STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

SP 108

Tl TORTID WOCRS SIS SRR YECIR AP MR

( 8 Lo1 )

We Molensar

How to poison Poisson (when aprroxiumating
binonmial tails)




How to poison Poisson
(when approximating binomial tails) *

by W. MOLENAAR

Summary In these days some sportsmen are given dangerous drugs in order to stimulate them
into still higher efforts. The present paper wants to add some poison to the classical
approximation of a binomial by a Poisson distribution. The relatively harmless drug of a little extra
calculation shall be seen to result in a much better accuracy.
This paper reports both on theoretical considerations, following from series expansions of Poisson-
type parameters, and on extensive numerical investigations of accuracy by means of an Electrologica
X8 computer. The main conclusion 1s that the probability of at most k£ successes in » Bernoulli trials

with success probability p < .5 can be very closely approximated by the probability of at most k&
events in a Poisson distribution with expectation not #p but

(12—2p)n—Tk
[ = ——me—— 1D
(12—8pyn—k-+k/n

In the case p > .5 one should make p < .5 by a reversal, i.e. the interchanging of successes and
failures, before the application of a Poisson-type approximation (with one exception mentioned in
section 4). For the probability of at least j successes one should approximate the complementary
probability of at most j—1 successes.

After an introductory section 1 and a discussion of measures of accuracy in section 2, the existing
Poisson-type approximations are treated in section 3. The fourth section introduces a new parameter
and discusses the advantages of reversal in other situations than p > .5. In section 5 a series expan-
sion for the exact Poisson parameter 1s derived. Two new parameters, among which is , are intro-
duced in section 6, where the series expansions for parameters given in table 4 lead to conclusions
about the various approximations, summarized in table 6. The final section 7 gives some numerical
results, which confirm to a large extent the conclusions from the asymptotic expansions.

1. Introduction

Throughout this paper the random variable x denotes the number of successes in »
independent trials with probability p of success. We introduce the notations
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I
B, =P{x<k}= ) b.

The binomial distribution is most frequently used for the calculation of probabilities
of exceedance in hypothesis testing, and for the determination of confidence bounds
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for a population proportion from a sample. There exist tables of B, such as ORD-
NANCE CORPS (1952) for n = 1 (1) 150, p = .01 (.01) .50, and WEINTRAUB (1963) for
small values of p. Even within the ranges of these tables approximations are often
used, the tables being too bulky to be always available and interpolation being diffi-
cult.

Approximation by a normal distribution i1s most attractive, as anyone poSSesses
the necessary tables. However, the accuracy of the classical normal approximation 1s
sometimes poor, and more accurate normal approximations usually require substan-
tial calculations. The present paper deals only with Poisson approximations. Some of
them are accurate even near p = .5. When no cumulative Poisson table like GENERAL
ELECTRIC COMPANY (1962) or MOLINA (1945) is available, the necessary values may
be found from a chi-square table like table 7 of PEARSON and HARTLEY (1954) or from
a nomogram (VERENIGING VOOR STATISTIEK nomogram &.1).

Throughout this paper we give approximations for B, = P{x < k}, and with one
exception in section 4 we shall assume that p < .5. For the approximation of
P{x = j} with p < .5 one approximates B, for kK = j—1 and subtracts the result
from 1. Approximation of B, for p > .5 takes place by substitution of 1 —p for p and
of n—k—1 for k 1in the given formulae followed by subtraction from 1: at most k&
successes means at least n—k failures. Similarly P{x = j} for p > .5 is found by
replacing p by 1 —p and k& by n—j, without subtraction. The explicit statement of
these simple rules may avoid misunderstandings.

We call B, a left hand tail if it does not exceed .5; if 1t does, then 1— B, =
= P{x = k+1} is called right hand tail. Thus our binomial tail min (B,, ] — B,) is
never larger than .5.

When comparing approximations we shall work with the exact cumulative Poisson
values, disregarding possible interpolation errors which may arise if the expectation
lies between two values for which the distribution is tabled.

Some personal taste enters in the evaluation of the computational effort involved
in a certain approximation. We take the view that 1t is desirable to avoid the use of
- special tables, such as 2 arcsin \/x, the correction y(y,p) of BOLSHEV (1961) or the
integral 7,(2/3,2/3) of BORGES (1969). Furthermore, addition of a not too simple
correction term to a cumulative Poisson distribution function with a simple para-
meter 1s believed to be more laborious than directly looking up in a table the cumu-
lative Poisson for a somewhat more complicated parameter.

It 1s common knowledge that the Poisson distribution with expectation u = np
approximates the binomial distribution for small p. However, both tails of the bi-
nomial are rather seriously overestimated unless p is very small indeed, as is illustrated
in table 1.

The examples of table 1 have been selected to show that the approximated probabili-
ties can be larger than some customary significance level while the actual probabilities
are not. As 1s well known, this makes the Poisson approximation conservative in the

sense that in hypothesis testing some significant results are not recognized as such,
but no nonsignificant result is ever called significant.
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Table 1

Binomial tail

Poisson (u) approximation

n 14

5 05 Pi{x > 2= .023 026
30 1 P{x = 0} = .042 050
40 1 P{x > 8}=.042 051
40 2 P{x > 13} = .043 064
70 1 Pi{x > 12} = .044 053
100 1 Pix < 4} = .024 029
100 2 Px < 13} = .047 066
125 05 Pix > 2}=.048 052

Some textbooks qualify the Poisson approximation as good when » is large and p
is small. Actually the value of » has little influencz. HALD (1952) says: “It is generally
considered justifiable to apply the Poisson distribution as approximation to the bi-
nomial distribution when p < .1”°. The two examples with p = .05 in table 1 exhibit
relative errors of 17 and 9 percent, and show that even for such a small p correctness
of two significant figures is far to seek.

2. Measures of accuracy

There are various ways to evaluate the accuracy of an approximation. Suppose each
binomial term b; is approximated by a;. Let us put 4, = ijo a;. Some criteria of
accuracy found in the literature, giving one value for each binomial distribution, are

Z la;—bjl

J

(PROHOROV, 1953; LEcAaM, 1960)

max |A, — B,| (HobGEs and LecaMm, 1960) (2.1)

k

max |(A,— A,) — (B — By)|

h, k

(RAFF, 1956)

Only RAFF’s paper deals specifically with the numerical accuracy of approximations,
the other references being of a more theoretical character. A criterion of FREEMAN
and Tukgy (1950), based on the normal deviates corresponding to 4, and B, is not
suitable for us, as we work with some very skew distributions. All criteria in (2.1)
concentrate the attention on the approximation of the middle part of the distribution,
as the values for which the maximal absolute error is attained will rarely lie in the
far tails. But practical applications of the binomial distribution will almost always
concern these tails, either for hypothesis testing or for confidence bounds. Accurate
approximation near the customary significance levels 1s more important than a low
absolute error in the middle part of the distribution.

In this study we shall not try to judge approximations of a binomial distribution
according to one criterion. We shall consider the relative tail error, defined as

A, — B, B, — A,

E, = 100 —B, if B, £.5; E, = 100 1°B, otherwise; (2.2)

STATISTICA NEERLANDICA 23 (1969) NR. | 21



for all £ such that .001 < B, < .999. Approximations with a low E; 1n the regions

005 € B, < .05 and .95 < B, < .995 are preferred, unless their performance in the
middle region .05 < B, < .95 1s extremely bad.

3. Better approximations previously published

In section 1 the classical Poisson approximation
5oy
B, =~ P,(p) = Z ““'," e (4 = np) (3.1)

was found to overestimate both binomial tails even for relatively small p. We may ask
what better parameter than p a Poisson distribution should have, or what other
correction should be applied, in order to obtain a more satistactory approximation.

