STICHTING
 MATHEMATISCH CENTRUM
 2e BOERHAAVESTRAAT 49
 AMSTERDAM
 S 405
 SP 110

Some remarks concerning the quotient of sample median and sample range for a sample of size $2 n+1$
from a normal distribution
L. de Haan and J.Th. Runnenburg

Reprinted from
Statistica Neerlandica, 23(1969), p 227-234

Some remarks concerning the quotient of sample median and sample range for a sample of size $2 n+1$ from a normal distribution

by L. de Haan * and J. Th. Runnenburg **

0. Introduction and summary

Consider an ordered sample $\underline{x}_{(1)}, \underline{x}_{(2)}, \ldots, \underline{x}_{(2 n+1)}$ of size $2 n+1$ from the normal distribution with parameters μ and σ. We then have with probability one

$$
\underline{x}_{(1)}<\underline{x}_{(2)}<\ldots<\underline{x}_{(2 n+1)} .
$$

The random variable

$$
\begin{equation*}
\underline{h}_{n}=\frac{\underline{x}_{(n+1)}}{\underline{x}_{(2 n+1)}-\underline{x}_{(1)}} \tag{1}
\end{equation*}
$$

that can be described as the quotient of the sample median and the sample range, provides us with an estimate for μ / σ, that is easy to calculate. To calculate the distribution of \underline{h}_{n} is quite a different matter***. The distribution function of \underline{h}_{1} and the density of \underline{h}_{2} are given in section 1 . Our results seem hardly promising for general \underline{h}_{n}. In section 2 it is shown that \underline{h}_{n} is asymptotically normal.

In the sequel we suppose $\mu=0$ and $\sigma=1$, i.e. we consider only the ,,central" distribution. Note that \underline{h}_{n} can be used as a test statistic replacing Student's \underline{t}. In that case the central \underline{h}_{n} is all that is needed.

This research was suggested by Prof. Dr. J. Hemelrijk.

1. Exact distribution

1.1 Existence of moments

We define

$$
\underline{t}_{n}=\frac{\underline{\bar{x}}}{\sqrt{\frac{1}{2 n+1} \sum_{i=1}^{2 n+1}\left(\underline{x}_{i}-\underline{\bar{x}}\right)^{2}}}
$$

with

$$
\underline{\bar{x}}=\frac{1}{2 n+1} \sum_{i=1}^{2 n+1} \underline{x}_{i}
$$

[^0]We first show that for each $\alpha>0$

$$
\begin{equation*}
E\left|\underline{t}_{n}\right|^{\alpha}<\infty \Longleftrightarrow E\left|\underline{h}_{n}\right|^{\alpha}<\infty . \tag{2}
\end{equation*}
$$

This is an immediate consequence of the inequalities

$$
\begin{equation*}
\left|\underline{h}_{n}\right|-1<\left|\underline{t}_{n}\right|<2 \sqrt{2 n+1}\left(\left|\underline{h}_{n}\right|+1\right) \tag{3}
\end{equation*}
$$

which we shall now prove: From

$$
\begin{equation*}
\left|\underline{x}_{k}-\underline{\bar{x}}\right|<\underline{x}_{(2 n+1)}-\underline{x}_{(1)} \quad \text { for } \quad k=1,2, \ldots, 2 n+1 \tag{4}
\end{equation*}
$$

it follows that

$$
|\underline{\bar{x}}|-\left|\underline{x}_{(n+1)}\right|<\underline{x}_{(2 n+1)}-\underline{x}_{(1)}
$$

and

$$
\left|\underline{x}_{(n+1)}\right|-|\underline{\bar{x}}|<\underline{x}_{(2 n+1)}-\underline{x}_{(1)}
$$

hence

$$
\begin{equation*}
\left|\underline{x}_{(n+1)}\right|\left\{1-\frac{1}{\underline{h}_{n}}\right\}<|\underline{\bar{x}}|<\left|\underline{x}_{(n+1)}\right|\left\{1+\frac{1}{\underline{h}_{n}}\right\} . \tag{5}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
\frac{1}{2 n+1} \sum_{i=1}^{2 n+1}\left(\underline{x}_{i}-\underline{\bar{x}}\right)^{2}<\underline{x}_{(2 n+1)}-\underline{x}_{(1)} \tag{6}
\end{equation*}
$$

