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ow to poison Poisson 
when approximating binomial tails * 

by w. MOLENAAR 

Summary In these days some sportsmen are given dangerous drugs in order to stimulate them 
into still higher efforts. The present paper wants to add some poison to the classical 

approximation of a binomial by a Poisson distribution. The relatively harmless drttg of a little extra 
calculation shall be seen to result in a much better accuracy. 

This paper reports both on theoretical considerations, following from series expansions of Poisson
type parameters, and on extensive numerical investigations of accuracy by means of an Electrologica 
X8 computer. The main conclusion is that the probability of at most k successes in n Bernoulli trials 
with success probability p < .5 can be very closely approximated by the probability of at most k 
events in a Poisson distribution with expectation not np but 

(12-2p)n-7k 
(l2-8p)n-k+k/n np. 

In the case p > .5 one should make p < .5 by a reversal, i.e. the interchanging of successes and 
failures, before the application of a Poisson-type approximation (with one exception mentioned in 
section 4). For the probability of at least j successes one should approximate the complementary 
probability of at most j-1 successes. 

After an introductory section 1 and a discussion of measures of accuracy in section 2, the existing 
Poisson-type approximations are treated in section 3. The fourth section introduces a new parameter 
and discusses the advantages of reversal in otl1er situations than p > .5. In section 5 a series expan
sion for the exact Poisson parameter is derived. Two new parameters, among which is ,, are intro
duced in section 6, where the series expansions for parameters given in table 4 lead to conclusions 
about the variot1s approximations, summarized in table 6. The final section 7 gives some numerical 
results, which confirm to a large extent the conclusions from the asymptotic expansions. 

1. Introduction 

Throughout this paper the random variable ~ denotes the number of successes in n 
independent trials with probability p of success. We introduce the notations 

µ= np, 

q 1-p, 

bi= P{~ =j} (1.1) 

k 

The binomial distribution is most frequently used for the calculation of probabilities 
of exceedance in hypothesis testing, and for the determination of confidence bounds 
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for a population proportion from a sample. There exist tables of Bk .such as ORD

NANCE CORPS (1952) for n = I (1) 150, p = .01 (.01) .50, and WEINTRAUB (1963) for 
small values of p. Even within the ranges of these tables approximations are often 
used, the tables being too bulky to be always available and interpolation being diffi
cult. 

Approximation by a normal distribution is most attractive, as anyone possesses 
the necessary tables. However, the accuracy of the classical normal approximation is 
sometimes poor, and more acctirate normal approximations usually require substan
tial calculations. The present paper deals only with Poisson approximations. Some of 
them are accurate even near p = .5. When no cumulative Poisson table like ·GENERAL 

ELECTRIC COMPANY (1962) or MOLINA (1945) is available, the necessary values may 
be found from a chi-square table like table 7 of PEARSON and HARTLEY (1954) or from 
a nomogram (VERENIGING VOOR STATISTIEK nomogram 8.1). 

Throughout this paper we give approximations for Bk = P{:5 ~ k }, and with one 
exception in section 4 we shall assume that p ~ .5. For the approximation of 
P{K ~ j} with p ~ .5 one approximates Bk for k = j- I and subtracts the result 
from 1. Approximation of Bk for p > .5 takes place by substitution of 1-p for p and 
of n-k-1 fork in the given formulae followed by subtraction from 1: at most k 
successes means at least n-k failures. Similarly P{~ ~ j} for p > .5 is found by 
replacing p by 1-p and k by n-.i, without subtraction. The explicit statement of 
these simple rules may avoid misunderstandings. 

We call Bk a left hand tail if it does not exceed .5; if it does, then 1- Bk = 
P{J ~ k+ 1} is called right hand tail. Thus our binomial tail min (Bk, I Bk) is 

never larger than .5. 
When comparing approximations we shall work with the exact cumulative Poisson 

values, disregarding possible interpolation errors which may arise if the expectation 
lies between two values for which the distribution is tabled. 

Some personal taste enters in the evaluation of the computational effort involved 
in a certain approximation. We take the view that it is desirable to avoid the use of 
special tables, such as 2 arcsin x, the correction y(y,p) of BOLSHEV (1961) or the 
integral /P(2/3, 2/3) of BORGES (1969). Furthermore, addition of a not too simple 
correction term to a cumulative Poisson distribution function with a simple para
meter is believed to be more labo.rious than directly looking up in a table the cumu
lative Poisson for a somewhat more complicated parameter. 

It is common knowledge that the Poisson distribution with expectation µ np 
approximates the binomial distribution for small p. However, both tails of the bi
nomial are rather seriously overestimated unless pis very small indeed, as is illustrated 
in table 1. 

The examples of table 1 have been selected to show that the approximated probabili
ties can be larger than some customary significance level while the actual. probabilities 
are not. As is well known, this makes the Poisson approximation conservative in the 
sense that in hypothesis testing some significant results are not recognized as such, 
but no nonsignificant result is ever called significant. 
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Table 1 

n p Binomial tail Poisson (_µ) approximation 

5 .05 P{~ > 2} .023 .026 
30 . l P{~ 0} .042 .050 
40 .1 P{~ > 8} .042 .051 
40 .2 P {~ > 13} .043 .064 
70 .1 P {J'. > 12} .044 .053 

100 . 1 p {J'. < 4} .024 .029 
100 .2 P {J'. < 13} .047 .066 
125 .05 P{~ > 2} .048 .052 

• 

Some textbooks qualify the Poisson approximation as good when n is large and p 
is small. Actually the value of n has little influenc:!. HALD (1952) says: ''It is generally 
considered justifiable to apply the Poisson distribution as approximation to the bi
nomial distribution when p < .1 ''. The two examples with p = .05 in table 1 exhibit 
relative errors of 17 and 9 percent, and show that even for such a small p correctness 
of two significant figures is far to seek. 

2. Measures of accuracy 

There are various ways to evaluate the accuracy of an approximation. Suppose each 
binomial term bi is approximated by a i• Let us put Ak = .L-1:.=o a i• Some criteria of 
accuracy found in the literature, giving one value for each binomial distribution, are 

• 
J 

1nax l(Ak-Ah)-(Bk-Bh)l 
h,k 

(PROHOROV, 1953; LECAM, 1960) 

(HODGES and LECAM, 1960) 

(RAFF, 1956) 

(2.1) 

Only RAFF's paper deals specifically with the numerical accuracy of approximations, 
the other references being of a more theoretical character. A criterion of FREEMAN 

and TU KEY ( 1950), based on the normal deviates corresponding to Ak and Bk, is not 
suitable for us, as we work with some very skew distributions. All criteria in (2.1) 
concentrate the attention on the approximation of the middle part of the distribution, 
as the values for which the maximal absolute error is attained will rarely lie in the 
far tails. But practical applications of the binomial distribution will almost always 
concern these tails, either for hypothesis testing or for confidence bounds. Accurate 
approximation near the customary significance levels is more important than a low 
absolute error in the middle part of the distribution. 

In this study we shall not try to judge approximations of a binomial distribution 
according to one criterion. We shall consider the relative tail error, defined as 

100 Bk-A, . 
1-

(2.2) 
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for all k such that .001 < Bk < .999. Approximations with a low Ek in the regions 
.005 ~ Bk ~ .05 and .95 ~ Bk ~ .995 are preferred, unless their performance in the 
middle region .05 < Bk < .95 is extremely bad. 

3. Better approximations previously published 

In section 1 the classical Poisson approximation 

(µ = np) (3.1) 

was found to overestimate both binomial tails even for relatively smallp. We may ask 
what better parameter than µ a Poisson distribution should have, or what other 
correction should be applied, in order to obtain a more satisfactory approximation. 

The earliest answer is given by the Gram-Charlier expansion (see e.g. RAFF (1956)): 

k j k-µ)p 
j=O J. 2 

k 
µ -µ 
k ! e . (3.2) 

The well known equality of binomial tail and incomplete beta integral, and also of 
Poisson tail and incomplete gamma integral (both specified in section 5) have been 
combined by WISE (1946, 1950) and by BoLSHEV and others (1961) with series ex
pansion techniques, with the results 

j = o j ! · 6(2n - k )2 k ! 

,. where /J = (2n-k)p/(2-p) (BOLSHEV c.s.) and 

-y 
e , 

(3.3) 

(3.4) 

where y = -(n-½k) log q (WISE). The approximations are remarkably accurate: 
e.g. for n = 100 and p = .2 the relative error in binomial tails of at least .00 I is less 
than¼ percent for (3.3) and less than I percent for (3.4). But the laborious calculations 
make them unattractive. 

The use of (3.3) and (3.4) without their correction terms boils down to the use of 
f3 or y, which are simple functions of n, p and k, instead of µ when looking up the 
probability of at most k events in a Poisson table. We shall consider 

(2n-k) p 
where /3 = · 

2-p ' 
(3.5) 
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,,s well 11s (3 .. 2). ~I'he l,tt.ter asks f<lr somewhat mtJre con1putati<)nc1I effc)rt, inclutling 
the use of" a t~tble <)f individu~1l Poiss()n tern1s. Roughly speitking (3.2), (3.5) itnd (3.6:) 

at.!l1ieve the same tJrder <)f ,1ccurac;1, which is substanti"illy higher tl1,in tor tl1e 
classical ( 3.1 ). 

'T.his is m:1de plausible fc)r Bc:>l-'ilIEv's (3.5) if' we rewrite fJ as 

fJ = .( .. 2.,i-k)p/(2-p) :.·::· µ-(k-11)p11(2-p:). (3.7) 

Ftlf left h:1nd tails and ,, ~ .5, k is less than Jt., thus /3 is larger than JL and the left 
Poisson tail is decreased when its para.meter µ is replaced by P; t.he correction is 
stronger if pis larger. For right hand tails k is generally larger than Jl, which implies 
f!I < µ., the dist.ributi()n function increases and the (so far overestimated) tail de-

The same argument holds for the Gram-Charlier approximation (3.2): k-µ being 
negative in the left han.d tail and positive in the other, the overestimation by Pk(µ) is 
s<Jmew'hat compensated; the compensation increases with p as does the error of 
Pt(Ji). 

