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A Form of Regular Variation .,,.. . 
and Its Application to the Domain of Attraction 

LAURENS DE HAAN** 

Introduction 

In 1930 Karamata introduced the concept of regular variation of a positive 
function at infinity. He found a striking characterisation of the class of regularly 
varying functions. Several related forms of regular behaviour at infinity can be 
defined. At first a new type of regular behaviour is studied in Section 1. 

The results of this section are applied to a problem in extreme value theory: 
we consider a sequence of independent random variables 

with the same distribution function F(x) and define 

Y,, = max ( X 1, X 2 , ••• , X n). 
Then 

p { Y,, < X} = pn ( X). 

A distribution function F is said to belong to the domain of attraction of a non­
degenerate distribution function G (notation FeD(G)} when there exist constants 
an>O and bn such that 

F"(an X + bn) ➔ G (x) 

weakly. Gnedenko [2] proved in 1943 that only three types of distribution 
functions have non-empty domains of attraction. In addition he gave charac­
terizations of their domains of attraction, but he remarked that the characteriza­
tion of the domain of attraction of the third type 

A(x)=exp(-e-x) 
' 

cannot be regarded as final and simple enough for applications. In 1949 Me~ler [6] 
gave another characterization in terms of the inverse function off. In this paper 
we give a comparatively simple characterization of D (A) involving only the 
distribution function· itself. Furthermore we show that this criterion can be used 
also to characterize the domains of attraction of the two other lirnit types. 

1. A Kind of Regular Variation 

First we give the main results of Karamata's papers about regular variation 
. ([5] and [6]). 
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Definition 1. A positive function U, defined on (0, oo) is regularly varying at 
infinity when 

1m ---=Xp (1) 
r-oo U(t) 

for all x > 0. The real number p is called the exponent of regularity. When p = 0 U 
is called slowly varying at infinity. 

Theorem 1. For a positive function U defined on (0, oo) and summable on finite 
intervals the following assertions are equivalent. 

a) U is regularly varying with exponent p > -1, 

b) 1m x = p + 1 > 0. (2) 
x-co 

U(t) dt 
0 

c) There exist real functions c(x) and a(x) with 

lim c(x)=c (0 < c <co) 
(3) 

lima(x)=p>-1 
x- 00 

such that 
U (x) = c(x) · exp • 

1 t 
(4) 

Remark 1. For p < -1 the theorem holds with (2) replaced by 

Im-
00
---= -p-1 >0. 

x-oo 
U(t) dt 

(5) 

:x 

Remark 2. It can be proved that the summability of U on finite subintervals 
of some terminal interval (a, oo) is implied by the regular variation and the 
measurability of U (see e.g. [1]). Hence for measurable U a slightly different form 
of Theorem 1 holds. 

Corollary 1. If U is regularly varying with exponent p > -1 

X 

U(t) dt 
0 

is regularly varying with exponent p + 1. If U is regularly varying with exponent 
p<-1 ~ 

U(t) dt 
X 

is regularly varying with exponent p + 1. 

Definition 1 can be extended to p = + oo. We define for x > 0 

0 for x < 1 

1 for x 1 

for x> 1 

, , 

, 
, 
, 
, 
, , , 

' I 
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00 

1 

0 

for x< 1 

for x= 1 

for x> 1. 
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Definition 2. A positive function U defined on (0, oo) is rapidly varying at 
infinity when 

for all x>O with p= +oo. 

1
. U(tx) 
1m---=xP 

r-oo U(t) 

For rapidly varying functions we have a much weaker version of Theorem 1. 

Theorem 2. A non-decreasing positive function U defined on (0, oo) is rapidly 
varying with p = oo iff 

1
. x U(x) 
1m x ro. 