For $k=1,2, \ldots, 2 n+1$ we have

$$
\left|\underline{x}_{k}-\underline{\bar{x}}\right|<\sqrt{\sum_{i=1}^{2 n+1}\left(\underline{x}_{i}-\underline{\bar{x}}\right)^{2}}
$$

hence

$$
\begin{equation*}
\underline{x}_{(2 n+1)}-\underline{x}_{(1)}<\left|\underline{x}_{(2 n+1)}-\underline{\bar{x}}\right|+\left|\underline{x}_{(1)}-\underline{\bar{x}}\right|<2 \sqrt{\sum_{i=1}^{2 n+1}\left(\underline{x}_{i}-\underline{\bar{x}}\right)^{2}} . \tag{7}
\end{equation*}
$$

Combining (6) and (7) we obtain

$$
\begin{equation*}
\frac{1}{\underline{x}_{(2 n+1)}-\underline{x}_{(1)}}<\frac{1}{\sqrt{\frac{1}{2 n+1} \sum_{i=1}^{2 n+1}\left(\underline{x}_{i}-\underline{\bar{x}}\right)^{2}}}<\frac{2 \sqrt{2 n+1}}{\underline{x}_{(2 n+1)}-\underline{x}_{(1)}} \tag{8}
\end{equation*}
$$

Now (3) is an easy consequence of (5) and (8).
As $\sqrt{2 n} \cdot \underline{t}_{n}$ has Student's distribution with $2 n$ degrees of freedom, we obtain from (2)

$$
\left.\begin{array}{l}
E\left|\underline{h}_{n}\right|^{2 n}=\infty \tag{9}\\
E\left|\underline{h}_{n}\right|^{\alpha}<\infty \text { for } 0<\alpha<2 n
\end{array}\right\}
$$

1.2 Distribution of \underline{h}_{1} and \underline{h}_{2}

We shall compute the distribution function of \underline{h}_{1} and the density of \underline{h}_{2}. As a first step we write the integral representing the distribution function $F_{n}(t)$ of \underline{h}_{n} in a convenient form. The details are given for $n=1$ only, for other values of n an analogous result applies.

$$
\begin{aligned}
& F_{1}(t)=\frac{\iint_{\substack{x<y \\
y<t(z-x)}} \exp \left\{-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)\right\} d x d y d z}{\iint_{x<y<z} \int_{y} \exp \left\{-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)\right\} d x d y d z}= \\
& =\frac{\iint_{\substack{R_{1} \\
0<r<\infty \\
R_{R}}} \exp \left(-\frac{1}{2} r^{2}\right) r^{2} \sin \theta d r d \phi d \theta}{\iint_{\substack{R_{2} \\
0<r<\infty}} \exp \left(-\frac{1}{2} r^{2}\right) r^{2} \sin \theta d r d \phi d \theta}=\frac{\iint_{R_{1} \int_{R_{2}}} \sin \theta d \phi d \theta}{\iint_{R_{2}} \sin \theta d \phi d \theta},
\end{aligned}
$$

where we have applied the transformation

$$
\left\{\begin{aligned}
x & =r \cos \phi \sin \theta \\
x & =r \sin \phi \sin \theta \\
z & =r \cos \theta
\end{aligned}\right.
$$

and then integrated over r. The region $R_{1}(\phi, \theta)$ is determined by

$$
\sin \phi \sin \theta<t(\cos \theta-\cos \phi \sin \theta)
$$

and the region $R_{2}(\phi, \theta)$ by

$$
\left\{\begin{array}{l}
\cos \phi<\sin \phi \\
\sin \phi \sin \theta<\cos \theta \\
0<\phi \leqslant 2 \pi \\
0<\theta \leqslant \pi
\end{array}\right.
$$

