STICHTING
 mathematisch centrum

2e BOERHAAVESTRAAT 49

AMSTERDAM
S 406
SP 111

Note on a paper by H.G. Tucker

L. de Haan

Reprinted from

The Annals of Mathematical Statistics, 41(1970)

NOTE ON A PAPER BY H. G. TUCKER ${ }^{1}$

By laurens de Haan

Mathematisch Centrum
0. Summary. The purpose of this note is to indicate a direct and natural way of proving theorems stated in [4] by using an explicit expression for the sequence of normalizing constants belonging to a distribution function attracted to a stable law. This results in a remark concerning a counter example given by Tucker and a slightly sharpened version of his Lemma 5.

1. Determination of normalizing constants. For a positive function f on the real line with $f(\infty)=\infty$ we define

$$
\begin{equation*}
f^{*}(x)=\inf \{y \mid f(y) \geqq x\} \quad \text { for } x>0 \tag{1}
\end{equation*}
$$

This is an extension of the concept of the inverse function. We mention the following property.

Lemma 1. Let ϕ_{1} and ϕ_{2} be measurable regularly varying functions (see definition in [4]) with exponent $\rho>0$, then $\phi_{1}{ }^{*}$ and $\phi_{2}{ }^{*}$ are regularly varying with exponent ρ^{-1}. For any c with $0 \leqq c \leqq \infty$ we have

$$
\begin{equation*}
\phi_{1}(x) / \phi_{2}(x) \rightarrow c \quad \text { for } x \rightarrow \infty \tag{2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\phi_{1}{ }^{*}(x) / \phi_{2}{ }^{*}(x) \rightarrow c^{-1 / \rho} \quad \text { for } \quad x \rightarrow \infty \tag{3}
\end{equation*}
$$

Following Tucker we write $F \in D(\alpha)$ when the distribution function F is in the domain of attraction of a stable law G_{α} of characteristic exponent α, i.e. if for suitably chosen constants $B_{n}>0$ and A_{n} the n-fold convolutions $F^{n *}$ of F satisfy $\lim _{n \rightarrow \infty} F^{n *}\left(B_{n}\left\{x+A_{n}\right\}\right)=G_{\alpha}(x)$ for every x. The numbers B_{n} are called normalizing coefficients.

Lemma $2 .{ }^{2}$
(a) If $F \in D(\alpha)(0<\alpha<2)$ then

$$
\begin{equation*}
B_{n} \sim c \inf \{x \mid 1-F(x)+F(-x-0) \leqq 1 / n\} \quad \text { for } n \rightarrow \infty \tag{4}
\end{equation*}
$$

(b) If $F \in D(\alpha)(0<\alpha \leqq 2)$ then

$$
\begin{equation*}
B_{n} \sim \operatorname{cinf}\left\{x \mid x^{-2} \int_{-x}^{x} t^{2} d F(t) \leqq 1 / n\right\} \quad \text { for } n \rightarrow \infty \tag{5}
\end{equation*}
$$

Proof. As

$$
\begin{equation*}
\phi(x)=\sup _{a<s \leqq x} s^{2}\left\{\int_{-s}^{s} t^{2} d F(t)\right\}^{-1} \tag{6}
\end{equation*}
$$

[^0]which is a nondecreasing function for sufficiently large a and $x \geqq a$, satisfies (slightly generalizing the argument in [3])
\[

$$
\begin{equation*}
\phi(x) \sim x^{2}\left\{\int_{-x}^{x} t^{2} d F(t)\right\}^{-1} \quad \text { for } \quad x \rightarrow \infty \tag{7}
\end{equation*}
$$

\]

ϕ is regularly varying with exponent α. From this it follows

$$
\begin{equation*}
\phi(x-0) / \phi(x+0) \rightarrow 1 \quad \text { for } \quad x \rightarrow \infty \tag{8}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
\left.\phi^{(} \phi^{*}(x)-0\right) \leqq x \leqq \phi\left(\phi^{*}(x)+0\right) \tag{9}
\end{equation*}
$$