X-+ 00 
(6) 

U(t) dt 
0 

Proof a) Suppose that U is rapidly varying with p= + oo. By Lebesque,s 
theorem on dominated convergence 

X 

U(t) dt 

lim -0
---= lim 

x-oo x U(x) x- O'.) 0 U(x) 

1 

lim---
0 x-oo U(x) 

=0. 

b) On the other hand if there exists a value of t (0 < t < 1) and a sequence 
Xn > 00 such that 

1m---=c>O, 
n- oo V(x,.) 

then in view of the monotonicity of the lefthand part of (7) as a function oft 

This contradicts (6). 

1 

lim inf 
n-ro 0 

Remark 3. For p = - oo Theorem 2 holds with (6) replaced by 

Im -
00
----= 00 . 

X t 

(7) 

A related form of Karamata's theorem (Theorem 1) is given in the next theorem. 

Theorem 3. For a real-valued function V defined on (0, ro) and summable on 
finite intervals the fallowing assertions are equivalent. 
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a) For every a>O 

lim { V(ax)- V(x)} = p log a 
X-+00 

where p is a real constant. 

b) 
1 X 

lim V(x)- V(t)dt =p. 
X-+00 X 0 

c) There exist real functions c(x) and a(x) with 

such that 

lim c(x)=c (-oo<c<oo) 
X-+ 00 

lim a(x)=p 
X-+00 

X a(t) 
V(x)=c(x)+ --dt. 

0 t 

Proof Relation (8) holds iff 

U(x)=exp { V(x)} 

(8) 

(9) 

(10) 

( 11) 

is regularly varying at infinity with exponent p. Hence the equivalence of a) and c) 
is contained in Theorem 1. The implication c) z,.. b) is a matter of standard cal­
culation. For the proof of the implication b) > c) we define 

1 X 

g(x) = V(x)- V(t) dt. 
X 0 

(12) 

Then 
1 

1 t 
V(t) dt-

o 1 t 
, 

l 

V(t) dt + V(x)-g(x), 
0 

hence 

V(x)= 
0 1 t 

(13) 

Remark. If (8) holds with p > 0, Vis slowly varying at infinity. 

The next theorem can be seen as an attempt to characterize a subclass of the 
class of slowly varying functions with functions which behave even more regularly. 

Theorem 4. For a real-valued strictly increasing function V which is defined on 
(0, co) the fallowing assertions are equivalent. 

a) For every positive a and b =t= 1 

-V(x) log a 
Im-----= 

x-oo V(b x)-V(x) log b · 
(14) 
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b) The function 
l X 

V(x)- V(t) dt 
X 0 

is slowly varying at infinity. 

c) There exists a slowly varying function g such that 

V(x) 
1 t 

d) For every a>O 
V(a x)- V(x) 

lim -------= log a. 
1 X 

X-+00 

V(x)-- V(t)dt 
X 0 

Proof a) :• b). Writing (b > 0, 0 <a< 1) 

V(b x)- V(a bx) V(x)- V(a bx) V(x)- V(b x) 
------= ------

V(x) V(a x) V(x) V(a x) V(x) V(a x) 

and using (14) we see that the function 

h(x)= V(x)-V(ax) 

is slowly varying for every O <a< 1. 
By Theorem 1 this implies 

1 x 1 ax 

V(t) dt- V(t) dt 
x O ax 0 lim----------= 1, 

x- oo V(x)- V(a x) 

hence 
1 X 

V(x)- V(t) dt 
1 ax 

V(a x) V(t) dt 

lim 
X-+ 00 

X 0 ax 0 

V(x}-V(ax) V(x)- V(ax) 

By Fatou's lemma we have 

1 X 

V(x)- V(t) dt 
X 0 

=0. 

liminf-------> 1m1n -----
V(x)- V(a x) 0 x- oo V(x)- V(a x) 0 log a 

Combining (18) and (19) we obtain 

. - . 1 ~ 1 af 
· V(x)- V(t) dt >-• V(a x)- V(t) dt > 

X o a X . lim ---=--______ ____::_______..:::___ _____ o __ ----=-::;__ = O 
1 X • 

V(x)- V(t) dt 

-

X-tOO 

X 0 

17 Z. Wahrscheinlichkeitsthe()rie verw. Geb .• Bd. 17 
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(15) 

(16) 