Wise's parameter 1 is exact fork = 0, as e- 1 · · q" in this case. But (3.6) becomes 
inaccurate for la.rge k, especially if p is far from zero. 

[n table 2 a fe\\' examples are found. As before, P1c(e) denotes the probability of 
not exceeding k in a Poisson distribution with expectat.ion e. To the six Poisson ap-

Table 2. Relativ·e errors in pe.~--entages of the binomial tail, cf. (2.2) 

100 .l 3 .0078 
100 .1 s .0576 
100 .1 6 .l !72 
100 .l 13 .8761 
100 .1 15 .%01 
100 .1 17 .9900 

100 .3 19 .0089 
100 .3 22 .0479 
100 .3 24 .1136 
100 .3 35 .8839 
100 .3 37 .9470 
100 .3 41 .9928 

100 .5 38 .0105 
100 .5 41 .0443 
100 .5 44 .1356 
100 .5 55 .8644 
100 .5 58 .9557 
100 .5 61 .9895 

tail 

.0078 

.0576 

.1172 

.1239 

.0399 

.01·00 

.0089 

.0479 

.1136 

.l 161 

.0530 

.0072 

.0105 

.0443 

.1356 

.1356 

.01443 

.0105 

.Pi,(µ) 
(3. l) 

..J_ 31.90 • • 

+ 16.52 
➔- 11.08 

+ 9.41 
+ 22.19 

+ 42.67 

+ 146.12 
.. ./.- 68.32 ' ' 

I 38.45 -t-
+ 35.58 ' 

+· 67.80 
-t-208.17 

·t-351.61 
+ .. 153.40 

I 62.98 ....,._ 
' ' 

! 58.91 . ..,... 
' 

+· 162.66 
-+-43·0.83 
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<P(u) 
(3.8) 

-i-93.07 
-t-16.03 

+ 3.86 
-·- 1.78 

16.33 
·-37.95 

+23.47 
+ 6.24 

+ 1.29 
-- .90 

4.13 
---15.73 

+ 2.24 
-r- .57 
-1- .03 ' 
-.J- .03 ' 
·+- .57 

+ 2.24 

+ 
I 

T 

+ 
-+-
' ,-

_j... 
l 

4-
I 

• 4-
' • 

' .T 

+ 
' • ,k 
I 

Pk(/J) 
(3.5) 

.56 

.32 

.22 

.34 

.76 
1.40 

7.88 
4.57 
2.83 
3.71 
6.48 

--t-15.36 

+-32.34 
-t-19.03 

+ 9.48 
-t-11.66 

'l6 64 + .... 
+52.68 

.15 

.32 

.24 
+ .85 
+ 1.45 
-+· 2.27 

7.12 
7.00 
6.64 

-t·- 14.25 
+ 19.78 ' 

I -,- 35.65 

36.35 
-· 34.25 
--- 30.99 

! 66.88 ··r 
-t·· 115.29 
+ 197.46 

I 
I 

' _,.. ... 
i 

+ 
-r-
-' ... 

G.C. 
(3.2) 

1.90 
.09 
.32 
.58 
.43 

1.97 

-· 19.87 
-+-
' 2.83 
+ 4.70 
+ 6.31 
·t 7.21 
-26.50 

-32.09 
-t-20.27 
+ 17.36 
·➔-20.05 

+34.17 
1.21 

(3.3) (3.4) 

-- .00 - .00 
+ .00 .00 
+ .00 .00 
·1- .00 .00 
+ .00 .01 

.00 .02 

.11 _,,_, .24 
+ .01 - .22 

+ .03 .19 

+ .06 .51 

+ .03 - 1.16 
.44 4.28 

1.47 ·- '"' 7.11 

+ .16 6.02 
-t- .46 4.48 
-t- .70 - 7.99 

+ .37 29.62 
--3.35 86.70 

23 



proxi1nati()ns considered so far we have added the classical normal approximation 

II 1 
Bk~ <P(i1) = --

2n -co 

k+½-µ 
w he14 e u = ---- . 

npq 

More numerical results, for more approximations, are given in tables 7-13. 

4. Bomol and reversal rules 

(3.8) 

This section gives some results found by trial and error from numerical investigations. 
A new parameter fJ is introduced, which is very accurate especially if we modify the 
rule of interchanging successes and failures if and only if * p > .5, and start this 
change ( called reversal) for a somewhat smaller p if k is large, for a somewhat larger 
p if k is small. 

Examination of BoLSHEv's approximation (3.5) in many numerical examples reveals 
that it is still conservative (with very rare exceptions for small p and n), though the 
overestimation of both tails is less severe than for the classical Poisson (3.1). The 
error increases with p as is illustrated in table 2. 

In a numerical investigation the exact parameter value 2 was computed for which 
Bk = Pk(Ji.). As Pk(Ji.) is a decreasing function of A, the exact A is unique and can be 
quickly found from successive linear interpolations**. It turned out that a closer 
approximation of Ji. is achieved if the last denominator 2-p in (3. 7) is replaced by 
2 -3p/2. The asymptotic behaviour for p ➔ 0 remains the same, but for larger p a 
somewhat stronger correction is imposed upon µ. 

Thus the accuracy was investigated of ' 

(2-½p) n -k • 

= µ-(k-
p 

(4.1) 

which was called Bomol as an abbreviation of BoLSHEv/MOLENAAR. In the examples 
considered it had a considerably smaller error than Pk(/3), which was already superior 
to Pk(µ). Even for p = .5 the relative error remains below I percent as long as 
.01 < Bk < .70 and n ~ 40. As the error in right hand tails is much larger than in left 
hand tails, a further improvement can be reached by the introduction of a new reversal 
rule: 

k 5:. j 
u -o 
• r e , 

j==O } • 

• 

j=n-k 

J 
11 -17 

. ' e J . 

if 
p ~ .2+ .016 n and k arbitrary, or 
.2+.016 n < p < .8-.016 n and !,+ I ~n/2; 

(4.2) 

otherwise, 
(2-½q)n-n + k+ 1 

where rJ = q 2-3q/2 . 

* ··If and only if'' is henceforth abbreviated by ''iff''. 
** In the Algol 60 programme the procedure ZERO (AP 230) of the Mathematical Centre was used. 
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Table 3. Boundary values for reversal 

n .2+.016\in .8-.0I6vn n .2+.016-vn .8-.0l6y'11 

4 .23 .77 70 .33 .67 

10 .25 .75 100 .36 .64 

20 .27 .73 140 .39 .61 

30 .29 .7 l 200 .43 .57 
50 .31 .69 300 .48 .52 

The condition p ~ .2 + .0 I 6 n amounts to p ~ .25 for n 10 and to p ~ .40 for 
n = 160, see also table 3. One could simplify ( 4.2) by replacing .2+.016 n by .35 
and .8- .016 n by .65. This would lead to a few wrong decisions for, say, .20 < p < 
< .35 and .65 < p < .80 if n is small, or for .35 < p < .65 if n is large. 

Reversals have also been studied for the other Poisson approximations. For (3.1) 
and (3.2) it is difficult to give bounds for the region of (n, p, k) triplets for which 
reversal leads to a better approximation. For Pk(/3) reversal helps fork < ½n if p= .5, 
but even for p = .45 the advantage is dubious. Wise's 1-Pn-k- 1(-½(n+k+l) 
log p) is better than Pk(y) for roughly the values where (4.2) prescribes reversal. As 
in that region (4.2) is usually still better, no further attention has been given to the 
matter. 

• 

5. The exact parameter l 

The essential difference between (3.3) and ( 4.1) is that Bomol gives the cumulative 
Poisson distribution a better parameter instead of adding a correction term to (3.5). 
This is attractive as it simplifies calculations, but Bomol has a less spectacular numeri
cal accuracy than (3.3). In order to find still better parameters, and to explain the 
success of Bomol, a theoretical counterpart is now derived for the numerical solution 
of the exact parameter l from Bk = Pk(A). 

We restrict ourselves to O ~ k < n. It is well known that 

k 

j=O 

n . . 
. pJqn-1 = 

J Pk! (n-k-

1 n! -x)n-k-1 dx; (5.1) 

(5.2) 

for a proof see e.g. FELLER (1957) chapter VI, problems 45 and 46. The exact A 
depends on n, p and k; as a function of pit is infinitely differentiable for O < p < I 
and even analytic in a neighbourhood of p = 0. We shall put 1 '--';: 0 ci pi, where 
the coefficients ci depend on i, k and n but not on p. As for p = 0 and 1 = 0 the 
integrals in (5.1) and (5.2) are equal to 1, it fo]lows that c0 = 0. Both integrals being 
equal for all p we may differentiate them with respect to p: 
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• 

n! 
k! (n-k-

-p)n-k-1 = 1 Ak -). d2 
k ! e dp ' (5.3) 

which means • 

n '· -----(1- )n-k-1 = 
(n-k-1)! . p 

)., k -). dl . 
e 

P dp 
(5.4) 

' 

Both 

/4 = 
sides of (5.4) can be written as a power series in p, after substitution of 

,......;: 1 c i pi. After some calct1lations this leads to 

n! n-k-1 

(n-k-1)! i=O 

+ {(k + 3)c:c3 + (k + 3)½kc~- 1c;-(k+ 3)c~+ 1c2 + ½c~+ 3 } p 2 + 
(5.5) 

+ {(k + 4)cfc4 +(k +4)kc~- 1c2 c3 -(k+4)c~+ 1c3 +(k+4)ik(k- l)c~- 2 c~ + 

-(k+4)½(k+l)ctc~+(k+4)½c~+ 2 c2 -½c~+ 4
} p3 +o(p3

) (p ► 0). 