The earliest answer 1s given by the Gram-Charlier expansion (see e.g. RAFF (1956)):

k
B, ~ ) P (k=wp K e ". (3.2)

The well known equality of binomial tail and incomplete beta integral, and also of
Poisson tail and incomplete gamma integral (both specified in section 5) have been

combined by WISE (1946, 1950) and by BOLSHEV and others (1961) with series ex-
pansion techniques, with the results

Bony Bos PO -KB-K-20) f*

g 3.3
j=0 j! - 6(2n— k)2 k! - G-3)
~where f = 2n—k)p/(2—p) (BOLSHEV c.s.) and
koL J k—1
N v - ’ o k + 2+ 7y d — |
where y = —(n—1k)logg (Wise). The approximations are remarkably accurate:

e.g. for n = 100 and p = .2 the relative error in binomial tails of at least .001 is less
than  percent for (3.3) and less than 1 percent for (3.4). But the laborious calculations
make them unattractive.

The use of (3.3) and (3.4) without their correction terms boils down to the use of

p or y, which are simple functions of n, p and k, instead of u when looking up the
probability of at most k£ events in a Poisson table. We shall consider

2n—k
B, =~ P(f) = Z — € where f = ( 5 )P_; (3.5)
j=o J: — P
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Py(p).
WiS%* S

rameter y is exact for k = 0, as e’ = ¢" 1n this case. But (3.6) becomes
arge k, especially if p 1s far from zero.
a few examples are found. As before, P ({) denotes the probability of

ceeding k in a Poisson distribution with expectation &. To the six Poisson ap-

Fable 2. Relative errors 1n percentages
Py(u)
3.1)

+351.61
4+ 62.98
+ 58.91
+162.66
-+ 430,83

4 # 9 L L % ¥ » L ¥ & * W * “ & &
‘Lﬂmmmmm s Lad Tad Tad Lad 10 T T g
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D(u)
(3.8)

4+93.07

+16.03
+ 3.86
— 1.78
—16.33
—37.95
423.47
+ 6.24
+ 1.29
e %
— 4.13
—15.73

+ 2.24
+ .57
-+ .03
+ .03
+ .57
-+ 2.24

P(B)
(3.5)

.56
32
22
34
76
1.40
7.88
4.57

2.83
3.71

e e

O
=
Q0

+15.36

+32.34
-+19.03
+ 9.48
+-11.66
-+ 26,64

-+ 52.68

of the binomial tail, cf. (2.2)
Pi(y)

(3.6)

A5
32
24
85
1.45
2.27

— 712
—~ 7.00
—  6.64
+ 14.25
+ 19.78
+ 35.65
~ 36.35
~ 3425
— 30.99
+ 66.88
+115.29
+197.46

i

|

++ 4+

G.C.

(3.2)
—~ 1.90
+ .09
+ .32
+ .58
+ .43
— 1.97

—19.87
-+- 2.83
+ 4.70
+ 6.31
-+ 71.21
—26.50

- 32.09
+20.27
+17.36
+20.05
+34.17

- 1.21

(3.3) (3.4)

- A

|
228322 838888

—3.35

— .00
— 00
- .00
— .00
— .01
— .02

— 24
e ‘2
.19
~ .51
—~ 1.16
— 428

— 7.11
— 6.02
— 4,48
— 7.99
—29.62

—86.70
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proximations considered so far we have added the classical normal approximation

B, ~ &(u) = — | e ¥ dlt, where u = — - (3.8)

More numerical results, for more approximations, are given in tables 7-13.

4. Bomol and reversal rules

This section gives some results found by trial and error from numerical investigations.
A new parameter ¢ is introduced, which is very accurate especially if we modity the
rule of interchanging successes and failures if and only if * p > .5, and start this
change (called reversal) for a somewhat smaller p if k 1s large, for a somewhat larger
p if k 1s small.

Examination of BOLSHEV’s approximation (3.5) in many numerical examples reveals
that it is still conservative (with very rare exceptions for small p and n), though the
overestimation of both tails is less severe than for the classical Poisson (3.1). The
error increases with p as is illustrated 1n table 2.

In a numerical investigation the exact parameter value 4 was computed for which
B, = P,(4). As P,(4) i1s a decreasing function of A, the exact A 1s unique and can be
quickly found from successive linear interpolations™**. It turned out that a closer
approximation of A 1s achieved it the last denominator 2—p in (3.7) 1s replaced by
2—3p/2. The asymptotic behaviour for p — 0 remains the same, but for larger p a
somewhat stronger correction 1s imposed upon /.

Thus the accuracy was investigated of

2—-ip)n—k
2—3p/2

B, ~ P,(5) where & = p = u—(k—p) 2___pJ (4.1)

p/2°

which was called Bomol as an abbreviation of BOLSHEV/MOLENAAR. In the examples
considered it had a considerably smaller error than P,(f), which was already superior
to P(u). Even for p = .5 the relative error remains below 1 percent as long as
0l < B, < .70 and n > 40. As the error in right hand tails is much larger than in left
hand tails, a further improvement can be reached by the introduction of a new reversal
rule:

i §__“_’:e__5 if{p < .2+.016./n and k arbitrary, or

o J! 24.016/n < p < .8—.016/n and k+1<n/2;
B, ~ (4.2)
e J
_ B 2—3g)n—n+k+1
j:;_k e g otherwise, where n = ~— 530 q.

* “If and only if” is henceforth abbreviated by ““iff”.
** In the Algol 60 programme the procedure ZERO (AP 230) of the Mathematical Centre was used.
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Table 3. Boundary values for reversal

n . 2+.016v/n .8—.016+/n n 2+.016+/n 8—.016+/n
4 23 77 70 33 ' 67
10 .25 15 | 100 36 .64
20 27 73 140 .39 61
30 .29 A 200 43 S7

S50 31 .69 300 48 .52

The condition p < .2+.016,/n amounts to p < .25 for n = 10 and to p < .40 for
n = 160, see also table 3. One could simphfy (4.2) by replacing .2+.016\/n by .35
and .8 —.016,/n by .65. This would lead to a few wrong decisions for, say, .20 < p <
< .35 and .65 < p < .80 1if n is small, or for .35 < p < .65 11 n 15 large.

Reversals have also been studied for the other Poisson approximations. For (3.1)
and (3.2) it is difficult to give bounds for the region of (n, p, k) triplets for which
reversal leads to a better approximation. For P,(f) reversal helps for £k < inif p=.5,
but even for p = .45 the advantage 1s dubious. Wise’'s 1—-P,_,_(—3(n+k+1)
log p) is better than P,(y) for roughly the values where (4.2) prescribes reversal. As
in that region (4.2) is usually still better, no further attention has been given to the
matter.

5. The exact parameter 4

The essential difference between (3.3) and (4.1) 1s that Bomol gives the cumulative
Poisson distribution a better parameter instead of adding a correction term to (3.5).
This is attractive as it simplifies calculations, but Bomol has a less spectacular numeri-
cal accuracy than (3.3). In order to find still better parameters, and to explain the
success of Bomol, a theoretical counterpart i1s now derived for the numerical solution
of the exact parameter A from B, = P,(A). |

We restrict ourselves to 0 < k£ < n. It 1s well known that

B Xk‘ (n) J n—j .‘{ n! k(l )n-‘-k""ld (5 1)
— _ — e - - X — X X, .
. =o \J P4 » kl(n—k—1)! '
k lj o0 1
P(D) = ) =e ' =] ;x'e  dx; (5-2)
j=0 J! r K1

for a proof see e.g. FELLER (1957) chapter VI, problems 45 and 46. The exact A
depends on n, p and k; as a function of p it is infinitely differentiable for 0 < p < 1
and even analytic in a neighbourhood of p = 0. We shall put 4 = ) __¢; p’, where
the coefficients ¢; depend on i, kK and » but not on p. As for p = 0 and A = 0 the
integrals 1n (5.1) and (5.2) are equal to 1, it follows that ¢, = 0. Both integrals being

equal for all p we may differentiate them with respect to p:
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n! k n—k—1 _ 1 ke, = dA |
T k=117 (1—p) = — it Th (5.3)
which means
nl k-1 [ A : “l_fz.;_)_“_‘

Both sides of (5.4) can be written as a ‘power series 1n p, after substitution of
A= ),.. cp'. After some calculations this leads to

j=0 J

n! n—k—1 n—k—1 |
k=D £ ( | )(MP)J = "+ {(k+2ere =" p +

+{(k+3)c C3+(k+3)%kck 1 2"“(k+3)ck+162+ick+3}p2 4 (5 5)

+{(k+4)cles+ (k+ ket Teyes—(k+)cK ey + (k+Dik(k— Dt ™23+

-----~'-~(l«:-x-fl)—l-(lwr1)c“‘c§+(k4—‘*-'1)5(:’?"“Z —1iT pP+o(p’)  (p—0).