(17) 

(18) 

t> - (19) 
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b) > c ). Defining 
1 X 

g(x) = V(x)- V(t) dt 

we get ( see ( 13)) 

V(x) 

c) > d). For a> 1 we have 

V(a x)- V(x) 

Xo 

1 X 

V(x)-- V(t)dt 
g(x) 

X 0 

Since the relation 
l
. g(tx) 
lffi --= 1. 

x-aJ g(x) 

a g (t x) 

i g(x) 

dt 
• 

t 

holds uniformly on [1, a] (see [l]), we obtain (17) by letting x ) oo in (20). 
d) > a). Trivial. 

(20) 

Remark. The requirement that V is strictly increasing is only used to ensure 
the finiteness of the expression to the right of the lim sign in (14) and may be 
replaced by the requirement: for each a> 1 there exists a M(a) such that for 
x>M(a) 

V(ax)- V(x)>O. 

Remark. It is not difficult to show that a positive function V satisfying (14) is 
slowly varying at infinity. It is not true that (14) implies (8) for a pE[O, oo]. 

Corollary 2. Thel>rem 4 remains valid if we replace everywliere lim by lim ( of 
x-oo xtO 

course now "" slowly varying'' has to be read as '' slowly varying at x =0 '' ). 

PrcJoj: If h (x) is slowly varying at x =0 i.e. if for each x > 0 

then x- 2 h 

I
. h(t x) 
lffi h = 1, 

rtO (t) 
1 

is regularly varying with p = -2 and by Remark 1 
X 

1
. x h(x) 
lffi X 

xLO 
h(t) dt 

0 

y-oo 
y h 

y 

1 

t 

dt 
t2 

The remainder is easy. 

2. Preliminaries 
First we list some well-known results on the domain of attraction of the double 

exponential law used in the sequel ( cf. [3]). 

Lemma 1. Let {~} be a sequence of distribution functions. Suppose that there 
e:x:i.'>t .sequences of real numbers {an} and { bn} with 

an> 0 for n = 1, 2, 3, ... , 
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suc~h that 
lim F,.(anx+bn)=G(x) (21) 
n-oo 

weakly where G is n<Jn-degenerate distribution func:ti(Jn. 

Then 
(22) 

n-co 

holds with G* non-degenerate and real numbers cxn > 0 and /Jn ijj' 

1. Ctn 0 1m-=A> , 1m---=B (23) 
n-oo a n 

G*(x)=G(A x+B). (24) 

We say that a distribution function F belongs to the domain of attraction of a 
non-degenerate distribution function G notation FED(G)) if for suitably chosen 
constants an> 0 and bn 

(25) 
n-oo 

for all continuity points x of G. 

Theorem 5. A distribution function F can belong only to the domain of attraction 
of one of the following types of di.stribution functions: 

0 for x<O 
(26) <Pa(x) 

exp( x-a) for x>O. 

exp( ( x)a) for x<O 
1/Ja(x) (27) 

1 for x>O. 

A ( x) = exp ( - e - x). (28) 

In (26) and (27) ex is a positive constant. 

In the sequel we use the notation 

x 0 =x0 (F)= sup {xlF(x)< 1} < oo. (29) 

Theorem 6. a) The distribution function F belongs to the domain of attraction of 
<Pa(x) ifJ 1-F(x) is regularly varying with exponent - et. 

b) The distribution function F belongs to the domain of' attraction of 1/Jrx(x) iff 
1 ' 

x 0 < oo and 1 -F x 0 - -- is regular I y varying with exponent - ct. 
X 

' 

Theorem 7. The distribution function F belongs to the domain of attraction of 
A(x) ifj' 

n-oo 

or equivalently 
limn {1-F(anx+bn)} =e-x • (30) 
n-oo 

17* 
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with 

bn=inf X l -
n 

(31) 

an== inf xi 1-
n e 

Remark. It can be seen (cf. [ 4]) that the choice (31) for the stabilizing coefficients 
also holds for distribution functions attracted to the other limit types. 