As (5.5) is an identity in p, coefficients of the same power of p must be equal. In the 
notation Ji = ci/c1 (i = 2, 3,4) this implies 

k+l 

n! 
• • ----

(n-k- I)! ' 

c1 -n+k+l 

(n-k-1) (n-k-2)- cf /3 = ---------- -½kfi; 

cf-(n -k-1)(n- k-2)(n-k

-ik(k-1)fi +½(k+ l)c1/}-½c1 c2 • 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

We want to determine the asymptotic behaviour of the coefficients ci for n ► oo. 
As we want to exclude both degeneration in O and slipping away to infinity for our 
distribution, we make the assumption that the expectation J..l has a limit between 
0 and oo. This means that also the region of interesting values of k, with essentially 
positive probability, is b(?unded. Our assumptions can be summarized as 

n > oo, p ► 0, 0 < lim µ < oo, k = 0(1). 
• 

(5.10) 
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In equation (5.6) we may now apply STIRLING"s formula 

log 111 ! = (m +½) log m 1n + -½ log 2n: + -- - 3 + o ni ) 
12111 360tn 

(tn > oo), (5.11) 

and after a substantial calculation there results 

k k 2 +2k k 3 +2k2 73k4 +172k3 +28k2
-

c1 = n - - - - --- +on . 
2 24n 48n2 5760n 3 

(5.12) 

Combining this result with (5.7), (5.8) and (5.9) one obtains 

n 7k k 2 +2k 
C2 = - - -

2 24 48n 
--+on , 

1920n2 
(5.13) 

n _ 5k 
c3 = 3 24 - 2880n + 0 n ' 

(5.14) 

n 469k 
c4 = 4 - 2880 + o(l). (5.15) 

Similarly it follows 

n 
c5 = 5 + o(n). (5.16) 

Now we collect terms which are of the same order under assumptions (5.10), such as 
p 2 , p/n and 1/n 2 , and obtain a series expansion for the exact parameter 1 displayed 
in the first line of table 4 (next page). 

6. Expansions and new parameters 

Now that we have obtained an expansion for 1, it can be compared to similar ex
pansions for the approximating parameters f3 (3.5), y (3.6) and b (4.1). Table 4 
shows that they all agree with ). in the order n - 1 . We shall presently compare their 
second order differences, but let us first try to find some simple closed expression in 
n, p and k which, when similarly expanded, comes closer to 1. As both /3 and y can 
be put in the form 

co 00 

µ. L dipi 
• 

· I ei(k/n)1 (6.1) 
i=O j=O • 

we may try to improve them by finding coefficients di and e i such that (6.1) is closer 
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Table 4. Series expansions t'or parameters 

J 1 l l -
6k 3 12µk 12k2} + Exact A. k) + 24n2 (81,2 7µk k2 2k) + 288na(72µa 60µ2k 6µk 2 Jl '\ I -+., --- (µ 

2n 

I 1 l 1 
15µk 2 k3 18µk+ 10k2) + Mep k) -1-- 24n2 (8µ2 711,k k2 2k) + 288na(64µs 48µ 2k t, --- µ ) l -+- -- (µ .. . 2n 

l 1 
Bomol <5 µ 1 -1- ··· (µ - · k) -+- --::, ( 9 µ 2 -- 9 µk) 

2n 24n-

l 
Bols11ev fJ µ I + ----· (/1, 

2n 

Wise 
f 1 

y = µ \ l + ---(µ 
\ 2n 

f l 
Wimo l s = µ ·, I + Zn(µ 

I 
k) + 24 ,, (6µ2 nw , 6µk) 

l 
k) + 24n-;,(Bµ2--6µk) 

1 
k) + 24n2(8µ2-611.k-k2) 

1 
+ 288na (8 lµa 81µ 2k) 

1 
+ 288na(36µs-36µ2k) 

l 
+ 288n3(72µs-48µ2k) 

l 
-1- --(72µ3 --48µ 2k-6µk 2 -6k 3) 

288n 3 

to 1 than e.g. Wise's y which has di = 1/(i + I), 
j ~ 2. A better agreement is reached if we put e 2 = 
other coefficients as they were. This means 

e0 = 1, e1 = -1/2, ej=O for 
-1/24, e3 = - 1 / 48, keeping the 

k j 

B '°' e -c: 
-k~Li .,e 

j=O J. 
where e = 24n-12k ogq. (6.2) 

The expansion of B is found in table 4 under the name Wimol which stands for 
W1sE/MoLENAAR. It gives a substantially better approximation than Wise, but is still 
unsatisfactory when k is large. 

An expression of the form ( 6.1) can never agree with 2 in the term of order n- 2
• 

This agreement can be reached, however, by allowing p and k/n in both factors, and 
k/n 2 in one of them: 

Comparison with the expansion for 1 in table 4 yields that complete agreement of 
second order terms is reached if we put d1 = - 1

/ 6 , d2 = - 7
/ 12 , e 1 = 2

/ 3 , e2 
1

/ 12, 

e3 
4 

/ 9 , e4 
1 

/ 9 , e 5 
1 

/ 144, e6 -
1 

/ 12• So finally we propose the approximation 

k 'j _,. 
Bk~ -e "' 

. ' j=O J. 
where 

(12-2p) n-7k 
(12-Sp) n-k+k/n np, 

(6.4) 

which is called Mep (More Exact Parameter) in table 4. Its expansion coincides with 
the expansion of the exact parameter for order n - 2 and even comes rather close to it 
in the third order term. 

We shall use the series expansions in table 4 in order to draw conclusions about 
the accuracy of the five approximations /3, y, li, e and ( of the exact Poisson para--
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17280

,
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(3456µ 4 -2160µ 3k-240µ 2k 2 -180µk 3 -180k4) 

+ ... 

+ ... 
(, . 

' ' 

meter 2. Suppose we have found out for which values of n, p and k we have e.g. 
1<5-11 < !y-11. This implies that Pk(b) is closer to Bk than Pk(y) if b-1 and y-2 
have the same signs. In the case of opposite signs it does not strictly follow that Pk(b) 
is a better approximation of Bk, but accuracy of a parameter will generally be a 
rather good indication of accuracy of its distribution function. 

But how do we establish when 1£5-11 < ly-21 holds? We do have closed expres
sions for the approximating parameters, but not for 2. · However, we have series ex
pansions for all of them. If the difference in second order terms between b and ;t is 
smaller than the difference between y and ;tin the same order, this is almost equivalent 
to 1<5-21 < ly-21 provided that convergence is rapid enough to allow the neglection 
of terms of higher order. 

Now many numerical examples, of which a few are given in table 5, indicate that 
convergence is indeed rapid even if n is not very large and p not very small. This table 
counts six triplets (n, p, k), and gives for each triplet the distribution function Bk and 
six sets of parameter values. 

All six expansions in table 4 have the same leading term µ and the same first order 
value µ{1-(k-µ)/(2n)}; they are printed only once in table 5. On the next three 
lines are given, for 2, (, e, b, y and /3 separately, the parameter values calculated from 
the expansions up to and including the second, third and fourth order. The last line 
marked ''actual'' gives in boldface type the actual values, towards which the expan
sions converge. These actual values are found for the exact parameter 2 by an iterative 
process on the computer (see section 4), and for the approximating parameters from 
the closed expressions (6.4) for (, (6.2) fore, (4.1) for b, (3.6) for y and (3.5) for [3. 

As an example we consider e for n 40, p = .3 and k = 15. The expansion values 
of order 0, 1, 2, 3, 4 are 12, 11.55, 11.5022, 11.4920 and 11.4897, respectively, while 
the actual value is 11.4890. From the second order values we would say that 
b ~ 11.4488 is closer to 2 ~ 11.4366 than e ~ 11.5022, while actually we have 
b = 11.4194, ;t 11.3942 and e = 11.4890. Thus our conclusion ''b is better than a'' 
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4th ordier 
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4tl1 l)rder 
actual 

2nd order 
3.rd order 
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actual 

n .::.:::;: .l 0 

2nd order 
3rd order 
4th order 
actual 
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3rd order 
4th order 
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I ....... 6 I 0 
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1.3-1350 
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•• 

A Exact 
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12.7622 
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11,4366 
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11.3978 
11.394.2 

J' Exact 

10.8750 
10.8126 
10.7939 
10.7851 

p =, .5 

it Exa.ct 

6.3375 
6.4658 
6.5176 
6.5559 

P --- l ·~•·-- .. 

A Exa.ct 

.8883 

.8867 

.8864 

.8864 

1 3 , " '8' l - ,,..() f , 

13.313,4 
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1.3 •. 3154 
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: Mep 

12.7250 
12. 7518 
12.7576 
12.7592 

k ·--· f < ..... "-·"' .I ..J 

C Mep 

11.4366 
11.4107 
t 1.4048 
11.4030 

C Mep 

10.8750 
10.8224 
10.8101 
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k -- l --
C Mep 

6.3375 
6.4520 
6.4908 
6.5107 
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.8875 

.8875 

.8875 
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12.7800 12.6900 
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1st <.1rder ,.-=. 11.5500 
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11.5725 11.4825 
l l .5860 11.4724 
1 l.5903 11.4709 
11.5919 11.4706 
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?' Wise f3 Bolshev 

11.055,0 10.9·650 
11.0550 10.9448 
11.0562 I0.9·417 
11.0569 10.9412 

I st order _,,,. 6.0000 
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6.3542 6.25,00 
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r' Wise 
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fJ Bolshev 

.8950 

.8947 
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remains valid if we pass from second order parameter values to actual parameter 
values. As a next step we pass to the distribution functions and conclude thatPk(b) is 
a better approximation of Bk than Pk(e) in this case. We shall see in the next section 
that the first few terms of the parameter expansions give nearly always correct con
clusions about the accuracy of the corresponding Poisson approximations of binomial 
tails. 

• 

We shall now compare the second order terms in the expansions of table 4. We have 

(/3-Ji.)/µ = b/(24n 2)+o(n- 2
), where b k 2 +kµ-2µ 2 +2k; 

(y-Ji.)/µ = c/(24n 2)+o(n- 2
), where c k 2 +kµ+2k; 

(<5-Ji.)/µ = d/(24n 2 )+o(n- 2
), where d = k 2 -2kµ+µ 2 +2k; (6.5) 

(s-Ji.)/µ e/(24n 2 )+o(n- 2 ), where e = kµ+2k; 

((-A)/µ = o(n- 2). 