As (5.5) is an identity in p, coefficients of the same power of p must be equal. In the
notation f; = c;/c, (i = 2,3,4) this implies

‘1= (ﬁ_z{-l)’ : >0
= GmnEktL ’ (5.7
o= Oy e ik o7
f, = Gmlemks 1)6((;;-;-};)“%)&1{ = ekt (5-9)

— k(k—1)f3 +3(k+ e, f3 ~eqca.

We want to determine the asymptotic behaviour of the coefficients ¢; for n — 0.
As we want to exclude both degeneration in O and slipping away to infinity for our
distribution, we make the assumption that the expectation p has a limit between
O and co. This means that also the region of interesting values of k, with essentially

positive probability, 1s bounded. Our assumptions can be summarized as

n—oo, p—0,0<limu< o, k = O(1). | (5.10)
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In equation (5.6) we may now apply STIRLING’s formula

logm! -“(m—l-l)logm——m-l—llog2n+”1----- L —4
cgm: = AT : 12m  360m°

and after a substantial calculation there results

k k2+21g_ B ,’“3““' 2,.’?3. B 73k* + }_72kf+2§k2 — 48k

-1 — — — , + o(n""). (5.12)
‘= 2 24n 48n* 5760n°
Combining this result with (5.7), (5.8) and (5.9) one obtains
2 1k>+42k*—8k )
C, = n_ Tk _ < H2k 2l aik - + o(n™?), (5.13)

2 24 48n 19201

ey =2 -2 =22 T 0 4 o(n” Y, (5.14)

CQ = g-—- -+ o(1). . (5.15)

Similarly it follows

Cs = g + o(n). (5.16)

Now we collect terms which are of the same order under assumptions (5.10), such as

p2, p/n and 1/n?, and obtain a series expansion for the exact parameter A displayed
in the first line of table 4 (next page).

6. Expansions and new parameters

Now that we have obtained an expansion for A, it can be compared to similar ex-

pansions for the approximating parameters f(3.5), 7y (3.6) and ¢ (4.1). Table 4
shows that they all agree with A in the order n~'. We shall presently compare their

second order differences, but let us first try to find some simple closed expression in

n, p and k which, when similarly expanded, comes closer to A. As both  and y can
be put 1n the form

K- (‘20 dipi) ' (i €; (k/n)j) (6.1)

j=0
we may try to improve them by finding coefficients d; and e; such that (6.1) 1s closer
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Table 4. Series expansions for parameters

1
Exact A = u {l -+ =-----(‘u — k) +

-(8u*—Tuk —k*—2k) + (7203 —60u”k — 6/,Lk’~—~—6k3—-~12uk--12k‘)+

24n 288 3

]
Mep ,u{l + w(,u k) b s (8t — Tk — k= 2K) + 5o (64 — A8k — 1 Suke® — ke — 28k +10K%) +
Bomol o = ,u{l - w(uwk) +24 ~5 (Qu*—9uk) ; 28812*"(81# —81u%k) -+
1
Bolshev f = u{l -+ (,umk) -+ - S 5 (6u*—6uk) +- TP —(36u%—36u%k) »{;
W] = '[’1 1 k 8 Suk | : 7212 —48u>k)
ise  y = pu\l 4=k + 5 — (8u® — 6uk) - Sggp M 12 +
Wimol & = [ . 1-( — k) 4 - U sut—buk—kY L 72 3 4812k — 6uk® — 6k3) 1
“U T o 24 1T TR 288n3" '
to A than e.g. Wise’s y which has d;, = 1/(i+1), e, =1, ¢, = —1/2, e; = 0 for
j = 2. A better agreement is reached if we put e, = —1/24, e; = —1/48, keeping the
other coefficients as they were. This means
koo 2
g _ 24n —24nk + 5k
B, ~ —e where ¢ = o 6.2
. j;) jl 24n—12k =4 (6.2)

The expansion of € is found in table 4 under the name Wimol which stands for
WisE/MOLENAAR. It gives a substantially better approximation than Wise, but 1s still
unsatisfactory when k 1s large.

An expression of the form (6.1) can never agree with A in the term of order »
This agreement can be reached, however, by allowing p and k/» 1n both factors, and
k/n* in one of them:

— 2

( =p-(1+d, p+dyk/n)-(L+e, p+esk/n+esp”+ekp/n+esk®/n® +egk/n® +...).(6.3)

Comparison with the expansion for A in table 4 yields that complete agreement of

second order terms is reached if we put d, = —'/c,d, = — /15, e, = /5, €5, = '/ 5,
es = Vg, €4 = 1o, €5 = /144, €6 = —'/{,. So finally we propose the approximation
) .
S . (12 2p)n—7Tk
B, ~ — h .
" j;o j1° WSS ~(12—8p)n—k+kjn F (6.4)

which is called Mep (More Exact Parameter) in table 4. Its expansion coincides with

the expansion of the exact parameter for order n~ % and even comes rather close to it
in the third order term.

We shall use the series expansions in table 4 in order to draw conclustons about
the accuracy of the five approximations B, vy, 0, ¢ and { of the exact Poisson para-
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1
+“i7280n4

| 17280 4

3 1
17280n*

1
i +
i
i
i
i
i

A 7280 4

1
17280n*

L
+__ —

_+,,

17280n*

(34564 — 281415k —234uk? — 189uk® —219k* — 4562k — 378uk? — 516k + T2uk — 84k 144k) -

-

(2560u*—1600u3k —840u*k* —115uk®—5k* — 1600wk + 680uk? -+ 110k3 +120k>) }

- (36454 —3645u°K) n }
_(1080u% — 108043k) }
(3456u% —2160u°k) n }

~ (34564 —2160u3k —240u°k=— 180k —180k*) +.. }

meter A. Suppose we have found out for which values of n, p and k¥ we have e.g.
10— A| < |y—A|. This implies that P,(0) 1s closer to B, than P.(y) if 6—A4 and y— A
have the same signs. In the case of opposite signs it does not strictly follow that P,(5)
is a better approximation of B,, but accuracy of a parameter will generally be a
rather good indication of accuracy of its distribution function.

But how do we estabhsh when |0 —A| < |y— 4| holds? We do have closed expres-
sions for the approximating parameters, but not for 4. However, we have series ex-
pansions for all of them. If the difference in second order terms between 6 and A is
smaller than the difference between y and A in the same order, this is almost equivalent
to |0 —A| < |y— 4| provided that convergence is rapid enough to allow the neglection
of terms of higher order.

Now many numerical examples, of which a few are given in table 5, indicate that
convergence 1s indeed rapid even if n 1s not very large and p not very small. This table
counts six triplets (n, p, k), and gives for each triplet the distribution function B, and
siX sets of parameter values.

All six expansions in table 4 have the same leading term y and the same first order
value p{l —(k—pn)/(2n)}; they are printed only once in table 5. On the next three
lines are given, for 4, {, ¢, 0, y and f separately, the parameter values calculated from
the expansions up to and including the second, third and fourth order. The last line
marked ““actual’’ gives in boldface type the actual values, towards which the expan-
sions converge. These actual values are found for the exact parameter A by an iterative
process on the computer (see section 4), and for the approximating parameters from
the closed expressions (6.4) for (, (6.2) for g, (4.1) for o, (3.6) for y and (3.5) for p.

