of strategy z 1 • 

Hence 

(2.41) A ~A. z
1 

z· 

In ether words in the initial state the decisionmaker can change but not 

defer the intervention dictated by the original strategy z. 

This important result leads us to a second decisionproblem •. Suppose 

that the decisionmaker has to make his decisions in accordance with a 

strategy z. But he is allowed to determine the point of time whereupon 

the strategy comes into operation. This will be done by choosing a closed 

set A; the strategy comes into operation at the moment the system 

enters the set A for the first time. 'Which set is the most profitable? 
• ,. .;Is w u ~ 

The dec1s1onmaker certainly looks for a delay that minimizes the expected 

average costs per unit of time. This implies that sets A will be 

considered which satisfy for each x c.f. (2.32) 
....J 

(2.42) r(A.z; x) < r(z; x). 

Again each fall in the average costs leads to an infinite saving in 

an infinite period of time. With respect to the effect of a delay in 

the total expected costs we need a preference function c(A.z; x) such 

that the difference in expected costs, measured by 

(2.43) c(A.z; x) c(z; x), 

can be attributed_to the delay. It can be proved that this difference 

is also given by c.f. (2.33) ... 

(2.44) c(A.z; x) - c(z; x). 

Consequently, sets A which satisfy for each x 



(2.45) 
and 

(2.46) 

r(A.z; x) = r(z; x) 

c(A.z; x) < c(z; x) 

will also be considered. 
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Summarizing: Closed sets A having the property c.f. (2.34) 
'- -

X = x r(A.z; x) < r(z; x) V x r(A.zt; x) = 
• 

(2.47) 

- r(z; x); c(A.z; x) < c(z; x) 

~ . 
will be considered. If K is the class of all closed sets A satisfying z 
(2.47) and if 

(2.48) 

belongs to K, 
z 

A'= z AEK 
z 

A 

then obviously the set 

decision problem, 

A' z is the solution of the second 

It can be proved that the strategy z2 defined by 

(2.49) --

" . satisfies: 

(2.50) 

z(x) i:f X£.A 'nA z z 

null-decisions otherwise 

x) • 

From the solutions of the two decision problems considered here above 

(2.51) • min x) 
dE.D(x) 

(2.52) 

( 2. 53) A' = A 
zo zo· 
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The iteration procedure runs as follows~ 

PreE_arato,ry .P8:~.t 

Determine the (x; d)- ~ctions k(x; d) and t(x; d). 

Iterative a proach 

be the strategy obtained at the th 
( n-1 )- cycle 

procedure. 

1 ) 

the functional equations (2,25), (2.22) and (2.23). 
2) Determine 

using the relations (2.28) and (2.29). 

of the iteration 

b) Determine for each XEX the subset of minimizing decisions 

z 
c) Minimize for each xEX the d-fu.nction c(d.x; z), subject to 

z 
d) Add to each ptate x a so ut1on of c. If z x is a solution 

of c), this decision will be added to· the state x. This instruc­

tion has been made in order to advance the convergence of the 
(1) (2) .-

sequence of strategies z , z , • • • } • . 

As soon as the operation d) has been performed a new strategy (n-1) 
z1 

has been constructed. 

3) ,...,, . . n-1 n-1 
, x) by using 

the functional equations (2.25), (2.22) and (2.23). 

4) Determine the subset is given by 
z, 

z 1 X 

(2.27) 
. ,, . 

null-decision otherwise 

End th 
o:f tp.e. fl: : czcle • 

The functions 

equations. If these equations cannot be solved analytically they. often 

can be solved n11merically by Monte Carlo methods. 
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The 0 

way in determined depends heavily 
z, 

on the structure of the decision problem considerei. In the boundary 

points of the minimjzing set A' it will often be indifferent whether z 
to intervene or not. In the motorist problem, by example, we will see 

that this property leads to a differential equation for the optimal 

boundary of the set of states in which claims should be suppressed • 

• 



22 

In this section it is shown how the motorist problem can be solved with 

Markov-programming. 

Primarily we shall have to define in detail the state space, the natural 

process, the set of intervention states and the set A0 • Secondly we 

shall determine the k- and t- :functions and finally the c- functions 

from which the optimal strategy is established. 