Evidentlyc ~ O,d> Oande ~ O,whileb > Oiffk > k 1 = -1-tµ+ 9µ 2 /4+µ+1. 
The other root of b = 0 is negative and thus not interesting, as k assumes only non
negative integer values. One easily sees that O < k 1 < µ holds. 

Observe that c < d iff d- c = -3kµ + µ 2 > 0, i.e. iff k < µ/3. Similarly d < e 

means d-e = k 2 -3kµ+µ 2 < 0, i.e. k 2 < k < k 3 where k 2 = 3µ/2-½µ 5~.38µ 
and k 3 3µ/2+½µ 5 ~ 2.62µ. We always have e < c unless k = e c = 0. In 
that exceptional case we know that both Wise •and Wimol give the exact probability 
qn, while Mep has only zero in its second order error. 

Neglecting a possible influence of higher order terms, we have now found the first 
four conclusions listed in table 6. The next two conclusions deal with Bolshev's 
difference b, and we must be careful because of its. sign change. From b- d = 
3µ(k-µ) we see that for k > µ we have b > d > 0. On the other hand, b+d = 
2k 2 +(4-µ)k-µ 2 = 0 has a unique positive root k 4 = - 1 +¼µ+ 9µ 2 /16-½µ+ 1. 
As d+b < 0 implies b < 0 (because always d > 0), we have lb > d fork < k4 , and 
thus lb! < d holds only in the strip k 4 < k < µ. 

Next observe that b-c = -2µ 2 < 0, while b+c = 2k 2 +(4+2µ)k-2µ 2 = 0 has 

a unique positive root k 5 = -1-½µ+ 5µ 2/4+µ+1. As b+c < 0 implies b < 0 
we conclude that lbl > c iff k < k 5 • Finally b-e = k 2 -2µ 2 is positive fork> µ 2 
(so there b > e > 0) and b+e = k 2 +(2µ+4)k-2µ 2 = 0 has a unique positive root 

k 6 = -µ+2+ 3µ 2 +4µ+4, so we have lbl < e only for k 6 < k < k 7 (we define 
k 1 = µ 2). 

Conclusion (vii) of table 6 follows from the first order difference: 

(µ-1)/µ = (k-µ)/(2n)+o(n- 1). (6.6) 

•, 
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Fig. l. Values of ki, mentioned in table 6, as functions of the expectation µ 
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µ 

Table 6. Conclusions from the differences in parameter expansions. The symbols ki are defined in 
the text and their values as functions ofµ are sketched in fig. 1. 

(i) Mep is superior to any of the other approximations, except fork O where Wise and Wimol 
are preferable. 

(ii) Bolshev's parameter is too small fork< k 1 and too large fork > k 1, thus overestimating both 
tails. The parameters of Wise, Bomol and Wimol are always too large, which means under
estimation of the left hand tail and overestimation of the right hand tail. 

(iii) Wise is only superior to Bomol fork < µ/3, and Wise is never superior to Wimo1. 
(iv) Bomol is superior to Wimol in a middle region k 2 < k < k 3 containing most of the distri-

bution 
(v) Bomol is superior to Bolshev except in a narrow strip k 4 < k < µ. 

(vi) Wise is superior to Bolshev iff k < k 5 (in the far left hand tail). Wimol is superior to Bolshev 
outside of a rather wide region k 6 < k < k 7 • 

(vii) The c]assical Poisson is conservative, it overestimates B1c for k < µ and underestimates it 
fork>µ. 

(viii) Mep is nearly always conservative, as it overestimates Bk fork < max (µ-1,0) and under-
estimates it for k > µ. 
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The conservatism of Mep stated in conclusion (viii) is deduced from the third-order 
difference 

where 
((-A)/11 = z/(288n3 )+o(n- 3 ), 

z = -8µ 3 +12µ 2k-9µk 2 +5k3 -16µk+22k 2 

= (k-µ) (5k 2-4kµ+8µ 2 + I6k)+6k 2 • 

(6.7) 

(6.8) 

As the second term is nonnegative and the first term has the sign of k-JL, it follows 
that z > 0 fork ~ µ. Fork = 0 we have z = -8tL3 < 0, while in general we have 

z = (k-µ-1) (8µ 2 -4kµ+5k 2 )-8µ 2 -12µk+ I7k 2 • (6.9) 

For 1 ~ k < µ-1 the first product consists of a negative and a positive factor, while 
the remaining terms have a negative sum. Thus z < 0 for k ~ max (0,µ-1). A 
numerical investigation shows that the sign change of z occurs for µ = 1.21 if k = 1, 
forµ = 2.31 if k = 2, for JL = 5.44 if k 5, forµ = 10.53 if k = 10, and between 
µ = k+.6 andµ= k+.7 if k ~ 25. 

7. Numerical results 

The conclusions of table 6 have been deduced under neglection of terms of higher 
order. A numerical investigation exhibits that they are rarely wrong in finite situa
tions. For n = 5, 10, 20, 30, 50 100, 300 and p = .01, .03, .05 (.05) .50 all values 
of k were considered for which .001 < Bk < .999. This means 7 times 12 = 84 para
meter pairs (n,p) and some 1300 values fork. We shall indicate for each conclusion 
when it was found to be wrong. 

Ad (i): Mep was never inferior to Poisson, only for two triplets (n, p, k) inferior to 
Bolshev, only for three triplets with k > 0 inferior to Wise, only for six triplets with 
k > 0 inferior to Wimol. However for p = .5 and n = IO, for p ~ .4 and n = 30, for 
p ~ .3 and n ~ 100, and similar p for other n, a region (say about .001 < Bk < .35) 
existed where Bomol is better than Mep. The difference in accuracy is negligible in 
most of this region, but Bomol is substantially more accurate for small Bk, large n and 
p near .5. 

Ad (ii): In 4 of the 84 distributions just one value of k slightly larger than k 1 existed 
for which Bolshev's parameter was still too small; but for small tails Bolshev was 
always conservative. The Bomol parameter was someti1nes too small for seven distri
butions, namely n = 50, p = .5, .03 < Bk < .18; n = 300,p ~ .35, .001 < Bk < .35, 
and intermediate regions for n 100. No violations of the other statements in (ii) 
have been observed. 

Ad (iii): Only tw·ice a value k < µ/3 was found for which Bomol was superior to 
Wise, and the difference in accuracy was small. Wise was indeed never seen to be 
superior to Wimol. 
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Ad (iv): For n = 20 and 30, and p near .5, six distributions were found for which 
the boundary k 2 was a little bit too large. For twelve distributions, mainly for small 
n and p near .5, the boundary k 3 was a little bit too large. Tl1is led on each occasion 
to an unjustified preference for Wimol over Bornol for just one value of k, which is 
anyhow not very relevant as Mep is in these cases more accurate than both of them. 

' 

Ad (v): In one quarter of the distributions, mainly with p near .5, the narrow strip 
k

4 
< k < J.,l was not narrow enough. The statement ''Bomol is always better than 

Bolshev'' thus admits still less exceptions than would follow from (v) . 
. 

Ad (vi): Again one quarter of the distributions, mainly for p near .5 and small n, 
showed a too small k 5 : thus values k > k 5 existed for which Wise was still better 
than Bolshev. In almost half of the distributions (again for the la,rger p) the wide strip 
k 6 < k < k 7 was somewhat too wide, i.e. for some k Wimol was better than Bolshev 

while it was not predicted to be. 

Ad (vii): For n ~ 50 most distributions exhibited one value fork where the Poisson 
approximation was not conservative. But this was just an internal contradiction in 
rule (vii), as it always was a value k < µ for which nevertheless Bk > .5. Nearly all 
these cases had .5 < Bk < .6 and conservatism in the small tails was maintained. For 
very small n and pit may happen that some Bk > .9 is overestimated for a k < µ, but 
there the error will be small as p is small. · 

Ad (viii): Only for seven distributions, with small n, just one value of k existed for 
which Mep was not conservative but had a tail error just below zero. This is no viola
tion of rule (viii) as it always happened for max (0, µ- 1) < k < µ. 

Summarizing these findings we may say that the conclusions of table 6 give a fairly 
good picture of the accuracy of the various approximations by Poisson distribution 
functions, though they are based on expansions of their parameters with terms of 
higher order neglected. 

Tables 7-13 give the relative tail accuracy (2.2) for a set of triplets (n, p, k) which 
were selected to give a good impression of what happens for the many other triplets 
for which accuracies were calculated by the computer. 

Each line of the tables corresponds to one value of k in the distribution with the 
indicated parameters n and p. Whenever Bk ~ .5 the line gives a ~ sign, k, Bk = 
= P{~ ~ k}, and IOO(Ak-Bk)/Bk for eight approximations Ak of which the formula 
number in this paper is indicated at the top of each table. For Bk > .5 the line gives 
a;?; sign, k+l, I-Bk= P{~ ~ k+l} and 100[(1-Ak)-(1-Bk)]/(1-Bk) for the 
same eight Ak. The relative error of the reversed Bomol ( 4.2) is not printed when it 
coincides with the ordinary Bomol. 

Consider for example the binomial distribution with n I 00 and p = .1 in table 
10. The second line tells us that P {J ~ 4} = .0237 is overestimated by the normal 
approximation w.ith a relative error of 40. 7 6 percent, so this approximation would 

' 

give the value (140.76) · (.0237) = .0334. The Poisson approximation with parameter 
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np overestimates B4 by 23.37 percent, so it gives (123.37)· (.0237) = .0292. Its correc
tion by the first Gram-Charlier term leads to an underestimation by .56 percent, 
Bolshev overestimates by .43 percent and the other approximations are still consid
erably better. 

In table I 2 one can see that even for n = I 00 and p .5 the classical normal ap-
proximation is less accurate than Bomol with reversal. The Gram-Charlier correction 
is not very adequate for p near .5, but Bolshev and especially Bomol and Mep present 
a spectacular gain in accuracy. 