As an example we consider ¢ forn = 40, p = .3 and k = 15. The expansion values
of order 0, 1, 2, 3, 4 are 12, 11.55, 11.5022, 11.4920 and 11.4897, respectively, while
the actual value 1s 11.4890. From the second order values we would say that
0 ~ 11.4488 1is closer to 1 =~ 11.4366 than & ~ 11.5022, while actually we have
0 = 11.4194, 2 = 11.3942 and ¢ = 11.4890. Thus our conclusion *§ is better than &”’
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Table 3. Some m mm ster values calc
actual (himit) values
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remains valid if we pass from second order parameter values to actual parameter
values. As a next step we pass to the distribution functions and conclude thatP,(d) is
a better approximation of B, than P,(¢) in this case. We shall see in the next section
that the first few terms of the parameter expansions give nearly always correct con-

clusions about the accuracy of the corresponding Poisson approximations of binomial
tails. |

We shall now compare the second order terms in the expansions of table 4. We have

(B—)/u = b/(24n*)+0(n~2?), where b = k*+ku—2u?+2k:

(y—A)/u = ¢/(Q4n*)+o0(n~2), where ¢ = k*+ku+2k;

(0—A)/u = d/(24n*)+o(n~?), where d = k?—2ku+u?+2k; (6.5)
(e—A)/u = e/(24n*)+o(n~?), where e = ku+2k:

({=D/p = o(n™?).

Evidentlyc =2 0,d > Oande > O, whileb > 0iffk > k, = __1_%#_}_\/9#2/4_}_1!'_*_1“
The other root of 4 = 0 is negative and thus not interesting, as k assumes only non-
negative integer values. One easily sees that 0 < k&, < u holds.

Observe that ¢ < d iff d—c = —3ku+u* > 0, ie. iff kK < p/3. Similarly d < e
means d—e = k*—3ku+u® <0, ie. k, < k < k5 where k, = 3u/2—%u /5=~ .38u
and k, = 3u/2+—%-,u\/5 ~ 2.62u. We always have e < ¢ unless k = e = ¢ = 0. In
that exceptional case we know that both Wise and Wimol give the exact probability
q", while Mep has only zero in its second order error.

Neglecting a possible influence of higher order terms, we have now found the first
four conclusions listed in table 6. The next two conclusions deal with Bolshev’s
difference b, and we must be careful because of its sign change. From b—d =
3u(k—u) we see that for £ > u we have b > d > 0. On the other hand, b+d =
2k?+(4—pk—p? = 0 has a unique positive root ky, = —1+1u+~/9u2/16—Lu+ 1.
As d+b < 0 implies b < O (because always d > 0), we have |b| > d for k < k,, and
thus |6| < d holds only in the strip &, < k < L.

Next observe that b—c¢ = —2u®* < 0, while b+¢ = 2k*+(4+2u)k—~2u? = 0 has

a unique positive root ks = -—lmlgy+\/5/,c2/4+u+l. As b+c < 0O implies b < O
we conclude that |b| > ciff k < k;. Finally b—e = k*—2u* is positive for k > pu./2
(sothere b > e > 0)and b+e = k*+Qu+4)k—2u* = 0 has a unique positive root
ke = mu+2+\/§m;;2+4u+4, so we have |b| < e only for k; < k < k-, (we define

k, = u\/2).

Conclusion (viil) of table 6 follows from the first order difference:

(W—A/u = (k—p)/Q2n)+o(n™"). (6.6)
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Fig. 1. Values of k,;, mentioned in table 6, as functions of the expectation u

Table 6. Conclusions from the differences in parameter expansions. The symbols k; are defined in

(1)
(11)
(111)
(iv)

(V)
(vi)

(vil)
(viii)

the text and their values as functions of u are sketched in fig. 1.

Mep is superior to any of the other approximations, except for k = 0 where Wise and Wimol
are preferable.

Bolshev’s parameter is too small for k< k, and too large for £ > k,, thus overestimating both
tails. The parameters of Wise, Bomol and Wimol are always too large, which means under-
estimation of the left hand tail and overestimation of the right hand tail.

Wise is only superior to Bomol for & < u/3, and Wise is never superior to Wimol.

Bomol is superior to Wimol in a middle region k, < k < k3 containing most of the distri-
bution

Bomol is superior to Bolshev except in a narrow strip k; < k& < w.

Wise is superior to Bolshev iff k < &, (in the far left hand tail). Wimol is superior to Bolshev
outside of a rather wide region k; < k& < k,.

The classical Poisson is conservative, it overestimates B, for k < u and underestimates it
for k > u.

Mep is nearly always conservative, as it overestimates B, for £ < max (u—1,0) and under-
estimates it for & > .
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The conservatism of Mep stated 1n conclusion (viii) is deduced from the third-order
difference

({—A)/u = z/(288n°)+o(n™?), (6.7)
where

z = —8u >+ 12u%k —uk? +5k® — 16uk +22k? =

|

= (k—p) (Sk*—4ku+8u®+16k)+6k2. (6.8)

As the second term is nonnegative and the first term has the sign of k— u, it follows
thatz > Ofork > u. For k = O we have z = —8u° < 0, while in general we have

z = (k—pu—1)Bu*—4ku+5k?)—8u?—12uk + 17k?>. (6.9)

For 1 < k < pu—1 the first product consists of a negative and a positive factor, while
the remaining terms have a negative sum. Thus z < 0 for Kk < max (O,u—1). A
numerical investigation shows that the sign change of z occurs for u = 1.21 if k = 1,
foru =231tk =2,forpu=5441if k = 5, for u = 10.53 if k¥ = 10, and between
u==k+.6and u = k+.71 £k = 25.

7. Numerical results

The conclusions of table 6 have been deduced under neglection of terms of higher
order. A numerical investigation exhibits that they are rarely wrong in finite situa-
tions. For n = 5, 10, 20, 30, 50 100, 300 and p = .01, .03, .05 (.05) .50 all values
of k were considered for which .001 < B, < .999. This means 7 times 12 = 84 para-

meter pairs (n,p) and some 1300 values for k. We shall indicate for each conclusion
when 1t was found to be wrong.

Ad (1): Mep was never inferior to Poisson, only for two triplets (n, p, k) inferior to
Bolshev, only for three triplets with £ > O inferior to Wise, only for six triplets with
k > 0 inferior to Wimol. However for p = .5and n = 10, forp = .4 and n = 30, for
p = .3 and n = 100, and similar p for other n, a region (say about .00l < B, < .35)
existed where Bomol 1s better than Mep. The difference in accuracy i1s negligible in

most of this region, but Bomol is substantially more accurate for small B,, large » and
p near .J.

Ad (i1): In 4 of the 84 distributions just one value of k slightly larger than k£, existed
for which Bolshev’s parameter was still too small; but for small tails Bolshev was
always conservative. The Bomol parameter was sometimes too small for seven distri-
butions, namely n = 50, p = .5, .03 < B, < .18;n = 300,p = .35,.001 < B, < .35,
and intermediate regions for n = 100. No violations of the other statements in (11)
have been observed.

Ad (iii): Only twice a value k < u/3 was found for which Bomol was superior to
Wise, and the difference in accuracy was small. Wise was indeed never seen to be
superior to Wimol.
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Ad (iv): For n = 20 and 30, and p near .5, siX distributions were found for which
the boundary k., was a little bit too large. For twelve distributions, mainly for small
n and p near .5, the boundary k5 was a little bit too large. This led on each occasion
to an unjustified preference for Wimol over Bomol for just one value of k, which 1s
anyhow not very relevant as Mep is in these cases more accurate than bot}} of them.

Ad (v): In one quarter of the distributions, mainly with p near .5, the narrow strip
k, < k < pu was not narrow enough. The statement “Bomol is always better than
Bolshev” thus admits still less exceptions than would follow from (v).