Theorem 8. The distribution function F belongs to the domain of attraction of 
A (x) ifJ it is possible to choose a function A with 

z A (z) > 0 when z =t= 0 

lim A(z)=O 
zixo 

(32) 

.r,uch that for every x 

1m -------= e-x. 
zt xo 1-F(z) 

(33) 

Remark. In Gnedenko's paper the continuity of A is required but in his proof 
this property is not used. 

The next theorem is due to von Mises ([8]). The theorem is extended in 
Gnedenko's paper. 

Theorem 9. Suppose that the distribution function F is twice differentiable. 
Define 

If 

then F ED(A). 

1
. d 
1m­

xrxa dx 

F'(x) 

1 

f(x) 
=0, 

3. The Domain of Attraction of A 

(34) 

(35) 

Lemma 2. If FE D(A), there exists a continuous and strictly increasing distribu­
tion function G such that 

1-F(x) "-' 1-G(x) for xj x 0 • (36) 

Proof Suppose first x 0 = oo. By Theorem 8 there is a positive function A with 

lim A(z)=O. 
Z-+00 

such that for all x 
1-F(z+zA(z)x) -x 

lim =e . 
1-F(z) 

(37) 
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Both sides of (37) are monotone functions of x hence (37) holds uniformly for 
O<x< 1. Taking x(z)=z- 1 we obtain 

From this we see 

lffi 
1-F(z) 

= 1. 

= 1. 
z-co l-F(z-0) 

(38) 

(39) 

Let {zn}:: 1 be an enumeration of the points of discontinuity of F. We define 
F1(x) in the following way: F1 (z1)=F(z1 -0), F1{z) linear on [z1., z1 +A(z1)] with 
F1(z1 +A(z1) =F(z1 +A(z1) and F1 (z)=F(z) when z¢[z1 , z1 +A(z1)]. 

Now F2 (z) equals F1 (z) if z 1 < z 2 < z 1 + A (z 1); otherwise F2 (z) is constructed by 
putting F2 (z2)=F1 (z2 -0) and making F1 linear on [z2 , z2 +A(z2 )] or [z2 , z1] 

if z2 < z1 < z2 + A (z2 ). In this way we construct a sequence of distribution func­
tions F:i. As the intervals In where the function is changed are disjoint, H(z) = 
lim F:t (z) exists and is a continuous distribution function. If H (z) =t= F(z) for a z 
n-0'.) 

then there exists an n such that H (z) = F:i (z) and H (z) =t= Fk (z) for k < n, so 

F(zn -0) < H(z) < F(z,. + A (zn) 
and 

l-F(zn-0) > 1-H(z) > 1-F(zn+A(zn) 
1 - F(zn + A (zn)) 1 F(z) 1-F(zn) 

• 

Hence by (38) and (39) 
. 1-H(z) 

=l. 
-F(z) 

(40) 

In an analogous way we proceed to make the function strictly increasing. Let 
{ un} be an enumeration of the initial points of intervals where H is constant and 
{ vn} the corresponding endpoints. The construction of a sequence Hn is analogous 
to the construction of the sequence ~ using now the intervals [un, vn + A (vn)J 
instead of [zn, zn+A(zn)J. The function G(z)= lim Hn(z) is a continuous and 

strictly increasing distribution function and as above we see 

If x 0 < oo we have 

with 

and 

lm =l. 
z- oo 1 H(z) 

1-F(z + z A (z) x) 
lim =e-x 
ztxo 1-F(z) 

zA(z)>O 

lim A(z)=O. 
zjxo 

(41) 



250 L. de Haan: 

By taking x(z)=x0 -z we obtain 

1 F(z + z A (z)(x0 z) 
lim 1 . (42) 

1 F(z) zTxo 

As 
z A (z)(x0 z)>O 

and 
lim z A(z)(x0 z) 0, 
zj xo 

relation ( 42) implies 
1 F(z) 

lim 1 ; 
1 F(z 0) zj xo 

the remainder of the proof is analogous to the proof for the case x 0 = oo. 