3. 1 D,ef.~n.i:t.i9n. o,f. ~~~.- s~~te space 
• 

At each point of time the following info:i::-mation will be o:f interest: 

(1) whether an eventual damage is covered or not. 

(2) whether an accident happens or not. 

(3) the amount of the last paid • E. , '• o, 1 , 2, 3. premi1.un ]. -
]. 

(4) the date and time of the day " considered. 

( 5) the extent of the d.amage. 

(6) whether a damage has been claimed since the last payment of premium 

or not. 
• • The following state space is suggested: 

At 

a) 

s 

K---'E- --tE-- _,4E - - - --
0 1 2 3 11 

The s_~ate space 

the t-axis we distinguish: 

Four points, namely 
• premi 1..1m has 

E0 , E 1 , E2 
to be paid ponding 

covered .. 
by insurance. 

3. 1 

and E
3

• In these states the corres­

(January 1); damages are no longer 

b) Four intervals of one 
7() 

year , namely 1i < t < 1i + 1 ( i = 1,2,3,4). 

- 12, i:f i = 2 

1i - 13, if i = 3. 
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The t-component of the state runs through li < t < li + 1, if and 

only 

been 
¥ 

1.­

claimed that year and the coming losses are still covered by 

insurance. 

c) Fou.r intervals of one year, na.mely 2i, t < 2i + 1 (i - 1,2,3,4). 

The t-component of the state runs through 2i < t < 2i + 1, if and 

i-
.. that year and the coming damages are still 

damages have been claimed 

covered by insurance. 

The s-variabele is zero unless at least one damage has been claimed 

that year and moreover the coming damages are st ill covered by insurance. 

In that case the s-component denotes the extent of the last claim. 

The u-variabele is zero unless at least one damage has been claimed 

that year and moreover the coming damages are still covered by insurance. 

In that case the u-component denotes the time elapsed since the first 

claim that year. 

Note that the s- and u-components of the state can only be different 

from zero if 1i < t < 1i + 1(i = 1,2,3,4). Consequently the state space 

consists of 

a) 

b) a 3-dimensional subspace (t,s,u) with 71 < t ~ 15. 

c) 1-dimensional intervals 2i < t < 2i + 1 (i - 1,2,3,4). 

We are now in the position to describe the natural process. This process 

can start in each state of the state space. In accordance with the 
. ..,,,. . . . 

premium paid the system runs through one of the time-intervals 

2i < t < 2i + 1 ( i = 1 , 2, 3, 4) , if no d.axnage has been claimed that yea,r. 

If no accident will happen during the rest of the year, at the end of 

the year the system is transferred to Ee. 
1 

Since in the nat1.1ral process 
w. ) 

no premiums are paid the system will stay there for ever. • 

*) In the natural process no premi 1J·ms will be paid. On the other hand 

the system can start in such a state that losses are covered by insu­

rance for some time. This is no contradiction! It would be a contra­

diction if we had said: In the natural process no premiums have been 

paid. 
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C. t 

However, if at t' ( t' < 2i + 1 ) an accident occurs the system is trans­

ferred to (t' - 10, s', 0), wheres' denotes the loss incurred. Since 

during the natural process, irrespective of their extents, all losses 

are claimed, the system will stay in the 3-dimensional part of the state 

space for the rest of' the year. From now on the u-component is increasing 

with time. The s-component will only change if a second, third etc. 

accident happens. At the end of the year the system is transferred to 

E0 where it stays for ever. 

If in the initial state (t, s, u) a da;rnage has already been claimed 

that year and coming damages are still covered by insurance the descrip­

tion of the development in the state of the system is similar to that 

of the final part of a walk considered here above. 

We now consider the decision-mechanism. 

a) are feasible: the 

null-decision and the decision that involves the payment of the 

premiutn E... Respective transf'ormations are E. · ➔ Ev and E.. ► (2i+1 ,O,O). 
1 l l l 

b) In the 3-dimensional space (t,s,u) only null-decisions are feasible, 

unless u = O. If u = 0 an accident just occurs and consequently the 

decisionmak.er can suppress the claim if he wants. In that case the 

system is transferred bs~ck to (t + 10,0,0). Note that a claim corres­

ponds with a null decision. This is in accordance with the fact that 

in the natural process all damages are claimed. 