Ad (vi): Again one quarter of the distributions, mainly for p near .5 and small n,
showed a too small k. : thus values k > k5 existed for which Wise was still better
than Bolshev. In almost half of the distributions (again for the larger p) the wide strip
k. < k < k, was somewhat too wide, i.e. for some £ Wimol was better than Bolshev
while it was not predicted to be.

Ad (vii): For n < 50 most distributions exhibited one value for & where the Poisson
approximation was not conservative. But this was just an internal contradiction 1n
rule (vii), as it always was a value k < u for which nevertheless B, > .5. Nearly all
these cases had .5 < B, < .6 and conservatism in the small tails was maintained. For

very small n and p it may happen that some B, > .9 is overestimated for a k < u, but
there the error will be small as p 1s small. “

Ad (viii): Only for seven distributions, with small n, just one value of k existed for
which Mep was not conservative but had a tail error just below zero. This is no viola-
tion of rule (viii) as it always happened for max (O,u—1) < k < L.

Summarizing these findings we may say that the conclusions of table 6 give a fairly
good picture of the accuracy of the various approximations by Poisson distribution
functions, though they are based on expansions of their parameters with terms of
higher order neglected.

Tables 7-13 give the relative tail accuracy (2.2) for a set of triplets (n, p, k) which
were selected to give a good impression of what happens for the many other triplets
for which accuracies were calculated by the computer.

Each line of the tables corresponds to one value of k£ 1n the distribution with the
indicated parameters » and p. Whenever B, < .5 the line gives a < sign, k, B, =

= P{x < k}, and 100(4, — B,)/B, for eight approximations 4, of which the formula
number in this paper i1s indicated at the top of each table. For B, > .5 the line gives
a > sign, k+1, 1—B, = P{x > k+1} and 100[(1—4,)—(1—B,)]/(1 —B,) for the
same eight A4,. The relative error of the reversed Bomol (4.2) 1s not printed when it
coincides with the ordinary Bomol. |

Consider for example the binomial distribution with » = 100 and p = .1 in table
10. The second line tells us that P{x < 4} = .0237 is overestimated by the normal
approximation with a relative error of 40.76 percent, so this approximation would
give the value (140.76)-(.0237) = .0334. The Poisson approximation with parameter

STATISTICA NEERLANDICA 23 (1969) NR. 1 34



np overestimates B, by 23.37 percent, so it gives (123.37)-(.0237) = .0292. Its correc-
tion by the first Gram-Charlier term leads to an underestimation by .56 percent,

Bolshev overestimates by .43 percent and the other approximations are still consid-
erably better.

In table 12 one can see that even for n = 100 and p = .5 the classical normal ap-
proximation 1s less accurate than Bomol with reversal. The Gram-Charlier correction
is not very adequate for p near .5, but Bolshev and especially Bomol and Mep present
a spectacular gain in accuracy.

Bomol and Mep are both rather accurate. Bomol is slightly easier to compute and
1S better near p = .5, where in general Poisson-type approximations have low ac-
curacy. Mep has the advantage of being a little bit conservative, and it does not need
a complicated reversal rule for right hand tails. From our study Mep emerges as a
very accurate and relatively simple Poisson-type approximation.. Even if a bit of the
enormous gain in accuracy is lost again when roughly interpolating in a Poisson

table, 1t seems very desirable to use Mep in stead of the classical Poisson approx-
imation.
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Table 7. Relative errors in percentages of the binomial tail, cf. (2.2)

Region  Tall Normal Poisson GR.CH Bolshev Wise Wimol  Mep Bomol  RVBML

(3.8) (3.1) (3.2) (3.5) (3.6) (6.2) (6.4) (4.1) 4.2)
= 10 P - .0l

N 0956 + 648 — 48 — 00 -~ 00 + .00 + .00 — .00 .00

- 2 10043 ~99.90 + 967 + A3 + 28 + 28 4+ 19 + .02 + .25

N 4013 +2461 -~ 194 - 05 -~ 02 —- 00 - 00 — .00 -+ .01

~ 9 0861 ~14.79 + 472+ 32+ 24 4+ 27 4+ 19 - .01+ .18

3 0115 ~83.88 42507 + .36  + 1.18 + 1.24 + 68 + .12  + .89

~ 3 .0010 ~-99.34  +7031 — 6.48 4+ 347 + 355 4+ 1.60 + .53 4 2.75

N = 10 = .10

S 3487 —~1422 + 551 + 23 4+ 10 —- 00 - 00 + .00 — .04

2 2639 +13.33 4+ 13+ A3+ A3+ 26 + .9 + .00 + .13

> 3 0702 —18.90 + 14.40 + 1.30 - .98 + 1.20 +- 71 + .08 + .63

4 0128 —67.14 +48.40 + .48 + 3.17 + 3.48 - 1.72 + .42 -+ 2.08

> 5 0016 ~93.12 +123.85  —16.78 =779 + 822 4+ 3.44  + 1.39 4+ 5.45

N =10 P =.20

<0 1074 + 975  +2604 + 83 + 93 — .00 — .00 07 — .39

< 1 3758 - 785 + 803 + 83 + 25 — 34 — 27 + .03 — .19

> 3 13222 + 748 + 35 + 35 + 35 %105 + .70 + .02 + .35

= 4 1209 — 2.51 + 18.20 + 3.27 + 2.09 3.20 + 1.81 + .24 + 1.18

> 5 0328 —26.65 +60.56 + 5.353 + 6.18 -+ 7.77 + 3.79 + .95 4+ 3.40

= 6 0064 —55.59 +160.05 — 9,93 + 14.64 +16.85 + 7.17 + 2.86 -+ 8.53

N = 10 P = .30

=< ( 0282 + 49,57 +76.25 — 3.06 + 3.80 — .00 — .00 + .43 — .38

£z ] .1493 + .67 4+ 33.38 + 3.37 + 1.98 — 77 — .65 + .23 — 67

= 2 3828 — 4.64 +10.56 + 1.78 + .54 — 1.30 — .94 + .08 — .40

= 4 3504 + 4.18 + .68 + .68 + .68 + 2.71 + 1.70 06 + .68

= 5 .1503 + .03 +22.94 + 6.16 -+ 3.82 + 6.96 + 3.83 + .56 -+ 2.04

22 6 0473 ~ 10.77 +77.23 +13.35 +11.03 + 15.63 + 7.58 + 2.04 + 5.58 + 1.93

= 0106 —25.77 +216.35 + 2.19 +26.37 +33.08 +14.14 + 5.89 +13.92 + 1.41

= 8 0016 —40.24 +648.53 —166.52 -+ 60.29 +70.76 +26.55 +15.60 +33.50 — .98

Table 8. Relative errors in percentages of the binomial tail, cf. (2.2)

Region  Talil Normal Poisson GR.CH Bolshev Wise Wimol Mep Bomol RVBML
(3.8) (3.1) (3.2) (3.5) (3.6) (6.2) (6.4) (4.1) (4.2)