Lemma 3. Let { F,} be a family of distribution functions (- oo < t < t0 < ro ). 
Suppose that there exist real-valued functions a(t)>O and b(t) such that 

lim F;(a(t) x + b (t)) = G(x) 
tito 

weakly, where G is a non-degenerate distribution function. Then 

lim F; (rx (t) x + f3 (t) = G* (x) 
tito 

holds with G* non-degenerate and real-valued functions rx(t) > 0 and fj(t) if]. 

and 

1m --=A >0, 
tt to a(t) 

1m----=B 
riro a(t) 

G*(x)=G(Ax+B). 

Proof Analogous to the proof of Lemma 2 (see Feller [2] p. 246). 

Corollary 3. If for a distribution function F 

holds with 

and 

then 

holds ifJ 

1-F(z+zA(z)x -x 
lim-------=e 
zixo 1-F(z) 

z A(z)>O 

lim A(z)=O, 
zj xo 

1-F(f(z) + z B(z) x 
lim 
zt xo 1-F(z) 

lffi --= 1 
zixo A(z) 

-x-b =e 

lffi ---=b. 
zixo A(z) 

(43) 

(44) 

(45) 
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Proof Take in Lemma 3 

1-F(t) 
and G(x)= 1-e-x. 

The fact that Fr (- oo) > 0 is immaterial. 

V(y) 
1m =log a 

YlO V(e- 1 y) V(y) 
(46) 

with for O < y < 1 

V(y)=inf {xi 1-F(x) > y}. 

Proof We use Theorem 7 and make first the remark that if an in (30) is replaced 
by 

1 -V 1 
an n 

for an arbitrary a> 1 then 

limn {1-F(an x+ bn)} =a-x; 
n-oo 

(47) 

this can be seen by a simple adaptation of Gnedenko's proof. 
Combination of (30) and (47) gives by Lemma 1 

V 
1 

V 
1 

lim 
na n 

1 1 n-oo 
V V 

log a. (48) 

ne n 

Using the monotonicity of Vwe see from (48) 

V 1 
n+l n 

lim--------=0. 
1 1 

V -V 
n-oo 

(49) 

ne n 
From (47) we obtain also 

limn { 1-F(Cl.n+ 1 X + bn+1)} =a-x. 

Using Lemma 1 again we get 

1 1 
V V 

n+l (n+ 1) a 1. (50) lim 
1 1 n-oo 

V V 
na n 

1 Cf. Mejzler [7]. 
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Now defining 

U x)= 
X 

we see (using the entier function) 

U(a[y])-U([y] + 1) <-U_(a_y_) __ _ 
U ( e [y]) - U ( [y J) U ( e [y]) - U ( [y J) == U (e [y]) - U ([y]) 

The righthand member is the same as 

U ( e [y ]) - U ( [y]) U ( e [y J) - U ( [y J) 

and this by (48), (49) and (50) tends to log a as y tends to infinity. The lefthand side 
tends to the same limit so 

1m------=loga 
Y- ct) LJ ( e [y]) - LJ ( [y]) 

and this in combination with (48) gives the assertion of the lemma. 

Lemma 5. If' FeD(A) then 

1
. 1-F z+z A(z) x 
lffi ---'-----...:.._ = e-x 

zi xo 1-F(z) 
for all x with 

xo 
., . 

{1-F(t)} dt 

(51) 

(52) 

(53) 

Proof By Lemma 2 and Corollary 3 we need only consider continuous and 
strictly increasing distribution functions. 

By Lemma4 

for all a> 1 with 

-V(y) 
1m ------=log a 

ylO V(e- 1 y)-V(y) 

V (y) = ( 1 - F) - 1 (y). 