This last quotient for $F_{1}(t)$ equals

$$
\begin{equation*}
\frac{\iiint_{\substack{R_{1} \\ 0<r \leqslant 1}} r^{2} \sin \theta d \phi d \theta d r}{\iint_{\substack{R_{2} \\ 0<1 \leqslant 1}} r^{2} \sin \theta d \phi d \theta d r}=\frac{\iint_{\substack{x<y \\ y<y(z) x) \\ x^{2}+y^{2}+z^{2} \leqslant 1}} d x d y d z}{I_{3}} \tag{10}
\end{equation*}
$$

where ([2] part II p. 304)

$$
I_{k}=\iint_{\substack{x_{1}<x_{2}<\ldots<x_{k} \\ x_{1}^{2}+x_{2}{ }^{2}+\ldots+x_{k}{ }^{2} \leqslant 1}} d x_{1} d x_{2} \ldots d x_{k}=\frac{\pi^{k / 2}}{k!\Gamma\left(\frac{k+2}{2}\right)} ; \quad\left(I_{3}=\frac{4 . \pi}{3.3!}, I_{5}=\frac{8 . \pi^{2}}{15.5!}\right) .
$$

To determine $F_{n}(t)$ for arbitrary n we have to compute the content of a part of the unit hypersphere in $R^{2 n+1}$ limited by $2 n+1$ hyperplanes. This can also be seen without any calculation. Equivalently we can compute the area of a part of the surface of the unit hypersphere in $R^{2 n+1}$ limited by $2 n+1$ hyperplanes. We choose the latter formulation for $n=1$: we need only compute the surface of a spherical triangle. The result is wellknown (see [7] p. 216). In this particular case we have

$$
F_{1}(t)=\frac{\frac{2 \pi}{3}-\frac{1}{3}\left\{\arccos \left(-\frac{1}{2}\right)+\arccos \left(\frac{t-1}{\sqrt{4 t^{2}+2}}\right)+\arccos \left(\frac{t+1}{\sqrt{4 t^{2}+2}}\right)\right\}}{\frac{4 . \pi}{3.3!}}
$$

i.e.

$$
\begin{equation*}
F_{1}(t)=2-\frac{3}{2 \pi}\left\{\arccos \frac{t-1}{\sqrt{3 t^{2}+2}}+\arccos \frac{t+1}{\sqrt{4 t^{2}+2}}\right\} . \tag{11}
\end{equation*}
$$

For $n=2$ we compute the content of the part of the unit hypersphere in R^{5} determined by the linear inequalities

$$
\left\{\begin{array}{l}
x_{i}<x_{i+1} \quad \text { for } \quad i=1,2,3,4 \\
x_{3}<t x_{5}-t x_{1}
\end{array}\right.
$$

To this end we use some results from Van der Vaart [7]. We only quote those parts of the definitions and two theorems in his paper that we need.

Consider a given set of r independent vectors $b_{1}, b_{2}, \ldots, b_{r} \in R^{r}$ with $b_{i}{ }^{\prime} b_{i}=1$ for $i=1,2, \ldots, r$ (a prime is used to denote the transpose of a vector or a matrix). We consider the hyperspherical simplex

$$
\begin{equation*}
\left\{x \mid x \in R^{r}, b_{1}^{\prime} x \geqslant 0, b_{2}^{\prime} x \geqslant 0, \ldots, b_{r}^{\prime} x \geqslant 0, x^{\prime} x \leqslant 1\right\} . \tag{12}
\end{equation*}
$$

The content of this simplex depends only on the matrix

$$
C=B B^{\prime},
$$

where B is the matrix with b_{i} as i-th row ($i=1,2, \ldots, \mathrm{r}$). The content of the simplex (12) is denoted by

$$
V_{r}(C ; 1,2, \ldots, r),
$$

whereas for $1 \leqslant k<l \leqslant r$

$$
\begin{align*}
& V_{r-2}(C ; \overline{k, l} ; 1,2, \ldots, k-1, k+1, \ldots, l-1, l+1, \ldots, r)= \\
& =\text { content }\left\{x \mid x \in R^{r}, b_{1}^{\prime} x \geqslant 0, \ldots, b_{k-1}^{\prime} x \geqslant 0, b_{k}^{\prime} x=0, b_{k+1}^{\prime} x \geqslant 0, \ldots,\right. \\
& \left.\qquad b_{l-1}^{\prime} x \geqslant 0, b_{l}^{\prime} x=0, b_{l+1}^{\prime} x \geqslant 0, \ldots, b_{r}^{\prime} x \geqslant 0, x^{\prime} x \leqslant 1\right\} . \tag{13}
\end{align*}
$$

The index $r-2$ is used to indicate that the simplex can be imbedded in an $(r-2)$ dimensional space.