Bomol and Mep are both rather accurate. Bomol is slightly easier to compute and 
is better near p = .5, where in general Poisson-type approximations have low ac
curacy. Mep has the advantage of being a little bit conservative, and it does not need 
a complicated reversal rule for right hand tails. From our study Mep emerges as a 
very accurate and relatively simple Poisson-type approximation .. Even if a bit of the 
enormot1s gain in accuracy is lost again when roughly interpolating in a Poisson 
table, it seems very desirable to use Mep in stead of the classical Poisson approx-
imation. 

' 
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rable 7. Relativ1e errors in percentages of the binomial tail, cf. (2.2) 
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--- I < ~""~ 
~ 

<~ -- 2 --. __ 

4 • -:::,. . .r .. _ 
5 » ..-;_.,., ,, - 6 ·, -·--•·'. 

•- 7 • -· ;:·::::..--~ 8 _.~ < 

:.-• 

Tail 

P ,-,, .0 l 
.{)956 
.{)043 
p = .05 
.4013 
.0861 
.() I I 5 
.0010 
P == .10 
.3487 
.2639 
.0702 
.0128 
.0016 
p = .20 
.1074 
.3758 
.3222 
.1209 
.0328 
.0064 
p = .30 
.0282 
.1493 
.3828 
.3504 
.1503 
.0473 
.0106 
.0016 

Normal 
(3.8) 

' 6.48 -1-

-99.90 

i 24.6 l 
- 14.79 
-- 83.88 
-- 99.34 

- 14.22 
+ I 3.33 
- 18.90 
--67.14 
-93.12 

+ 9.75 
- 7.85 
+ 7.48 
-- 2.51 
-26.65 
-55.59 

+49.57 
+ .67 
- 4.64 
+ 4.18 
+ .03 
- l 0. 77 
-25.77 
-- 40.24 

• 

Poisson 
(3.1) 

- .48 
-l- 9.67 

--- 1.94 
-l-- 4.72 
' +- 25.07 
+ 70.31 

1- 5.51 ., .. .13 
+ 14.40 
+48.40 

-I- 123.85 

-r- 26.04 
+ 8.03 
+ . 35 
+ 18.20 
+60.56 

-t- I 60.05 

+ 76.25 
+ 33.38 
-t· I 0.56 
+ .68 
+22.94 
+ 77.23 

-r- 216.35 
+648.53 

GR.CH 
(3.2) 

- .00 
-1- .13 

- .05 
1- .32 
+ .36 
- 6.48 

' .23 ..... 
I 

' .13 T 

1.30 -1--
' + .48 

- 16. 78 

+ .83 
+ .83 

I .35 -' 

+ 3.27 
+ 5.53 
- 9.93 

-- 3.06 
I 3.37 T 

+ 1. 78 
+ .68 
+ 6.16 
-+· 13. 35 
+ 2.19 

~166.52 

Bolshev 
(3.5) 

--- .00 
+ .28 

-- .02 
-j- .24 
-+- I .18 
+ 3.47 

+ .10 
+ .I 3 
-l- .98 
' 3.17 ·-r-

_j_ 7.79 ' ' 

+ .93 
-f-- .25 
+ .35 
+ 2.09 
+ 6.18 
+ 14.64 

+ 3.80 
+ 1.98 
+ .54 
+ .68 
-t- 3.82 
+ 11.03 
+26.37 
+60.29 

-• 

Wise 
(3.6) 

-t-- .00 
-t-- .28 

~ .00 
+ .27 
-+- 1.2,i 
+ 3.55 

.00 
+ .26 
+ 1.20 
+ 3.48 
+ 8.22 

- .00 
- .34 ... 
+ 1.05 
+ 3.20 
+ 7.77 
+ 16.85 

- .00 
- .77 
- 1.30 
+ 2. 71 
' 6.96 T 

+ 15.63 
+33.08 
-t- 70. 76 

Table 8. Relative errors in perce11tages of the binomial tail, cf. (2.2) 

Region 

N = 10 -~ 0 
< -;:: 1 
<~ 
~-~ 2 
~ 3 
-----;?,- 5 
''> 
:"/ 6 
.", 
-;:::..- 7 ....,_ 

8 --:---
~ 9 

N = 10 
_,,-
~ 0 
~ 1 
< "" 2 
~ 3 
~ 5 
~ 6 
~ - 7 
> 8 
~ 9 

N = IO 
~ 0 
< 1 
< 2 
< 3 
< 4 
~ 6 -,,,,-. :;;,,- 7 
>, 
? 8 
> 9 

' 

Tail 

P = .40 
.0060 
.0464 
.1673 
.3823 
.3669 
.1662 
.0548 
.0123 
.0017 

P = .45 
.0025 
.0233 
.0996 
.2660 
.4956 
.2616 
.1020 
.0274 
.0045 

P = .50 
.0010 
.0107 
.0547 
.1719 
.3770 
.3770 
.1719 
.0547 
.0107 

Normal 
(3.8) 

-+-97.37 
+ 14.96 
- •. 50 
- 2.31 
+ 1. 78 
+ • 1 3 
- 2.68 
-- 2.93 
+ 9.54 

-f-117.22 
+ 21.53 
+ 2.26 
- 1.33 
+ .89 
+ .36 

.18 
+ 3.19 
+ 22.21 

+ 126.63 
+25.01 
' 4.09 T 

- .28 
- .28 
-- .28 
- .28 
+ 4.09 
+25.01 

Poisson 
(3.1) 

+202.91 
+97.55 
+42.33 
+ 13.39 
+ 1.16 
+29.25 

+ 102.10 
+ 315.90 

+ 1173.36 

+338.58 
+ 162.71 

+ 74.35 
+28.66 
- 5.59 
+ 13.57 
+65.64 

+216.10 
-I- 794.16 

+ 589.97 
+276.34 
+ 127.94 
+54.20 
-l-- 16. 86 
+ I .88 
+38.37 

+ 143.88 
+ 533.89 

- GR.CH 
(3.2) 

--39.42 
+ 2.73 
+ 7.29 
+ 3.17 
+ l. l 6 
+ 10.45 
+25.99 
+25.34 

-246.19 

-105.48 
- 6.56 
+ 10.80 
+ 7.26 
- 1.28 
+ 6.23 
+23.25 
+46.97 
-16.20 

-272.49 
-37.28 
+ 12.43 
+13.36 
-¼- 5.22 
+ 1.88 
+17.10 
+48.39 
+78. 13 

STATISTICA NEERLANDICA 23 (1969) NR. 1 

Bolshev 
(3.5) 

+ 11.43 
+ 7.31 
+ 3.76 
+ 1.03 
+ 1.16 
+ 6.54 
+ 19.22 
-+-48.53 

+ 126.68 

+ I 8. 76 
+ 12.67 
+ 7.35 
+ 3.07 
- .08 
+ 4.18 
+ 15.21 
+41.69 

-!-- 113.33 

+ 30.32 
+ 21.25 
+ 13.31 
+ 6.77 
+ 1.89 
-t- 1.88 
~1-- 11. 06 
+ 34.39 
+ 98.87 

Wise 
(3.6) 

+ .00 
- 1.44 
- 2.62 
·- 3.30 
+ 5.77 
+ 13. 74 
+ 30.18 
+66.09 

+ 159.78 

- .00 
- 1.91 
- 3.53 
- 4.62 
+ 5.04 
+ 12.52 
-+- 28.25 
+62.94 

+ 153.77 

- .00 
- 2.48 
- 4.65 
- 6.25 
- 7.01 
+11.11 
+25.97 
+ 59. J 5 

+ 146.49 

Wimol 
(6.2) 

+ .00 
i- .19 

- .00 
-r- .19 
-r- .68 
+ 1.60 

- .00 
-1- .19 
-j- . 71 
-1- 1.72 
-!- 3.44 

- .00 
- .27 
+ .70 
+ 1.81 
+ 3.79 
+ 7.17 

- .00 
- .65 
- .94 
+ 1.70 
+ 3.83 
. I- 7.58 
+ 14.14 
+26.55 

Wimol 
(6.2) 

+ .00 
- 1.26 
- 2.01 
- 2.25 
+ 3.51 
+ 7.44 
-t-14.54 
+28.04 
+58.34 

- .00 
- 1.69 
- 2.78 
- 3.26 
+ 3.20 
+ 7.13 
-1- 14.39 
+28.34 
+59.70 

- .00 
- 2.23 
- 3.76 
- 4.57 
- 4.63 
-l-- 6.64 ' 
+ 13.96 
+ 28.25 
+ 60.54 

Mep 
(6.4) 

- .00 
➔- .02 

- .00 
I- .0 l 

-r- .12 
+ .53 

+ .00 
+ .00 
+ .08 
+ .42 
+ 1.39 

+ .07 
+ .03 
+ .02 
+ .24 
+ .95 
+ 2.86 

+ .43 
+ .23 
+ .08 
+ .06 
+ .56 
+ 2.04 
+ 5.89 
+ 15.60 

Mep 
(6.4) 

+ 1.75 
+ 1. 10 
+ .60 
+ .20 
+ .15 
+ 1.23 
+ 4.32 
+ 12.52 
+35.83 

+ 3.25 
-1- 2.15 
+ 1.29 
+ .60 
- .06 
+ .80 
+ 3.50 
+10.97 
+32.61 

+ 5.81 
-t- 3.99 
+ 2.55 
+ I .39 
+ .46 
+ .34 
+ 2.64 
+ 9.36 
-!- 29. 33 

Bomol 
(4.1) 

+ .00 
+ .25 

' .01 --j 
-1- . I 8 
+ .89 
-!- 2.75 

- .04 
+ .13 
+ .63 
-1- 2.08 
+ 5.45 

- .39 
- .19 
-1- .35 
+ J. 18 
-1- 3.40 
+ 8.53 

- 1.38 
- .67 
- .40 
+ .68 
+ 2.04 
+ 5.58 
+ 13.92 
+ 33.50 

Bomol 
(4.1) 

- 3.40 
- 1.79 
- .95 
- .67 
+ I. 16 
+ 3.44 
+ 9.42 
-!-24.41 
+ 65.47 

- 4.87 
- 2.68 
- 1.40 
- .88 
-t- .85 
+ 2.60 

I 7.55 -I 

+20.50 
+ 56.78 

- 6.62 
- 3.76 
- 1.96 
- 1.1 1 
- .97 
+ 1.88 
+ 5.87 
+ 16.92 
+48.80 

RVBML 
(4.2) 

' 1.93 -+-
' I 1.41 -,-
' - .98 

RVBML 
(4.2) 

- .83 
-1.29 
-2.97 
-6.01 

-] .01 
-1.31 
-2.55 
-4.94 

- .97 
-1.11 
-1.96 
-3.76 
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Table 9. Relative errors in percentages of the binomial tail, cf. (2.2) 

Region Tail Normal Poisson Gr.CH Bolshev Wise 
(3.8) (3.1) (3.2) (3.5) (3.6) 

N = 40 P = .01 
~ 1 .3310 + 31.97 - .4 l - .00 - .00 + .00 
~ 2 .0607 -33.76 -f- 1.34 + .02 + .01 + .02 
~ 3 .0075 -94.35 + 5.72 - .00 + .06 + .07 

N = 40 P = .10 
~ 0 .0148 -!-120.17 +23.91 - .87 + .39 - .00 
& --0:::: 1 .0805 + 16.58 + 13.80 + .14 + .25 - .06 
< 2 .2228 - 3.68 + 6.86 + .29 + .12 - .11 ,,... 