Since the u-component denotes the time elapsed since the first claim, 

it may happen that an accident occurs when u > O. The decision not 

to claim the damage is of course a bad decision and for that reason 

it is considered to be infeasi.ble. 

c) To states satisfying 2i < t ~ 2i + 1 (i = 1,2,3,4), only null-decisions 

are added• 

In figure 3.2 states have been marked with more than one feasible 

decision. 
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• 
• I 

' ' ·,;, . 

t- - - + - - ... - - .. ~ --- ..--,....· ~ •-·-'" •- - - -- .... - .... --- - ... --·- - ~ ".. I I •• I . I ,, ...... I 

3 11 12 13 14 21 22 23 24 

u 

t:i_s ., 3 .. • .2 

States with more than one feasible decision 

From now on we shall only consider strategies which dictate payment 

of premi1~11n in the states EQ, i - O, 1,2,3. Consequently these states 
l. 

may be chosen as elements of the set A0 • We may add if we want the 

because every ~ossible strategy will dictate a suppression of the claim 

in this set. However restriction of the set A0 to the states 
.. 
l. 0,1,2,3, leads to more simple expressions for the k(x;d) 

• functions. So we choose: 

(3.1.1) E .• 
]_ 

3.2 The determination of the k(x;d) and t(x2d) functions 
2 • 1 a 1 : u ; a ■ 11 a a • ■ a • 11 ■ 01 r • ■ ■ 1 

Eu , 
l. 

and t(x;d) 

Let us consider the intervention which results from an accident occuring 

t time uni ts after paying premi11m E., 1 and suppose that no damage has 
l.-

been claimed during the time interval 0,T)· 

After the accident has occured the system will be in state x = (1i + r ,s,O) 

and 

d -

and 

the decision not to claim transfers it back into state 2i + r, hence 

2i + 1. We note first that the Wd walk a:fter the decision d = 2i + r 

are at the end 

of the year the set E~ 
l. 
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In both cases however the expected costs and the 

expected duration are equal. The only difference in expected costs is 

and O ~f s < C ~ _ a0 • onsequently we have 

(3.2.1) 

(3.2.2) 

= 0 

-a 
0 

s < ao 

Secondly we need to consider the intervention of the payment of premium. 

J.­

transfers it to state 2i. Because Ei_ 1 E. A0 the expected duration as well as 

the expected costs in the walk are zero. • 

payment of premium 
~ 

E. 1 the system is sub-
1.-

ject to the natuxal process until at the end of the year the set A0 is 

reached by means of state E .• Hence the expected duration will be one 
J_ 

year. Because in the natural process all dmnages are claimed we have 
0 

for the expected costs per accident, 

(3.2.3) d F( s). 
0 

Consequently the expected costs in the natural process during the 

interval 0, 1 

(3.2.4) t(x;d) 1 • 

(3.2.5) k(x;d) 

3.3 Deter.rnination of the optimal strategy 
& I I W 11 I • 11 4 Iii -- ■ II h 

It is easily verified for all strategies zc;;: Z the Markov process in 

has only one simple ergodic set. Consequently for every strategy z 

and feasible decision d, we have 

(3.3.1) r(d.z; x) = r(z;x) - r(z). 

A z 
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Hence it is sufficient to consider the function c(z;x), defined by the 

functional equation 

(3.3.2) c(z;x) k(x;z(x)) - r(z) t(x;z(x)) + 
( ( 1 ) . 

p (dI;z;x) c(z;I). 

In order to obtain a unique solution we put 

(3.3.3) - 0 - . 

A z 

Let us first consider the solution in state x = (t,s,O) with t = 1i + r 

ands> a 0 • 
• dictates to 

Suppose we are applying an arbitrary strategy z. If z 

claim (null decisiont) in x then the next intervention 

state is E0 • So we have 

(3.3.4) c(z;x) 

If we decide not to claim and future decisions are taken in accordance 

with strategy z, then the function c(d.z;x) is given by 

(3.3.5) c(d.z; x) 

From now on we consider only the optimal strategy z0 • Let 

of A r zo 

(2.52) 

be 

dGD(x) 

t + 10. It follows from (3.3.4) and (2.52) 

(3.3.6) 

--

According to the fact a linear function of sit will 

be indifferent on the boundary s(t) of A whether to claim or 
ZQ 

not, 

hence for s - s(t) we have: 

(3.3.7) o. 