By Theorem 4 and Corollary 2 (used for - V) relation (54) is equivalent with 

y 0 

Taking a =e and using Lemma 1 we see 

-V(y) 

limn { 1-F (an x+ bn)} =e-x 
n-+ oo 

(54) 

(55) 
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with 

bn= 
n 

1/n 1 
a11 n V(t) dt - V 

0 n 
• 

Now it is not difficult to see (using (49), (51), (55) and Lemma 1) that 

with 

lim y- 1 1 -F a(y) x + b(y)) 
ytO 

b(y)= V(y) 

l Y 
a(y)= V(t) dt-V(y). 

y 0 

Putting y= 1-F(z) in (56) and (57) we obtain (52) and (53). 

Lemma 6. If.for a distributio11 Junction F 

. 1-F(z+zA(z)x 
l1m 
zixo 1 -F(z) 

for all x with z A(z)>O for z=t=O and 

lim A(z)=O, 
ztxo 

then 
1 F1(z+z A(z)x) e-x 

1 F1 (z) 
where 

XO 

F1(X) 1 {l F(t)} dt. 
X 

Proof By the Lemma's 3 and 5 

xo 

{l --F(t)} dt 
for zjx0 • 

In (58) we substitute z=y+ y A(y) s withs an arbitrary real number; then: 

-x 1m --~-------..:......,...---~__:__----~= e . 
yjxo 1-F(y+ Y A(y) S 

With (58) this becomes 

= e-(x+s). 1m--~_::.___:::_:__::.__--=-=::-:-:-~-.;.._----
Yt xo 1-F(y) 

253 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 
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Applying Corollary 3 we obtain from (58) and (62) 

tm------=1 
Yi xo A(y) 

(63) 

for all s. 
Combining (58),. (61) and (63) we obtain (59). 

Lemma 7. If for a positive non-decreasing function f defined on (- oo, x 0 ) with 

limf(x)=oo 
zf xo 

( where x 0 < oo ), the relation 

1m-----=ex 
zjxo f(z) 

holds for all x and a properly chosen function A with 

and 

then also 

for all X where 

and 

zA(z)>O for z=!=O 

lim A(z)=O, 
zfxo 

Iffi ------=ex 
zj xo !1 (z) 

X 

f1(X)= f(t) dt 

x 0 -1 when x 0 < oo 
1 when x 0 oo. 

(64) 

(65) 

Proof Analogous to the proof of Lemma 6. First we use Theorem 4 to find 

z 

f(t) dt 

for zjx 0 , 

then by Lemma 3 

Iffi ------=1 
yjxo A(y) 

for all ~~- As in the proof of Lemma 6 the assertion of this lemma follows. 

Now we are able to prove the main theorem. 

Theorem 10. A distribution function F is in the domain of attraction of the 
double exponential distribution ifJ 

xoxo 

{1-F(x)} {l-F(t)}dtdy 
lim ------c:--_;_x--'--y ------,-

2
,-------=-- = 1 . 

xo xixo 
{l -F(t)} dt 

X 

(66) 
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Proof a) Suppose FED(A). By Lemma 5 this is equivalent to 

zjxo 1-F(z) 
(67) 

with 
XO 

{1-F(t)}dt 

• (68) 

By Lemma 6 we know that 

XO 

F1(X)= 1- {l-F(t)} dt (69) 
X 

also satisfies (67) and (68). But then by Lemma 5 F1 (x) also satisfies (67) with 

XO XO 

{1-F(t)} dt dy 
A 1 (z) = _z__;:__y X_o ____ _ (70) 

z {1-F(t)}dt 
z 

and by Lemma 3 

This is equivalent with (66). 

b) Suppose that (66) holds. By Theorem 8 and Theorem 9 we know that the 
distribution function F2 , defined for sufficiently large values of x by 

satisfies 

with 

and 

As the function 

Xo XO 

F2(X)=l- {1-F(t)} dt dy 
X y 

zixo 1-Fz(Z) 

zA2 (z)>0 for z=t=O 

lim A 2 (z) =0. 
zjxo 

f(x) 
1 

satisfies ( 64 ), by Lemma 7 the function 

X 

Ji (x)= f(t) dt 

(71) 

(72) 

(73) 
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also satisfies (64). But by (66) this function is asymptotically equivalent to 

X XO -2 Xo -1 

f 2 ( x) = { 1 - F ( t)} 1 - F ( s)) d s d t ,_ ( 1 - F ( t)) d t for x j x O • 

0 t X 

Thus F1 (x) defined by (69) satisfies (72). Hence by (66) 

lffi 
zjxo 1-F(z) zr xo 1 -F1 (z) 

2 1-F2 (z) - lim ___ ( _____ ) =e-x. 
zixo 1-F2 z+zA(z)x 

This completes the proof. 