3 .4231 - 6.39 + 2.44 + .13 -f- .03 .14 ~ --;:;,- 5 .3710 + 6.76 + .05 + .05 + .05 + .24 
~ 6 .2063 + 4.04 + 4.17 + .38 + .21 + .48 -?' 7 .0995 - 5.73 + 11.21 + .74 + .48 + .84 
> 8 .0419 -22.33 +22.03 I .72 + .91 + 1.36 T 

> 9 .0155 -42.87 +37.87 - .55 + 1.53 + 2.07 - 10 .0051 -63.00 -I- 60.62 4.71 + 2.37 + 3.01 ',.. -,, 

> 11 .0015 -79.14 +93.22 - 14.81 + 3.50 , + 4.24 

N = 40 P = .30 
< 4 .0026 +88.61 + 196.79 -51 .97 + 8.44 - 2.20 
~ 6 .0238 +21.50 +92.85 - 3.67 + 5.25 - 2.97 
< 8 .1110 + 2.33 +39.65 + 4.24 + 2.68 - 3.35 
~ 10 .3087 - 2.06 + 12.47 + 2.28 -j- .84 - 3.27 
> 13 .4228 + 2.06 + .29 + .29 -1- .29 + 3.72 
',. ::::- 15 .1926 + .85 + 18.40 + 4.30 + 2.32 -1- 7.81 
> 17 .0633 - 4.83 +59.98 + 8.53 + 6.53 + 14.59 
~ 19 .0148 -15.70 + 153.21 - 2.40 + 14.02 +25.38 
',. 21 .0024 -30.58 +379.37 -100.86 +26.63 +42.45 ~•-;;.--
~ 

N = 40 P = .50 
~ 10 .0011 + 19.88 + 873.40 -435.73 +46.01 -16.65 
~ 12 .0083 + 6.73 +370.34 -54.65 +30.42 -18.10 
~ 14 .0403 + 1.61 + 159.92 + 15.90 + 18.21 -18.61 
~ 16 .1341 + .07 +64.87 + 16.72 + 9.12 -18.00 
~ 18 .3179 - .09 + 19.98 -!- 6.70 + 2.91 -16.16 
:;:: 22 .3179 - .09 + 12.08 + 5.42 + 3.29 +24.11 -
~ 24 .1341 + .07 +58.48 +21.07 + 12.59 +46.47 
> 26 .0403 + 1.61 + 178.06 +39.92 +31.40 +86.43 
~ 28 .0083 + 6.73 +532.72 - 3.31 +68.44 + 161.92 
~ 30 .0011 + 19.88 + 1864.34 -670.91 + 145.53 +319.84 

Table 10. Relative errors in percentages of the binomial tail, cf. (2.2) 

Region 

N = 100 
< 0 
~ 2 
~ 3 
~ 4 
~ 5 

N = 100 
¾ 0 
< 2 
< 4 
> 7 
~ 9 
~ 11 
~ 13 

N = 100 
~ 2 
~ 4 
~ 6 
~ 8 
::;:: 
< 12 
> 14 
;;:: 16 
;;:: 18 ._, 
:;::,,, 20 

N = 100 
~ 9 
< 
"" l 1 
< 
"" 13 
~ 15 
~ 17 
✓ 19 ·- ., ... ·-
~ ;;;: 23 
;;:: 25 
;;:: 27 
:;>, 
•' 29 ~-
~~ ~- 31 
;;::: 33 

Tail 

P = .01 
.3660 
.2642 
.0794 
.0184 
.0034 

P = .05 
.0059 
.1183 
.4360 
.2340 
.0631 
.0115 
.0015 

P = .10 
.0019 
.0237 
. t 172 
.3209 
.2970 
.1239 
.0399 
.0100 
.0020 

P = .20 
.0023 
.0126 
.0469 
.1285 
.2712 
.4602 
.2611 
.1314 
.0558 
.0200 
.0061 
.0016 

Normal 
(3.8) 

-15.95 
+ 16.43 
-17.06 
-67.39 
-93.65 

+228.92 
+ 6.27 
- 6.13 
+ 4.98 
-14.17 
-49.37 
-80.22 

+219.28 
+40.76 
+ 3.86 
- 3.84 
+ 3.90 
- 1.78 
-16.33 
-37.95 
-61.03 

+85.65 
+33.55 
+ 11.02 
-t- 1.39 
- 1.92 
- 2.15 
+ 1.88 
- .81 
- 6.72 
-16.12 
-28.50 
-42.66 

Poisson 
(3.1) 

+ .50 
+ .00 
+ 1.17 
+ 3.34 
+ 6.63 

+ 13.81 
+ 5.40 
+ 1.03 
+ 1.64 
+ 7.93 
+19.38 
+37.87 

+42.39 
+23.37 
+ 11.08 
+ 3.72 
+ 2.11 
+ 9.41 
+22.19 
-t-42.67 
+ 74.59 

+ 114.07 
+70.08 
+40.96 
+ 21.79 
+ 9.53 
+ 2. 19 
+ 7.02 
+ 19.35 
+39.50 
+ 71.49 

+ 122.38 
+204.91 

GR.CH 
{3.2) 

+ .00 
+ .00 
+ .01 
+ .01 
- .07 

- .42 
+ .06 
+ .03 
+ .07 
+ .17 
- .38 
-3.17 

-4.29 
- .56 
+ .32 
+ .21 
+ .19 
+ .58 
+ .43 
-1.97 

-10.29 

-23.02 
-5.61 
+ .50 
+ 1 .70 
+ 1 .. I 3 
+ .26 
+ 1.13 
+2.38 
+2.64 
-1.02 

-15.32 
-55.48 

Bolshev 
(3.5) 

+ .00 
+ .00 
+ .01 
+ .02 
+ .05 

+ .11 
+ .05 
+ .01 
+. 04 
+ .16 
+ .38 
+ .74 

+ .69 
+ .43 
+ .22 
+ .07 
+ .10 
+ .34 
+ .76 
+ 1.40 
+2.31 

+3.67 
+2.62 
+ 1.72 
+ .99 
+ .43 
+ .06 
+ .55 
+ 1.34 
+2.55 
+4.27 
+6.58 
+9.61 

Wise 
(3.6) 

- .00 
+ .00 

I .01 T 

+ .02 
! .05 T 

- .00 
- .03 
- .04 
+ .11 
+ .26 
+ .53 
' .93 -' 
- .11 
- .19 
- .24 
- .25 
+ .45 
+ .85 
+ 1.45 
+2.27 
+3.38 

-1.70 
-1.89 
-1.97 

· -1.94 
-1.80 
-1.54 
+2.92 
+4.50 
+6.58 
+9.25 

+ 12.61 
+ 16.82 

Wimol 
(6.2) 

,,, 

+ .00 
+ .0 l 
+ .04 

- .00 
- .06 
- .09 
- .09 
+ .15 
+ .26 
+ .42 
+ .62 
+ .87 
+ 1.17 
+ I .53 

- 1.76 
- 2.14 
- 2.19 
- 1.95 
+ 2.02 
+ 3.87 
+ 6.56 
+ 10.33 
+ 15.49 

-12.34 
-12.68 
-12.30 
-11.20 
- 9.41 
+ 12.50 
+21.91 
+36.24 
+58.40 
+94.43 

Wirnol 
(6.2) 

- .00 
+ .00 
+ .01 
+ .01 
+ .02 

- .00 
- .02 
- .02 
+ .06 
+ .12 
+ .21 
+ .34 

- .09 
- .14 
- .16 
- .15 
+ .23 
+ .41 
+ .63 
-!- .92 
+ 1.27 

-1.23 
-1.28 
-1.26 
- l .17 
-1.02 
- .83 
+ 1.45 
-t-2.12 
+2.95 
+3.93 
+5.07 
+6.40 

Mep 
(6.4) 

- .00 
+ .00 
+ .00 

+ .01 
+ .01 
+ .00 
+ .00 
+ .00 
+ .01 
+ .02 
+ .05 
+ .09 
+ .16 
+ .27 

+ .79 
+ .49 
+ .25 
+ .09 
+ .03 
+ .25 
+ .78 
+ 1.83 
+ 3.74 

+ 6.88 
+ 4.75 
+ 2.99 
+ 1.58 
+ .54 
+ .62 
+ 2.52 
+ 6.41 
+ 13.86 
+27.99 

Mep 
(6.4) 

+ .00 
+ .00 
-1-- .00 
+ .00 
-1-- .00 

+ .00 
+ .00 
+ .00 
+ .00 
+ .00 
+ .0 I 
+ .03 

+ .02 
+ .01 
+ .01 

f .00 --r 
• 

+ .00 
+. 01 
+ .03 

• .06 -+-
I 

+ .11 

+· .21 
-1-- . 15 
+ .10 
+ .06 
+ .03 
-t, .00 
+ .03 
+ .09 
+ .18 
+ .31 
+ .51 
+ .79 