Combining (8) and (9) we obtain $\phi\left(\phi^{*}(x)\right) \sim x$ for $x \rightarrow \infty$. From this it follows using (7)

$$
\begin{array}{cl}
n \alpha_{n}^{-2} \int_{-\alpha_{n}}^{\alpha_{n}} t^{2} d F(t) \rightarrow 1 & \text { for } n \rightarrow \infty, \text { with } \tag{10}\\
\alpha_{n}= & \inf \left\{x \mid x^{-2} \int_{-x}^{x} t^{2} d F(t) \leqq 1 / n\right\} .
\end{array}
$$

Relation (10) is identical with (8.14) page 304 of [1] and so the α_{n} are normalizing constants for F. As two sequences of normalizing coefficients are asymptotically equal except for a multiplicative constant we have proved (5). The first part of the lemma is an immediate consequence of Theorem 2 page 275 of [1] and Lemma 1.
2. Correspondence between F and $\left\{B_{n}\right\}$. Lemma 5 of [4] states that a sequence of positive numbers is a sequence of normalizing constants for an $F \in D(\alpha)(0<\alpha<2)$ iff

$$
\begin{equation*}
B_{n} \sim \phi(n) \quad \text { for } n \rightarrow \infty \tag{11}
\end{equation*}
$$

where $\phi(x)$ is a regularly varying function with exponent α^{-1}. Clearly (11) implies

$$
\begin{equation*}
B_{n}^{-1} B_{n m} \rightarrow m^{1 / \alpha} \quad \text { for } \quad n \rightarrow \infty \quad \text { and } \quad m=1,2,3 \cdots \tag{12}
\end{equation*}
$$

Tucker gives an example of a sequence $\left\{B_{n}\right\}$ satisfying (12) and not (11). This example might be somewhat misleading as becomes apparent from the following observation.

A sequence of normalizing constants $\left\{B_{n}\right\}$ is always asymptotically equivalent to a monotone sequence of such coefficients (as is shown in Lemma 2). If we assume (12) for a sequence of positive numbers $\left\{B_{n}\right\}$ asymptotically equivalent to a monotone sequence $\left\{B_{n}{ }^{\prime}\right\}$ then (11) holds for $\phi(x)=B_{[x]}^{\prime}$ (where ϕ is regularly varying with exponent α^{-1}) as can be seen from the next lemma. The sequence in Tucker's example is not asymptotically equivalent to a monotone sequence and this tends to confuse the point just made.

Lemma 3. If for a positive nondecreasing function ϕ defined on an interval (a, ∞) and a constant $\rho \geqq 0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi(n m) / \phi(n)=m^{\rho} \quad \text { for } \quad m=1,2,3, \cdots, \tag{13}
\end{equation*}
$$

ϕ is regularly varying with exponent ρ.

Proof. We first prove

$$
\begin{equation*}
\phi(n+1) / \phi(n) \rightarrow 1 \quad \text { for } n \rightarrow \infty \tag{14}
\end{equation*}
$$

If (14) does not hold, we can select a sequence $\left\{k_{r}\right\}$ of positive integers such that $\lim _{r \rightarrow \infty} \phi\left(k_{r}+1\right) / \phi\left(k_{r}\right)=c>1(c \leqq \infty)$. We choose m such that $1 \leqq((m+1) / m)^{\rho}<c$; take $n_{r}=\left[k_{r} m^{-1}\right]$, then by (13)

$$
\begin{aligned}
& c>((m+1) / m)^{\rho}=\lim _{r \rightarrow \infty} \phi\left(n_{r}(m+1)\right) / \phi\left(n_{r} m\right) \\
& \quad=\lim _{r \rightarrow \infty} \prod_{k=n_{r} m}^{n_{r}(m+1)-1} \phi(k+1) / \phi(k) \geqq \lim _{r \rightarrow \infty} \phi\left(k_{r}+1\right) / \phi\left(k_{r}\right)=c,
\end{aligned}
$$

hence (14) is true.
Given $x>0$ and $\varepsilon>0$ we choose positive integers m and r such that

$$
\begin{equation*}
x-\varepsilon<m / r<x<(m+1) / r<x+\varepsilon . \tag{15}
\end{equation*}
$$

Defining for real $t>0, n_{t}=\left[t r^{-1}\right]$ we have

$$
\begin{equation*}
\phi\left(n_{t} m\right) / \phi\left(\left(n_{t}+1\right) r\right) \leqq \phi(t x) / \phi(t) \leqq \phi\left(\left(n_{t}+1\right)(m+1)\right) / \phi\left(n_{t} r\right) . \tag{16}
\end{equation*}
$$