Theorem 1 (SCHLÄFLI)

$$
\begin{array}{r}
\frac{\partial}{\partial c_{k l}} V_{r}(C ; 1,2, \ldots, r)=\frac{1}{r} \cdot \frac{1}{\sqrt{1-c_{k l}^{2}}} V_{r-2}(C ; \overline{k, l} ; 1,2, \ldots, k-1, k+1, \ldots, l-1 \\
l+1, \ldots, r)
\end{array}
$$

where $c_{k l}$ is the (k, l)-element of C (with $1 \leqslant k<l \leqslant r$).
The set (13) van be imbedded in R^{r-2}; a formula giving the matrix ' C of an $(r-2)$ dimensional hyperspherical simplex with the same content as (13) is given in the next theorem.

Theorem 2 (Van der Vaart)

$$
V_{r-2}(C ; \overline{k, l}, 1,2, \ldots, k-1, k+1, \ldots, l-1, l+1, \ldots, r)=V_{r-2}\left({ }^{\prime} C ; 1,2, \ldots, r-2\right)
$$

with for $p, q=1,2, \ldots, r-2$

$$
' c_{p q}=\frac{\operatorname{det}\left(c_{k, l, v}^{k, l, u}\right)}{\sqrt{\operatorname{det}\left(c_{k, l, u}^{k, l, u}\right) \operatorname{det}\left(c_{k, l, v}^{k, l, v}\right)}},
$$

where the matrix $c_{k, l, v}^{k, l, u}$ is the 3×3-submatrix of C where only the rows k, l and u and the columns k, l and v are maintained; here u is the $p^{\text {th }}$ element and v the $q^{\text {th }}$ element of the sequence $1,2, \ldots, k-1, k+1, \ldots, l-1, l+1, \ldots, r$.

According to (10) we have to compute

$$
\begin{align*}
& V_{5}(C ; 1,2, \ldots, 5)= \\
& \text { content }\left\{\left(x_{1}, x_{2}, \ldots, x_{5}\right) \mid x_{1}<x_{2}<\ldots<x_{5} ; x_{2} \leqslant t\left(x_{5}-x_{1}\right) ; \sum_{i=1}^{5} x_{i}^{2} \leqslant 1\right\} \tag{14}
\end{align*}
$$

The matrix C is here

$$
\left[\begin{array}{ccccc}
1 & -\frac{1}{2} & 0 & 0 & \frac{t}{\sqrt{4 t^{2}+2}} \\
-\frac{1}{2} & 1 & -\frac{1}{2} & 0 & \frac{-1}{\sqrt{4 t^{2}+2}} \\
0 & -\frac{1}{2} & 1 & -\frac{1}{2} & \frac{1}{\sqrt{4 t^{2}+2}} \\
0 & 0 & -\frac{1}{2} & 1 & \frac{t}{\sqrt{4 t^{2}+2}} \\
\frac{t}{\sqrt{4 t^{2}+2}} \frac{-1}{\sqrt{4 t^{2}+2}} & \frac{1}{\sqrt{4 t^{2}+2}} & \frac{t}{\sqrt{4 t^{2}+2}} & 1
\end{array}\right)
$$