N =10 P = .40

< 0 0060 +97.37 202.91 —39.42 11.43 .00 + .00 + 1.75 — 3.40

<1 0464 + 14.96 +97.55 + 2.73 + 7.31 — 1.44 — 1.26 + 1.10 — 1.79

< 2 1673 — . .50 +42.33 + 7.29 + 3.76 — 2.62 - 2.01 + .60 — .95

< 3 .3823 — 2.31 +13.39 + 3.17 + 1.03 — 3.30 — 2.25 + .20 — .67

= 5 .3669 + 1.78 + 1.16 + 1.16 + 1.16 + 5.77 -+ 3.51] + .15 + 1.16

= 6 1662 + .13 +29.25 10.45 + 6.54 +13.74 -+ 7.44 + 1.23 + 3.44 — .83

I .0548 — 2.68 +102.10 +25.99 +19.22 +30.18 +14.54 + 4.32 + 942 —1.29

= 8 0123 — 2,93  +315.90 +25.34 +48.53 -+ 66.09 +28.04 +12.52 +24.41 —2.97

=z 9 0017 + 9.54 +1173.36 —246.19 -+126.68 +159.78 +58.34 +35.83 +65.47 —6.01

N =10 P = 45

< 0 0025 +117.22 +338.58 —105.48 + 18.76 — .00 — .00 + 3.25 — 4.87

S 0233 +21.53 +162.71 — 6.56 +12.67 — 1.91 — 1.69 + 2.15 — 2.68

s 2 0996 + 2.26 +74.35 +10.80 + 7.35 — 3.53 — 2.78 + 1.29 — 1.40

< 3 2660 — 1.33 +28.66 -+ 7.26 3.07 — 4.62 — 3.26 + .60 — .88

= 5 4956 + .89 — 5.59 — 1.28 — .08 + 5.04 + 3.20 — .06 + .85

=z 6 2616 + .36 +13.57 + 6.23 + 4.18 + 12.52 + 7.13 + .80 + 2.60 —1.0

= 7 .1020 — .18 +65.64 +23.25 +135.21] + 28.25 +14.39 + 3.50 + 7.55 — 1.3

= 8 0274 + 3.19 +216.10 +46.97 +41.69 +62.94 +28.34 +10.97 +20.50 —2.55

= 9 0045 +22.21 +794.16 —-16.20 +113.33 +153.77 +59.70 +32.61 +56.78 —4.94

N = 10 P = .50

< 0 0010 +126.63 +589.97 —272.49 +30.32 — .00 — .00 + 5.81 — 6.62

SO 0107 +25.01 +276.34 — 37.28 +21.25 — 2.48 — 2.23 + 3.99 — 3.76

< 2 0547 + 4.09 +127.94 +12.43 +13.31 — 4.65 — 3.76 -+ 2.55 — 1.96

< 3 1719 — 28 + 54.20 +13.36 6.77 — 6.25 — 4.57 + 1.39 — 1.11

< 4 3770 — .28 + 16.86 5.22 + 1.89 — 7.01 — 4.63 + .46 — .97

2 6 3770 — 28 -+ 1.88 -+ 1.88 .88 +11.11 + 6.64 -+ .34 + 1.88 — .97

= 7 1719 — .28 +38.37 +17.10 +11.06 +25.97 + 13.96 + 2.64 + 5.87 —1.11

=z 8 0547 + 4.09 +143.88 +48.30 + 34.39 +59.15 + 28.25 + 9.36 +16.92 —1.96

= 9 +533.89  +78.13  +98.87 +146.49  +60.54  +29.33 48.80 —3.76

0107 +25.01
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Table 9. Relative errors In percentages of the binomial tail, cf. (2. 2)

Region Tail Normal Poxsson Gr CH Bolshev Wlse Wimol Mep Bomol RVBML
(3.8) (3.1) (3.2) (3.5) (3.6) (6.2) (6.4) (4.1) (4.2)

N = 40 P = .01

= 1 3310 +31.97 — .41 — .00 - .00 + .00 + .00 — .00 + .00

= 2 0607 —33.76 -+ 1.34 -+ .02 + .01 + .02 —+ .01 + .00 + .01

= 3 0075 —94.35 + 5.72 — .00 4+ .06 + .07 + .04 + .00 + .05

N = 40 P = 10

< 0 0148 +120.17 +23.91 — .87 + .39 — .00 — .00 + .0l — .18

< 1 0805 4+ 16.58 +13.80 + .14 + .25 — .06 — .06 + .0l — .10

s 2 2228 — 3.68 4+ 6.86 + .29 + .12 — .11 — .09 + .00 — .05

=< 3 4231 — 6.39 + 2.44 + .13 4+ .03 — .14 — .09 + .00 — .04

= 5 3710 + 6.76 + .05 + .05 4+ .05 + .24 + .15 + .00 + .05

= 6 2063 + 4.04 + 4.17 + .38 + .21 + .48 + .26 + .0l + .10

= ] .0995 — 5.73 +11.21 + .74 + .48 + .84 + .42 + .02 .20

= 8 0419 —22.33 +22.03 + .72 + .91 + 1.36 + .62 + .05 .38

= 9 0155 — 42 .87 -+ 37.87 — .55 + 1.53 + 2.07 | 87 + .09 .66

= 10 0051 —63.00 + 60.62 — 4.71 + 2.37 - 3.01 + 1.17 .16 1.07

= 11 0015 —~79.14 +93.22 —14.81 + 3.50 . + 4.24 + 1.53 + 27 + 1.66

N = 40 P = .30

< 4 0026 +88.61 +196.79 —51.97 + 8.44 — 2.20 — 1.76 + .79 — 1.83

< 6 0238 21.50 02.85 — 3.67 + 5.25 — 2.97 — 2.14 + .49 — .90

< 8 J110 + 2.33 39.65 + 4.24 + 2.68 — 3.35 — 2.19 + .23 — 42

< 10 .3087 — 2.06 12.47 +4- 2.28 + .84 — 3.27 — 1.95 + .09 — .24

= 13 4228 + 2.06 4+ .29 + .29 + .29 + 3.72 + 2.02 + .03 -+ .29

= 15 1926 + .85 18.40 + 4.30 + 2.32 -+ 7.81 + 3.87 -+ .25 + .82

= 17 0633 — 4.83 + 59.98 + 8.53 + 6.53 +14.59 + 6.56 + .78 + 2.09

= 19 0148 —15.70 +153.21 — 2.40 +14.02 +25.38 +10.33 + 1.83 + 4.65

= 21 0024 —30.58 +379.37 —100.86 +26.63 +42.45 +15.49 + 3.74 + 9.35

N = 40 P = .50

< 10 0011 +19.88 873.40 —435.73 +46.01 —16.65 —12.34 + 6.88 ~ 2.32

< 12 0083 + 6.73 370.34 —54.65 +30.42 —18.10 —12.68 + 4.75 — .82

< 14 .0403 + 1.61 +159.92 +15.90 18.21 —18.61 —12.30 + 2.99 — .14

< 16 1341 + .07 -+ 64.87 +16.72 + 9.12 —18.00 —11.20 + 1.58 — .08

< 18 3179 — .09 +19.98 -+ 6.70 + 2.91 —16.16 — 9.41 + .54 — .34

= 22 3179 — .09 12.08 + 5.42 + 3.29 +24.11 +12.50 -+ .62 -+ 1.55 — .34

= 24 .1341 + .07 +58.48 +21.07 +12.59 +46.47 +21.91 + 2.52 + 4.44 — .08

= 26 0403 + 1.61 +178.06 +39.92 +31.40 +86.43 +36.24 + 6.41 +10.57 — .14

= 28 0083 + 6.73 +3532.72 — 3.31 +68.44 161.92 58.40 13.86 +22.71 — .82

= 30 0011 +19.88 +1864.34 —670.91 +145.53 +319.84 ---94 43 +27.99 +46.69 — 2.32

Table 10. Relative errors In percentages of the binomial tail, cf. (2. 2)

Reglon Taﬂ_ Normal Poisson GR. CH Bolshev Wise Wimol Mep Bomol RVBML
(3.8) (3.1) (3.2) (3.5) (3.6) (6.2) (6.4) (4.1) (4.2)