Combining (13), (14), (16) and (15) we find

$$
(x-\varepsilon)^{\rho} \leqq \lim \inf _{t \rightarrow \infty} \phi(t x) / \phi(t) \leqq \lim \sup _{t \rightarrow \infty} \phi(t x) / \phi(t) \leqq(x+\varepsilon)^{\rho} .
$$

Hence we have $\lim _{t \rightarrow \infty} \phi(t x) / \phi(t)=x^{\rho}$.
Remark. It suffices to require (13) for two integers m_{1} and m_{2} for which $\log m_{1} / \log m_{2}$ is irrational, e.g. $m_{1}=2$ and $m_{2}=3$. The proof is simpler when one requires (13) for all m.

Using the Lemmas 1, 2 and 3 and

$$
\left\{\frac{1}{1-F(x)}\right\}^{* *} \sim \frac{1}{1-F(x)} \quad \text { for } \quad x \rightarrow \infty
$$

we can restate Tucker's Lemma 3 in the following way.
Lemma 4. (a) Call two distribution functions F_{1} and F_{2} equivalent if for $a c$ with $0<c<\infty$

$$
1-F_{1}(x)+F_{1}(-x-0) \sim c\left\{1-F_{2}(x)+F_{2}(-x-0)\right\} \text { for } x \rightarrow \infty
$$

and call two sequences of positive numbers $\left\{B_{n}\right\}$ and $\left\{B_{n}{ }^{\prime}\right\}$ equivalent if for a c with $0<c<\infty$

$$
B_{n} \sim c B_{n}{ }^{\prime} \quad \text { for } n \rightarrow \infty
$$

For each α with $0<\alpha<2$ there is a one-to-one correspondence between the equivalence classes of distribution functions F from $D(\alpha)$ and those equivalence classes of sequences of positive numbers $\left\{B_{n}\right\}$, which contain a nondecreasing sequence satisfying (12) (then every sequence in the equivalence class satisfies (12)). The correspondence is: $\left\{B_{n}\right\}$ is a sequence of normalizing constants for F.
(b) Call two distribution functions F_{1} and F_{2} equivalent if for a c with $0<c<\infty$

$$
\int_{-x}^{x} t^{2} d F_{1}(t) \sim c \int_{-x}^{x} t^{2} d F_{2}(t) \quad \text { for } \quad x \rightarrow \infty
$$

and call two sequences of positive numbers $\left\{B_{n}\right\}$ and $\left\{B_{n}{ }^{\prime}\right\}$ equivalent if for a c with $0<c<\infty$

$$
B_{n} \sim c B_{n}^{\prime} \quad \text { or } \quad n \rightarrow \infty
$$

There is a one-to-one correspondence between the equivalence classes of distribution functions F from $D(2)$ and those equivalence classes of sequences of positive numbers $\left\{B_{n}\right\}$ which contain a nondecreasing sequence satisfying (12) with $\alpha^{-1}=0$ (then every sequence in the equivalence class satisfies (12)). The correspondence is: $\left\{n^{\frac{1}{2}} B_{n}\right\}$ is a sequence of normalizing constants for F.
It is not difficult to give a direct proof of the statement about normalizing constants contained in Tucker's Theorem 2 based on Lemmas 1 and 2 in this note.

REFERENCES

[1] Feller, W. (1966). An Introduction to Probability Theory and its Applications 2. Wiley, New York.
[2] Gnedenko, B. V. and Kolmogorov, A. N. (1954). Limit Theorems for Sums of Independent Random Variables. Addison-Wesley, Reading.
[3] Karamata, J. (1930). Sur un mode de croissance régulière des fonctions. Mathematica (Cluj) 4 38-53.
[4] Tucker, H. G. (1968). Convolutions of distributions attracted to stable laws. Ann. Math. Statist. 39 1381-1390.

[^0]: Received April 28, 1969.
 ${ }^{1}$ Report S406 (SP 111) Statistical Department, Mathematical Centre, Amsterdam.
 ${ }^{2}$ Relation (4) is identical with (12) Chapter 7 Section 25 of [2].