Itt is wellknown ([5] p. 171) that the content of a hyperspherical simplex in R^{r} with $r>3$ cannot be expressed in terms of elementary functions of the elements of C. In our case however it is possible to compute the derivative of V_{5} as a function of t with the aid of the two preceding theorems. We have

$$
\begin{aligned}
& \frac{d V_{5}(C(t) ; 1, \ldots, 5)}{d t}=\sum_{i=1}^{4} \frac{d c_{i 5}(t)}{d t} \cdot \frac{\partial V_{5}(C(t) ; 1, \ldots, 5)}{\partial c_{i 5}}= \\
& =\sum_{i=1}^{4} \frac{d c_{i 5}(t)}{d t} \cdot \frac{1}{5} \frac{1}{\sqrt{1-c_{i 5}^{2}(t)}} \cdot V_{3}(C ; \overline{i, 5} ; 1, \ldots, i-1, i+1, \ldots, 4)= \\
& =\sum_{i=1}^{4} \frac{d c_{i 5}(t)}{d t} \cdot \frac{1}{5} \frac{1}{\sqrt{1-c_{i 5}^{2}(t)}} \cdot V_{3}\left({ }^{\prime} C^{(i)} ; 1,2,3\right) .
\end{aligned}
$$

The last quantity only involves a three-dimensional spherical simplex, the content of which can be computed. This computation gives us for the density of \underline{h}_{2}

$$
\frac{d F_{2}(t)}{d t}=\frac{15}{\pi^{2}} \frac{1}{2 t^{2}+1}
$$

$\cdot\left[\frac{1}{\sqrt{3 t^{2}+2}}\left\{2 \pi-\arccos \left(\frac{-\frac{1}{2}\left(3 t^{2}+t\right)}{\sqrt{\left(2 t^{2}+t+\frac{1}{2}\right)\left(3 t^{2}+1\right)}}\right)-\arccos \left(\frac{-\frac{1}{2}\left(t^{2}-2 t\right)}{\sqrt{\left(2 t^{2}+t+\frac{1}{2}\right)\left(2 t^{2}+2\right)}}\right)+\right.\right.$
$\left.-\arccos \left(\frac{-\frac{1}{2}\left(3 t^{2}+2 t+2\right)}{\sqrt{\left(3 t^{2}+1\right)\left(2 t^{2}+2\right)}}\right)\right\}+\frac{2 t}{\sqrt{4 t^{2}+1}}\left\{2 \pi-\arccos \left(\frac{-\frac{1}{2}\left(2 t^{2}+t\right)}{\sqrt{\left(2 t^{2}+t+\frac{1}{2}\right)\left(3 t^{2}+\frac{1}{2}\right)}}\right)+\right.$
$\left.-\arccos \left(\frac{-\frac{1}{2}\left(2 t^{2}-t\right)}{\sqrt{\left(2 t^{2}+t+\frac{1}{2}\right)\left(3 t^{2}+1\right)}}\right)-\arccos \left(\frac{-\frac{1}{2}\left(4 t^{2}+t+1\right)}{\sqrt{\left(3 t^{2}+\frac{1}{2}\right)\left(3 t^{2}+1\right)}}\right)\right\}+$

$$
\begin{align*}
& -\frac{2 t}{\sqrt{4 t^{2}+1}}\left\{2 \pi-\arccos \left(\frac{-\frac{1}{2}\left(2 t^{2}-t\right)}{\sqrt{\left(3 t^{2}+\frac{1}{2}\right)\left(2 t^{2}-t+\frac{1}{2}\right)}}\right)-\arccos \left(\frac{-\frac{1}{2}\left(4 t^{2}-t+1\right)}{\sqrt{\left(3 t^{2}+1\right)\left(3 t^{2}+\frac{1}{2}\right)}}\right)+\right. \\
& \left.-\arccos \left(\frac{-\frac{1}{2}(2 t+t)}{\sqrt{\left(3 t^{2}+1\right)\left(2 t^{2}-t+\frac{1}{2}\right)}}\right)\right\}+\frac{1}{\sqrt{3 t^{2}+2}}\left\{2 \pi-\arccos \left(\frac{-\frac{1}{2}\left(3 t_{2}-2 t+2\right)}{\sqrt{\left(2 t^{2}+2\right)\left(3 t^{2}+1\right)}}\right)+\right. \\
& \left.\left.-\arccos \left(\frac{-\frac{1}{2}\left(t^{2}+2 t\right)}{\sqrt{\left(2 t^{2}+2\right)\left(2 t^{2}-t+\frac{1}{2}\right)}}\right)-\arccos \left(\frac{-\frac{1}{2}\left(3 t^{2}-t\right)}{\sqrt{\left(3 t^{2}+1\right)\left(2 t^{2}-t+\frac{1}{2}\right)}}\right)\right\}\right] . \tag{15}
\end{align*}
$$