N =100 P = .01

< O 3660 —15.95 + .50 + .00 + .00 — .00 — .00 + .00 — .00

= 2 2642 +16.43 .00 - .00 .00 .00 .00 .00 + .00

= 3 0794 —17.06 + 1.17 + .01 + .01 + .01 + .01 + .00 + .00

= 4 0184 ~67.39 + 3.34 + .01 + .02 + .02 01 + .00 + .01

= 5 0034 —93.65 + 6.63 — .07 + .05 + .05 + .02 + .00 - + .03

N =100 P = .05

< 0 .0059 +228.92 -+ 13.81 — .42 + .11 — .00 — .00 + .00 — .05

< 2 1183 + 6.27 + 5.40 + .06 + .05 — .03 T — .02 + .00 — .02

< 4 4360 — 6.13 + 1.03 -+ .03 -+ .01 — .04 — .02 + .00 — .01

= ] 2340 + 4.98 + 1.64 + .07 +. 04 + .11 + .06 + .00 + .02

= O 0631 —14.17 ~+ 7.93 + .17 + .16 + .26 + .12 + .00 + .06

= 11 0115 —49.37 +19.38 — .38 + .38 + .53 + .21 + .01 + .15

= 13 0015 —80.22 + 37.87 —3.17 + .74 + .93 + .34 + .03 + .32

N =100 P = .10

< 2 0019 +219.28 +42.39 — 4,29 + .69 — .11 — .09 + .02 — .25

< 4 0237 +40.76 +23.37 — .56 + .43 — .19 — .14 01 - .13

=< 6 1172 4+ 3.86 +11.08 + .32 + .22 — .24 — .16 01 — .06

= 8 3209 — 3.84 + 3.72 + .21 + .07 — .25 — .15 - .00 —. 03

= 12 2970 + 3.90 + 2.11 -+ .19 + .10 + .45 + .23 -+ .00 + .04

= 14 1239 — 1.78 + 9.41 + .58 + .34 + .85 + .41 +. 01 + .10

= 16 03996 —16.33 +22.19 + .43 + .76 + 1.45 + .63 -+ .03 + .22

= 18 0100 —37.95 +42.67 —1.97 +1.40 +2.27 + .92 06 + .44

= 20 0020 —61.03 +74.59 —10.29 2.31 3.38 1.27 + .11 + .78

N =100 P = .20

< 9 .0023 +85.65 +114.07 —23.02 3.67 —1.70 —1.23 + .21 — .74

=< 11 0126 +33.55 -+ 70.08 — 5.61 +2.62 — 1.89 —1.28 -+ .15 — .45

< 13 .0469 +11.02 +40.96 + .50 +1.72 —1.97 —1.26 + .10 — .26

< 15 1285 + 1.39 +21.79 +1.70 -+ .99 —1.94 —1.17 + .06 — .15

< 17 2712 — 1.92 + 9.53 +1.13 + .43 — 1.80 ~1.02 4+ .03 — .09

< 19 4602 — 215  + 219 + .26 + .06 ~1.54 ~ .83 + .00 — .07

= 23 2611 4+ 1.88 + 7.02 +1.13 + .55 +2.92 +1.45 + .03 + 17

= 25 1314 — .81 -+ 19.35 +2.38 +1.34 +4.50 +2.12 + .09 + .34

= 27 05358 — 6.72 -+ 39.50 -+ 2.64 +2.55 +6.58 +2.95 + .18 + .62

> 29 10200 ~16.12  +71.49 —1.02  +4.27  +925  +3.93 + .31 +1.08

= 31 0061 —28.50 +122.38 —15.32 +6.58 +12.61 +5.07 + .51 +1.75

= 33 0016 —42.66 +204.91 —55.48 -+9.61 +16.82 +6.40 - +2.71



Table 11. Relative errors in percentages of the binomial tail, cf. (2.2)

GR.CH Bolshev

Wise

Bomol

RVBML

egion Tail Normal Poisson Wimol Mep
(3.8) (3.1) (3.2) (3.5) (3.6) (6.2) (6.4) (4.1) (4.2)

N =100 P = .30

= 17 0022 +47.42 +236.13 —70.17 + 10.53 — 6.95 — 4,71 .89 ~1.15

= 20 0165 +15.92 +114.33 — 7.87 + 6.68 — 7.14 — 4.55 + .57 — .56

< 23 0755 + 331 + 51.79 + 441 + 365 — 684 — 411 4 .32 ~ .25

< 26 2244 — 84 4+ 19.13 + 336 + 1.47 — 6.05 — 3.42 -+ .13 — .15

< 29 4623 —~ 125 + 289 + .54 + 13 — 482 — 256 -+ .01 ~ .14

2 33 2893 + 1.18 + 905 + 2.22 + 1.11 + &8.15 + 4.06 + .11 + .35

> 36 d161 — .90 + 35.58 + 6.31 + 3.71 -+ 14.25 + 6.64 38 + .90

= 39 .0340 — 6.39 + 90.84 + 5.48 + 8.23 -+23.09 -+ 10.00 -+ .87 +1.99

42 0072 —15.73 +208.17 —26.50 +15.36 +335.65 +14.26 +1.69 +3.89

2 45 0011 —28.38 +477.36 —193.13 +26.11 +53.47 +19.58 +2.96 +6.95

N = 100 P = .40

== 25 0012 +29.44 +536.36 —241.70 26.29 — 18.25 —12.28 +2.96 —1.12

s 28 0084 +12.09 +248.41 —37.36 + 17.46 — 18.17 —11.68 +2.04 ~- .41

< 31 .0398 + 3.81 +114.62 -+ 6.99 + 10.50 —17.35 — 10.64 + 1.27 — .09

< 34 .1303 + .34 + 48.75 9.65 + 3.30 —13.73 — 9,18 + .67 — .04

= 37 .3068 — .62 + 15.59 4+ 4.19 + 1.76 —13.32 — 7.37 + .23 — .14

= 4] 4567 + .58 + 30 4+ .30 + .30 +12.20 + 6.37 + .04 + .30

= 44 2365 + .40 + 19.97 + 6.17 + 3.24 +22.28 +10.88 + .45 + .94

= 47 .0930 — .75 + 63.60 +14.26 + 8.94 +37.58 +17.03 +1.26 +2.28

= 49 .0423 — 2.21 +118.60 +16.04 14.86 +51.80 +22.19 +2.12 +3.75

N =100 P = .45

< 30 0015 +15.94 +655.15 —281.11 +36.22 —26.88 — [8.05 +4.61 — .29

= 33 .0098 + 6.56 +292.82 —35.27 +23.76 —26.33 — 16.98 +3.17 + .23

< 36 0429 + 2.02 +131.80 +12.73 +14.15 —24.90 —15.37 -+ 1.98 + .33

= 39 .1343 + .16 + 3535.21 +13.06 + T.11 — 22.49 —13.24 +1.04 + .16

< 42 3087 — .32 + 17.53 4+ 5.41 + 2.37 —19.09 —10.65 + .36 — .10

=z 46 4587 + .28 -+ 39 4+ 39 + .39 +17.52 + 9.19 + .06 + .39

> 49 .2404 + .18  + 22,56 + 793 -+ 427  +32.14 +1571 + .68 +1.29

= 52 .0960 — .28 + 72.70 +19.21 +11.86 + 54.99 +24.73 +1.93 +3.16 +1.47

= 54 .0441 — .77 +137.78 +23.80 +19.85 +76.94 +32.45 +3.24 +35.20 +2.19

= 57 0106 — 1.62 +347.03 —11.27 +38.28 +125.49 +47.26 +6.18 +10.00 +3.10

= 60 0018 — 2.18 +924.69 —312.57 +68.75 +205.01 +67.22 +10.75 +17.81 3.62

Table 12. Relative errors in percentages of the binomial tail, cf. (2.2)

Region  Tail Normal Poisson GR.CH Bolshev Wise Wimol  Mep Bomol RVBML
(3.8) (3.1) (3.2) (3.5) (3.6) (6.2) (6.4) (4.1) (4.2)