' 

Bomol 
(4.1) 

+ .00 
+ .0 l 
+ .05 

- .18 
- .10 
- .05 
- .04 
+ .05 
+ .10 
+ .20 
+ .38 
+ .66 
+ 1.07 
+ 1.66 

- 1.83 
- .90 
- .42 
- .24 
+ .29 
+ .82 
+ 2.09 
+ 4.65 
+ 9.35 

- 2.32 
- .82 
- .14 
- .08 
- .34 
+ 1.55 
+ 4.44 
+ 10.57 
+22.71 
+46.69 

Bomol 
(4.1) 

- .00 
+ .00 
+ .00 
-I- .01 
+ .03 

- .05 
- .02 
- .01 
+ .02 
+ .06 
+ .15 
+ .32 

- .25 
- .13 
- .06 
-. 03 
+ .04 
+ .10 
+ .22 
+ .44 
+ .78 

- .74 
- .45 
- .26 
- .15 
- .09 
- .07 
+ .17 
+ .34 
+ .62 
+ 1.08 
+ 1.75 
+2.71 

RVBML 
(4.2) 

- .34 
- .08 
- .14 
- .82 
- 2.32 

RVBML 
(4.2) 

• 

-• .. 
•• 

i 
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Table 1 t. Relative errors in percentages of tl1e binomial tail, cf. (2.2) 

Region -
N = 100 

.,s• 17 • <•-,.~ •·, 

~ -:·- 20 ..;::-.-• 
~::; 
' 23 ,.. 

26 "'· ' -·· 29 ~ 
~'..~ 33 " 

-., 36 " . -~· 
"> 39 ,,,-- ~" 

" , . 
42 • . , . ., 

•" 

'> . - .,.~ 
.-' 45 

N = 100 
~- ~ __ _...,.. 

·- 25 
" 28 ,· ... , ---~ 31 • 

""" -~'~ ..... 34 -<C" ---..... 37 
--- 41 :;:;,~ 
..... , 
.,.-;;,. .- 44 ...,,. 
/" 47 
)! 49 

N = 100 
< '- 30 -~ 33 ~ 

""' -.:-.. 
"'-C 36 
~ 39 
~ 42 
~ 46 -
>- 49 ---
~ , 52 
> ::;- 54 
~ 57 
;::: 60 

Tail 

P = .30 
.0022 
.0165 
.0755 
.2244 
.4623 
.2893 
.116 l 
.0340 
.0072 
.0011 

P = .40 
.0012 
.0084 
.0398 
.1303 
.3068 
.4567 
.2365 
.0930 
.0423 

P = .45 
.0015 
.0098 
.0429 
.1343 
.3087 
.4587 
.2404 
.0960 
.0441 
.0106 
.0018 

Normal 
(3.8) 

+47.42 
+ 15.92 
+ 3.31 
- .84 
- 1.25 
+ 1 . I 8 
- .90 
- 6.39 
-15. 73 
-28.38 

+29.44 
+ 12.09 
...!... 3.81 l 

+ .34 
- .62 
+ .58 
+ .40 
- .75 
- 2.21 

+ 15.94 
+ 6.56 
+ 2.02 
+ .16 
- .32 
+ .28 
+ .18 
- .28 
- .77 
- 1.62 
- 2.18 

Poisson 
(3. l) 

+236.13 
+ 114.33 
-t- 51.79 
+ I 9.13 
+ 2.89 
+ 9.05 
+ 35.58 
+ 90.84 
+208.17 
+477.36 

+536.36 
+248.41 
+ l 14.62 
+ 48.75 
' 15.59 T 

-I- .30 ' ' 19.97 -r-
1 63.60 -' + 118.60 

+655.15 
+292.82 
+ 131.80 
+ 55.21 
+ 17.53 
+ .39 
+ 22.56 
+ 72.70 
+137.78 
+347.03 
+924.69 

GR.CH 
(3.2) 

-70.17 
- 7.87 
+ 4.41 
+ 3.36 
+ .54 
+ 2.22 
+ 6.31 
+ 5.48 
-26.50 

-193.13 

-241.70 
-37.36 
+ 6.99 
+ 9.65 
+ 4. l 9 
+ .30 
+ 6.17 
+ 14.26 
+ 16.04 

-281.11 
-35.27 
+ 12.73 
+ 13.06 
+ 5.41 
+ .39 
+ 7.93 
+ 19.21 
+23.80 
- 11.27 

-312.57 

Bolshev 
(_3.5) 

+ 10.53 
+ 6.68 
-t- 3.65 
+ 1.47 
+ .13 
+ 1.11 
+ 3. 71 
+ 8.23 
+ 15.36 
+26.l l 

+26.29 
+ 17.46 
+ 10.50 
+ 5.30 
+ 1. 76 
+ .30 
-1- 3.24 
+ 8.94 
-j- 14.86 

+36.22 
+23.76 
+ 14.15 
+ 7 .11 
+ 2.37 
-!-- .39 
-1- 4.27 I 

+ 1 l .86 
+ 19.85 
+ 38.28 
+ 68.75 

Wise 
(3.6) 

- 6.95 
- 7.14 
- 6.84 
- 6.05 
- 4.82 
+ 8.15 
+ 14.25 
+23.09 
+35.65 
+53.47 

- 18.25 
- 18.17 
-17.35 
- 15.73 
-13.32 
-t-· 12.20 
+22.28 
+ 37.58 
+51.80 

-26.88 
-26.33 
-24.90 
-22.49 
-19.09 
+ 17.52 
+32.14 
+54.99 
+76.94 

+ 125.49 
-+-205.0l 

Table 12. Relative errors in percentages of the binomial tail, cf. (2.2) 

Region 

N = 100 
~ 35 -- 38 < ...... --

" 41 ' .. . -:~ 

--- 44 ~ 

'-0:: 

< 
~ 47 ---,. 51 .,, .j. -~ -. .,.-~ .. _, 54 --~ 57 .-~ ,· 
-,. 59 ----',. ;:;, .. 62 
>-:;:.- 65 

N = 300 
~ 0 
~ 1 
~ """' 2 
>--- 4 
~ 5 
~ 6 
~ 7 
~ 8 
~ 9 
~ 10 

N = 300 
< 15 
< 18 
< 21 
< """' 24 
< 27 ..... 
-::--- 32 
~ 35 
~ 38 
~ 41 
~ 44 
~ 47 

Tail 

P = .50 
.0018 
.0105 
.0443 
.1356 
.3086 
.4602 
.2421 
.0967 
.0443 
.0105 
.0018 

P = .01 
.0490 
.1976 
.4221 
.3528 
.1839 
.0829 
.0328 
.0115 
.0036 
.0010 

P = .10 
.0013 
.0097 
.0458 
.1439 
.3224 
.3775 
. 1914 
.0779 
.0254 
.0066 
.0014 • 

Normal 
(3.8) 

+ 6.08 
+ 2.24 
+ .57 
+ .03 
- .04 
- .01 
- .04 
+ . I 3 
+ .57 
+ 2.24 ' 
' 6.08 -i-

+49.75 
- 2.84 
- 8.58 
+ 9.38 
+ 4.43 
- 11.42 
-35.48 
-60.68 
-80.35 
-92.06 

+ 107.72 
+ 38.41 
-t-11.20 
-t- .70 
- 2.22 
+ 2.36 
+ .99 
- 4.39 
- 14. 71 
-·· 29.50 
--46. 79 

Poisson 
(3.1) 

+821.86 
+351.61 
+ 153.40 
+ 62.98 
+ 19.77 
+ .49 
+ 25.62 
+ 84.00 
+ 162.66 
+430.83 

+1241.99 

+ 1.52 
+ .76 
+ .27 
+ .00 
+ .46 
+ 1.22 
+ 2.3 l 
-t- 3.75 
+ 5.56 
+ 7.76 

+53.76 
+ 33.15 
-t- 18.86 
+ 9.26 
+ 3.25 
+ 1.02 
+ 5.93 
+ 14.31 
+ 27.26 
-t- 46.43 
-+· 74.29 

GR.CH 
(3.2) 

-336.39 
- 32.09 
+ 20.27 
+ 17.36 
+ 6.89 
+ .49 
+ 10.10 
+ 25.59 
+ 34. 17 
- 1.21 
-397.79 

- .00 
+ .00 
+ .00 
+ .00 
+ .00 
+ .01 
+ .00 
- .01 
- .06 
- .16 

-7.04 
-1.83 
+ .03 
+ .38 
+ .20 
+ .09 

' .40 T 

+ .55 
.20 

--· 3.28 
-- 1 1.48 
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Bolshev 
(3.5) 

+ 50.11 
+32.34 
+ 19.03 
+ 9.48 
+ 3.16 
+ .49 
+ 5.61 
+15.74 
+26.64 
+52.68 
+98. 19 

+ .00 
+ .00 
+ .00 
+ .00 
+ .00 
+ .01 
+ .0 l 
+ .02 
+ .03 
+ .04 

+ .96 
+ .66 
+ .40 
+ .2 I 
+ .07 
+ .05 
+ .19 
+ .44 
+ .80 
+ 1.30 
+ 1.96 

Wise 
(3.6) 

-37.42 
-36.35 
-34.25 
-30.99 
-26.50 
+24.49 
+45.71 
+ 80.39 

+ 1 I 5.29 
+ 197.46 
+344.77 

- .00 
- .00 
- .00 
+ .00 
+ .00 
+ .01 
+ .0 l 

I .02 -I 

+ .03 
+ .04 

- .58 
- .62 
- .61 
- .57 
- .49 
+ .56 
+ .93 
+ 1.43 
+2.06 
+2.84 
+3.78 

Wimol 
(6.2) 

- 4.71 
- 4.55 
- 4.11 
- 3.42 
- 2.56 
+ 4.06 
+ 6.64 
+ 10.00 
+ 14.26 
+ 19.58 