Some percentage points of the distribution of \underline{h}_{2} obtained by numerical integration are

$$
\left\{\begin{aligned}
P\left\{\underline{h}_{2}>0.560\right\} & =0.025 \\
P\left\{\underline{h}_{2}>0.735\right\} & =0.01 \\
P\left\{\underline{h}_{2}>0.888\right\} & =0.005
\end{aligned}\right.
$$

Theoretically it is possible to do a similar computation for $n=3$, but the result seems hardly worth the effort.

This method of computation can also be applied to other quotients of linear combinations of order statistics, e.g. the so-called extremal quotient $-\underline{x}_{(2 n+1)} \cdot \underline{x}_{(1)}^{-1}$.

2. Asymptotic distribution

Gnedenko [4] proved that if a_{n} satisfies

$$
\Phi\left(a_{n}\right)=1-\frac{1}{n},
$$

where Φ is the standard normal distribution function, then

$$
\lim _{n \rightarrow \infty} P\left\{a_{2 n+1}^{-1} \underline{x}_{(2 n+1)} \leqslant t\right\}=\left\{\begin{array}{lll}
0 & \text { when } & \mathrm{t}<1 \\
1 & \text { when } & t>1
\end{array}\right.
$$

The same relation holds for $-\underline{x}_{(1)}$. Hence

$$
\operatorname{iim}_{n \rightarrow \infty} P\left\{2^{-1} a_{2 n+1}^{-1}\left(\underline{x}_{(2 n+1)}-\underline{x}_{(1)}\right) \leqslant t\right\}=\left\{\begin{array}{lll}
0 & \text { when } & t<1 \\
1 & \text { when } & t>1
\end{array}\right.
$$

Cramer [3] proved that

$$
\lim _{n \rightarrow \infty} P\left\{2 \sqrt{2 n+1} \cdot \underline{x}_{(n+1)} \leqslant t\right\}=\Phi(t) \quad \text { for ali } t
$$

As $a_{n} \sim \sqrt{2 \log n}$ for $n \rightarrow \infty$, these results imply

$$
\lim _{n \rightarrow \infty} P\left\{8 \sqrt{n \log n} \cdot \underline{h}_{n} \leqslant t\right\}=\lim _{n \rightarrow \infty} P\left\{4 \sqrt{2 n+1} \cdot \sqrt{2 \log (2 n+1)} \cdot \underline{h}_{n} \leqslant t\right\}=\Phi(t)
$$

for all t. But then \underline{h}_{n} is asymptotically normal with parameters $\mu_{n}=0$ and $\sigma_{n}=$ $=(8 \sqrt{n \log n})^{-1}$.

References

[1] N. Bouma en A.Vehmeyer, Percentiles and approximations of the sample median over the sample range for samples of size $3,5,7$ and 9 from a standard normal distribution. Statistica Neerlandica 23 (1969) 235-239.
[2] R. Courant, Integral and differential calculus, I and II. New York 1936.
[3] H. Cramer, The elements of probability theory and some of its applications. New York 1955.
[4] B. Gnedenko, Sur la distribution limite du terme maximum d'une série aléatoire. Annals of Math. 44 (1943) 423-453.
[5] A. Sarhan and B. Greenberg, Contributions to order statistics. New York 1962.
[6] L. Schläfly, Theorie der Vielfachen Kontinuität. Gesammelte Mathematische Abhandlungen, Band I. Basel 1950.
[7] H. VAN DER VAART, The content of some classes of non-euclidian polyhedra for any number of dimensions, with several applications, I and II. Indag. Math. 17 (1955) 199-221.

[^0]: Report S 405 (SP 110), Statistical Department, Mathematical Centre, Amsterdam.

 * Mathematical Centre, Amsterdam.
 ** University of Amsterdam.
 *** A different attack from ours is given in [1].