N =100 P = .50

< 35 .0018 + 6.08  +821.86 —336.39 +50.11 —37.42 —2542 + 7.1l 1.16

< 38 0105 + 224  +351.61 — 32.09 +32.34 —36.35 2378 + 4.89  + 1.31

L 4] 0443 + .57  +153.40 + 20.27 +19.03 —34.25 —21.49 + 3.05 + 1.03

< 44 1356 + .03 + 6298 + 17.36 + 948  —30.99 —18.54 + 1.60 + .52

< 47 13086 ~ 04 + 1977 + 68 + 316 —26.50 —1500 + .56 — .02

> 51 4602 - 01 4+ 49 + 49 + 49  +2449 +1298 + .09 + .49 — .31

= 54 2421 —~ .04 + 2562 + 10.10 + 561  +4571  +22.38 + 1.03 + 1.78  + .15

> 57 0967 + .13  + 84.00 + 25.59 +1574  +80.39 +3574 + 293 + 4.43 + .70

> 59 0443 + 57  +162.66 + 34.17 +26.64 +115.29 +4749 + 492 + 732  +1.03

> 62 0105 + 224  +430.83 -~ 1.21 +52.68 +197.46 +70.86 + 9.45  +14.15  +1.31

> 65 .0018 + 6.08 +1241.99 —397.79 +98.19 +344.77 +104.01 +16.61  +2549  +1.16

N =300 P = .01 _

< 0 0490 +49.75 + 1.52 — .00 -+ .00 — .00 — .00 + .00 — .00

< 1 1976 - 284 + 76 + .00  + .00 - .00 —~ .00 4+ .00  — .00

= 2 4221 — 8.58 + .27 + .00 + .00 — .00 — .00 + .00 — .00

= 4 3528 + 9.38 .00 + .00 + .00 -+ .00 + .00 + .00 + .00

=2 5 1839 + 4.43 + .46 + .00 + .00 + .00 + .00 + .00 + .00

= 6 0829 —11.42 + 1.22 + .01 + .01 + .01 + .00 + .00 + .00

= 7 0328 —35.48 + 2.31 + .00 + .01 + .01 + .01 + .00 + .00

=z 8 0115 — 60.68 + 3.75 — .01 + .02 + .02 + .01 -+ .00 + .01

= G 0036 —80.35 + 5.56 — .06 + .03 + .03 + .01 + .00 + .01

= 10 0010 —92.06 + 1.76 — .16 + .04 -+ .04 + .02 + .00 02

N =300 P =.10

< 15 0013 +107.72 +53.76 —7.04 + .96 — .58 — .40 + .03 — .20

< 18 0097 +38.41 +33.15 —1.83 + .66 — .62 — .40 + .02 — .11

< 21 0458 4+ 11.20 -+ 18.86 + .03 + .40 — .61 — .37 + .01 — .06

< 24 .1439 + .70 + 9.26 + .38 + .21 — .57 — .33 + .01 — .03

< 27 3224 - 2,22 +  3.25 + .20 + .07 — .49 — .27 + .00 — .02

= 32 3775 + 2.36 + 1.02 + .09 4+ .05 + .56 + .28 + .00 + .02

=z 35 1914 + .99 - 5.93 + .40 + .19 + .93 + .45 + .01 + .04

2 38 0779 — 4,39 +14.31 + .55 + .44 + 1.43 + .66 + .01 + .08

= 41 0254 —14.71 +27.26 — .20 + .80 +2.06 + .90 + .03 + .15

= 44 0066 -29.50 +-46.43 — 3.28 +1.30 +2.84 +1.19 + .04 + 27

2 47 0014 - —~46.79 +74.29 —-11.48 +1.96 +3.78 +1.31 + .07 + .44
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Table 13. Relatwe errors In percentages of the bmomlal tail, cf. (2.2)

Region Tail Normal Poxsson GR CH Bolshev Wise Wimol  Mep Bomol RVBML
(3.8) 3.1) (3.2) (3.5) (3.6) (6.2) (6.4) (4.1) (4.2)

N =300 P = .30

= 60 0012 29.04 +315.14 120.04 +13.61 — 17.72 —10.95 +1.10 — .42

w70 0061 + 14.71 +178.91 - 31.51 + 9.76 ~— 16.82 —10.10 + .81 — .18

= 14 0239 -+ 6.43 +100.23 - 2.10 -+ 6.56 —15.58 — 9.08 + .55 — .06

< 78 0723 + 1.95 - 5350 + 4.89 + 4.0l —14.01 — 7.92 4+ .35 — .01

= 82 1726 - .13 + 25.45 4.24 + 2.07 —12.11 — 6.63 + .18 — .02

= 86 3321 — .75 +~ 894 + 1.84 + .73 — 9.96 - 5.27 -+ .07 — .05

> 9] 4716 + 71+ 09 + .09 + .09 + 836 + 437 + .01 + .09

2> 935 28335 + .67 + 1035 + 237 + 1.12 +13.33 + 6.63 + .10 + .25

> 99 1423 — 17  + 2936 + 533 -+ 2.89 +20.06 + 9.45 + .27 + .33

= 103 0590 — 2.23 + 62.46 -+ 648 4+ 5.33 +28.39 +12.79 + .33 + .99

=2 107 .0200 — 35.86 +119.73 —~ 142 + 9.38 + 38.88 +16.70 + .90 +1.69

= 1] 0055 —11.24 +221.38  — 38.25 4-14.50 -+352.04 +21.21 +1.40 +2.70

= 115 0012 — 18.35 +409.92 —-158.74 +21.26 +68.54 +26.39 +2.06 +4.08

N = 300 P = .40

< 94 0012 +14.11  +599.70 —274.87 -+30.43  —3994 —25.59  +3.33 + .71

< 100  .010.. + 5.49  +239.32 - 27.07 +18,40 —36.82 -22.69  +2.13 + .70

< 106  .0550 + 1.39 4+ 9492 + 1077 + 9.70  —32.53 —19.18  +1.18 - .47

< 112 .1886 — 13+ 3219 + 7.86 + 3.86 —-27.00 —15.12  + .49 + .16

< 118  .4314 35 + 466 + 131 + .50 —-2037 —10.74 + .06 — .09

> 125 .2970 + .32+ 1313 + 410 + 2.05 31.33 +15.41  + .27 + .50

> 131 .1083 — 32+ 5550 + 12.55 + 7.46  +56.54  +25.60 + .99 +1.51

> 136  -.0345 —~ 1.72  +133.80 + 12.55 +15.15 +87.78  +36.64  +2.01 +3.01

> 141  .0082 — 4.14  +304.95 — 33.82 +26.81 132.82  +50.45  +3.50 +5.34

> 146  .0014 — 7.66  +714.59 —289.49 +43.99 198.78  +67.64  +5.57 +8.77

N =300 P = .50

< 123 0011 2.43 4112693 —556.75 -+63.29 -~ 67.97 —47.72 + 8.66 -+4.44

< 128 0065 1.01 +473.69 — 75.54 +41.10 —64.78 —43.99 +6.05 +3.47

< 133 0283 + .32 +207.73 4+ 16.99 +24.87 —60.58 —39.53 +3.90 +2.41

< 138 0921 + .05 + 89.26 -+ 21.73 +13.34 —355.12 ~—34.32 +2.20 +1.39

< 143 2265 — .01 + 3299 + 11.17 + 5.58 —48.20 —28.36 + .96 + .52

< 148 4313 — .00 + 587 + 2.12 4+ .90 —39.73 —21.84 + .16 — .09

= 154 .3431 — .01 + 11.56 -+ 472 + 2.54 +57.43 +29.09 + .45 + 77 + 12

= 159 1632 — .00 + 48.07 + 16.54 + 9.20 +102.14 +46.86 +1.64 +2.23 + .84

= 164 0594 + .12 +128.32 + 29.58 +20.81 +175.23 +71.30 + 3.65 +4.79 1.78

= 168 0216 + .42 +263.70 + 2349 +35.17 +267.46 +97.10 +6.00 +7.90 2.62

= 172 00635 + 1.01 +548.86 — 59.08 +56.05 +409.60 +130.20 9.17 +12.25 + 3.47

= 177 0011 + 2.43  +1433. 19 —658.20 +95.96 +71048 +4185.48 +14.56

+19.97 +4.44
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