-12.28 
-11.68 
- 10.64 
- 9.18 
- 7.37 
-!- 6.37 
+ 10.88 
+ 17.03 
+22. 19 

-18.05 
-16.98 
-15.37 
-13.24 
--10.65 
+ 9.19 
+ 15. 71 
+24.73 
+ 32.45 
+47.26 
+67.22 

WimoI 
(6.2) 

-25.42 
-23.78 
-21.49 
- 18.54 
-15.00 
+ 12.98 
+22.38 
+35.74 
+47.49 
+70.86 

+ 104.01 

- .00 
- .00 
-- .00 
+ .00 
+ .00 
-1- .00 ' 

+ .01 
+ .01 
+ .01 
+ .02 

- .40 
- .40 
- .37 
- .33 
- .27 
+ .28 

I .45 T 
' .66 -+-
' + .90 ' + 1. I 9 

+ 1.51 

Mep 
(6.4) 

+ .89 
+ .57 
-t- .32 
+ .13 
-t- .01 
+ .11 
+ .38 
+ .87 
+ 1.69 
+2.96 

+2.96 
+2.04 
+ 1.27 
+ .67 
+ .23 
' .04 ' + .45 

+1.26 
+2.12 

+4.61 
+3.17 
+ 1.98 
+ 1.04 
+ .36 
-I- .06 ' + .68 
+ 1.93 
+3.24 
+6.18 

+10.75 

Mep 
(6.4) 

+ 7. l l 
+ 4.89 
+ 3.05 
+ 1.60 
+ .56 
+ .09 
+ 1.03 
+ 2.93 
+ 4.92 
+ 9.45 
+ 16.61 

+ .00 
+ .00 
+ .00 
+ .00 
+ .00 
+ .00 
+ .00 
+ .00 
+ .00 
-1- .00 

+ .03 
+ .02 
+ .01 
+ .01 
' .00 T 

+ .00 
+ .01 
+ .01 
+ .03 
+ .04 
+ .07 

Bomol 
(4.1) 

-1.15 
- .56 
- .25 
- .15 
- .14 
+ .35 
+ .90 
+ 1.99 
+3.89 
+6.95 

-1.12 
- .41 
- .09 
- .04 
- .14 
+ .30 
+ .94 
+2.28 
+3.75 

- .29 
+ .23 
+ .33 
+ .16 
- .10 
+ .39 
+ 1.29 
+3.16 
+5.20 

+ 10.00 
+ 17.81 

Bomol 
(4.1) 

' 1.16 T 

+ 1.31 
1 1.03 T 
' .52 -+-• 

- .02 
+ .49 
+ 1.78 
+ 4.43 
+ 7.32 
+ 14.15 
+25.49 

- .00 
- .00 
- .00 
+ .00 
-I- .00 
+ .00 
+ .00 
+ .01 
+ .01 
+ .02 

- .20 
- . 11 
- .06 
- .03 
- .02 
+ .02 

I .04 T 

+ .08 
+ .15 
+ .27 
+ .44 

RVBML 
(4.2) 

+1.47 
+2.19 
+3.10 
+3.62 

RVBML 
(4.2) 

- .31 
+ .15 
+ .70 
+ 1.03 
+ 1.31 
+ 1.16 
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Table 13. Relative errors in perce11tages of tl1e binon1ial tail, cf. (2.2) 

Region 

N = 300 
• 66 •• - ". -... -.-· 70 •• 

"-' 
• 74 ---.-'· .. 

78 "" .. ~ 
··-•• . .,,. - 82 
.~ 86 -~~ 

-,. 91 .. . •. -. 95 ~- -~ 
•• -,. 99 ; :-, , . -, 103 • -· _.., ,. 
.... 

107 ··, 
,-·' -.,· 
·, 1 l 1 , -- --
> ~~·"' 115 

N = 300 
¾ 94 
.:--
~ 100 
~ 106 
~ 112 
~ 118 
> ---- 125 
~ -· 131 ..._, ---- 136 ,.,. 141 ,~ ~•A 

·" 

~ 146 

N = 300 
~ 123 
~ 128 
~ 133 
~ 138 
~ 143 
~ 148 
~ 154 
~ 159 
~ 164 
', 
;:;,-- 168 
~ 172 
~ 177 

• 

Tail 

P = .30 
.0012 
.0061 
.0239 
.0723 
. l 726 
.3321 
.4716 
.2835 
.1423 
.0590 
.0200 
.0055 
.0012 

P = .40 
.0012 
.010:.:;. 
.0550 
. l 886 
.4314 
.2970 
.1083 

· .0345 
.0082 
.0014 

P = .50 
.0011 
.0065 
.0283 
.0921 
.2265 
.4313 
.3431 
.1632 
.0594 
.0216 
.0065 
.0011 

Normal 
(3.8) 

--!- 29 .04 
-t- 14. 71 
-1- 6.43 
+ 1.95 
-- . 13 
- . 75 
··1- . 71 
-!- .67 
- . l 7 
-- 2.23 
-- 5.86 
-- 11.24 
-18.35 

+ 14.11 
-!- 5.49 
+ 1.39 
- .13 
-- .35 
+ .32 
- .32 
- 1.72 
- 4.14 
- 7.66 

+ 2.43 
+ 1.01 
+ .32 
+ .05 
-- .0 I 
- .00 
- .0 I 
- .00 

I .12 ~-
I 

+ .42 
+ 1.01 

I 2.43 -' • 

Poisson 
(3. I) 

-t-315.14 
-t- 178.9 l 
-f-100.23 
·f- 53.50 
+ 25.45 
-t- 8.94 
+ .09 
+ 10.35 
+ 29.36 

I 62.46 ·r 
+119.73 
+221.38 
-t-409.92 

+599.70 
+239.32 
-l- 94.92 
+ 32.19 
+ 4.66 
+ 13. 13 
+ 55.59 
-t- 133.89 
-t- 304.95 
+ 714.59 

+ 1126.93 
-t-473.69 
+207.73 
+ 89.26 
+ 32.99 
+ 5.87 
+ 11.56 
+ 48.07 
+ 128.32 
+263.70 
+548.86 

+ 1483.19 

GR.CH 
(3.2) 

---- t 20.04 
-~-- 31.51 
- 2.10 
+ 4.89 
-t- 4.24 
+ 1.84 
-l- .09 ' -1- 2.37 

i 5.33 ,-
! 6.48 -·-i 
- 1.42 
- 38.25 
--158.74 

-274.87 
- 27.07 
+ 10.77 
+ 7.86 
+ 1.31 
+ 4.10 
+ 12.55 
+ 12.55 
- 33.82 
-289.49 

-556.75 
-· 75.54 
+ 16.99 
+ 21.73 

\ 11.17 T 

+ 2.12 
"4- 4.72 
+ 16.54 
-f-- 29.58 
+ 23.49 
- 59.08 
-658.20 
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Bolshev 
(3.5) 

+ 13.61 
·+- 9.76 
-1- 6.56 
+ 4.01 
-1- 2.07 
+ .73 
-1- .09 
+ 1.12 
-+· 2.89 
+ 5.58 
-! ·· 9.38 
-1- 14.50 
+ 21.26 

-t- 30.43 
-t· 18,40 
+ 9.70 
+ 3.86 
-t- .50 

I 2.05 -r 
i 7.46 

+ 15.15 
-t-26.81 
-t-43. 99 

+ 63.29 
+41.10 
+24.87 
-t·- 13 .34 
+ 5.58 
+ .90 
-f-- 2.54 
+ 9.20 
+ 20.81 
-!-35.17 
+ 56.05 
+95.96 

Wise 
(3.6) 

-17.72 
- 16.82 
-15.58 
- 14.01 
-12.11 
- 9.96 
+ 8.56 
+ 13.53 
+20.06 
+28.39 
+38.88 
-t-52.04 
+68.54 

-39.94 
-36.82 
-32.53 
-27.00 
-20.37 
+ 31.33 
-f- 56.54 
+87.78 

+ 132.82 
+ 198.78 

-67.97 
-- 64. 78 
-60.58 
-55.12 
-48.20 
-39.73 
+57.43 

+ 102.14 
+ 175.23 
-1-- 267.46 
+409.60 
+ 710.48 

Wimol 
(6.2) 

-10.95 
- 10.10 
- 9.08 
- 7.92 
- 6.63 
- 5.27 
+ 4.37 
-t· 6.65 
+ 9.45 
+ 12.79 
+ 16.70 
-t-21.21 
+ 26.39 

-25.59 
-22.69 
- 19.18 
- 15.12 
-10.74 
+ 15.41 
+25.60 
+ 36.64 
-t- 50.45 
+67.64 

-47.72 
-43.99 
-39.53 
-34.32 
-28.36 
-21.84 
+29.09 
+46.86 
+ 71.30 
+97.10 

+ 130.20 
+ 185.48 

Mep 
(6.4) 

+ 1.10 
+ .81 
+ .55 
-t· .35 
+ . 18 
+ .07 
-t· .01 
-1- . I 0 
+ .27 
+ .53 
+ .90 
+ 1.40 
-1- 2.06 

-+· 3.33 
+2.13 
+ 1.18 
+ .49 
+ .06 
··f-· .27 
+ .99 
+2.01 
+3.50 
+5.57 

+8.66 
+6.05 
+3.90 
+2.20 
-f- .96 
+ .16 
+ .45 
+ 1.64 
+3.65 
+6.00 
+9.17 

+ 14.56 

Bomol 
(4.1) 

- .42 
- .18 
- .06 
- .01 
- .02 
- .05 
+ .09 
+ .25 
-L .53 ! 

+ .99 
+ 1.69 
+2.70 
-l- 4.08 

+ . 71 
-t- .70 
·-t- .47 
+ .16 
- .09 
+ .50 
+ 1 .51 
+3.01 
-f-- 5.34 
+8.77 

+4.44 
+3.47 
+2.41 
+ 1.39 
+ .52 
- .09 
+ .77 
+2.23 
+4.79 
+7.90 

+ 12.25 
+ 19.97 

• 

RVBML 
(4.2) 

+ .12 
+ .84 
+ 1.78 
+2.62 
+3.47 
+4.44 
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