From (3.3.5) and (3.3.7) it follows that 

(3.3.8) = o. 
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Consequently: 

(3.3.9) 10) 

Furthermore holds for the states E. ,i = 1,2,3: 
l 

(3.3.12) 

or 

(3.3.13) 

S - .. tlmmari zing: 

--

0 , 

1 . 
tt21+1 

lim s ( t). 
tt2i+1 

< 

11 < t < 15, s > o, u > o} 

Jim 
tt2i+1 

s ( t) , 
3 

XE: 
i=1 

X €:. { 11 < t < 1 5, 

• 

-s s ( t) ' 

s ( t) ' 

X €. {11 < t < 15, u = O} 

X E. 21 < t < 25 

From the functional equation (3.3.2) 

(3.3.15) 

it follows for E. 1, 
l-

i = 1,2,3,4: 



or 

(3.3.16) 

Using the relations 

(3.3.17) s(11) = E + 
0 

29 

l-
i = 1,2,3,4 

(3.3.18) s(1i) = Jjm 
tt1 i 

i = 2,3,4 

(3.3.19) 

For x = 

(3.3.20) 

lim s(t) = 
tt14 

(t,s,O) withs > 

lim 
tt15 

s(t) 

= k((t,s,O);t + 10) 

+ 

+ 

+ 

1i+1-t 

1i+1-t 

0 

1i+1-t 

0 

-AT 

'-At1 d 
A€ I 1 

0 

According to (3.2.1), (3.2.2) and (3.3.14): 

(3.3.21) 

1i+1-t 
+ 

0 

1i+1-t 
+ 

0 

If 1 2 t + 1 1 , then 

(3.3.22) = s-ao + e 

-.X(1i+1-t) 
e (a -

0 
lim 

tt1i+1 

Ae-.X:t1 dT 
1 

Ae 
-AT, 

dT1 

Ja 
0 

ao 

0 

a - im 
O tt1i+1 

s ( t)) 

+ 10) 

s (t)) 

dF(y) 

dF(y) 
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· 1 i+ 1 

r1i+1 

t 

Af'ter substituting s = s(t) and 11sing (3.3.7) the dif:ferentiation of 

(3.3.22) with respect tot leads to 

00 00 

(3.3.23) d s (t) ---= dt (y - s(t)) dF(y). 
s (t) 

By partial integration this equation can also be written in the more 

simple fo:r:·m 

(3.3.24) d s (t) 
dt 

s(t) 
( 1 - F ( y ) ) dy. 

ao 

Except for a translation in the t direction the bounda.ry s ( t) is 

determined by (3.3.24). In other words the boundary of Az for i = 1,2,3,4 
0 

are in the t-direction translated parts of one of the curves satisfying 

(3.3.24). The location of each part on this curve has to be determined 

from the relations (3.3.17) through (3.3.19). We will now show that this 

is possible. 

Suppose that 

the curves s (t) 

is known, than 

we deduce • l1m 

s ( 11 ) 

s ( t). 

is solved from (3.3.17). From 

From (3.3.18) for i 2 we 
tt12 

obtain s(12). Simila.rly we can compute lim s(t), s(13), 
tt13 

lim 
t +14 

s ( t), 

s(14) and lim s(t). 
tt15 

is known, the optimal strategy is completely 

known its value is deter1nined by equation 

(3.3.19). 

It should be noted that the differential equation (3.3.24) has an 

analytical solution in the case the 

distributed. We have then for F(s) 1 
µs 

= - e 



(3.3.25) 

which leads to 

d s(t) 
dt 
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µ 
e µao ( 7 

1i < t < 1i + 1 

i = 1,2,3,4 

where the c.,i = 1,2,3,4 are arbitrary integration constants. Note that 
1 

(3.3.26) s(t) = a + 1 ln 0 µ 

A(t+c" )e-µao 
1 + e 1 

(3.3.26) determines a curve except for a translation in the t-direction. 

If the distribution of the damage is not exponential we have to solve 

eq_uat ion ( 3. 3. 24) n1.1meri cally in most cases. Of course we may also use 

the iteration cycle described in §2. 
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