4. A Unifying Approach 

For distribution functions with x 0 < oo we are now able to combine the 
results on the domain of attraction of the two limit distributions. 

Theorem 11. Let F be a distribution function with x 0 < oo. The sequence 

tends to a non-degenerate distribution function for a proper choice of· the constants 
an > 0 and b n ifJ 

xo xo 

{1-F(x)} {1-F(t)} dt dy 

lim ---,---.::.._x---=-y-----::~------=:.,._ = c with ½ < c < 1. 
x jxo xo 2 

{1-F(t)}dt 

(74) 

X 

F is in the domain of attraction of t/1 a. with rx =( l -c)- 1 -2 if c < 1. F is in the domain 
oj' attraction of A if c = 1. 

Proof For c = 1 the content of the theorem is part of Theorem 10. Suppose 
(74) holds with½< c < 1. If we write a(x) for the function to the right of the lim sign 
in (74), then for almost all x 

xo xo 

d 
{1-F(t)} dt dy 

X y 
• 

XO 

{1-F(t)} dt 
X 

Hence 
XO XO 

{1-F(t)}dtdy Xo 

lim x Y 
xt xo xo 

(x0 -x) { 1-F(t)} dt 

= lim (x0 -x)- 1 

xtxo X 

{1-a(t)} dt 1-c (75) 

X 

and by (74) 
Xo 

{1-F(t)}dt 
lim x =c- 1(1-c). 
Xi xo (XO - X) { 1 - F ( X)} 

(76) 
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regularly varying with exponent 2- ( 1 - c)- 1 . X 

Hence by Theorem 6 we have FED(t/la) with a=(l-c)- 1 -2. The converse is 
a simple application of Theorem 6, Remark 1 and Corollary 1. 

For distribution functions with x 0 = oo there is an additional complication. If 
for example FED(¢ 0 . 5 ) then a(x) is not defined because 

{1-F(t)} dt=OO. 
0 

Our final theorem shows that this difficulty is easily overcome. 

Theorem 12. Let F be a distribution function with x 0 = oo. The sequence 

tends to a non-degerzerate distributio11 function for a proper choice of the constants 
an> 0 and bn ~ff 

{1-F(x)} {l 

X-+ 00 

lim ----~x--=-y ____ --:--_ __,;;._ = C with 
00 

t 
x3 {l 

X 

1 <c< 2. (77) 

F is in the domain of attraction of <Pa with a= ( c - 1 )- 1 - 1 if c > 1. F is in the 
domain of attraction of A if c = 1. 

Proof. For c = 1 the content of the theorem is a consequence of Theorem 10. 
Next suppose (77) holds with 1 < c < 2. As in the proof of Theorem 11 we obtain 

00 

x 2 {1-
lim __ x ______ =c- 1 (c-l). 

1-F(x) 
(78) 

x- 00 

From Remark 1 we see that FeD(</Jrx) with a=(c-1)- 1 -1. The converse is again 
a simple application of Remark 1 and Corollary 1. 

Corollary 4. Let FE D(A). The fu11ction 1-F(x) is rapidly varying at infinity 
1 

with p = - oo if x 0 = oo. The function 1- F x 0 --

with p= -oo if x 0 <oo. x 
is rapidly varying at irifinity 

Proof: The relations (76) and (78) which are also true for c = 1, are equivalent 
to the statements in this corollary (see Remark 3 and the transformation in the 
proof of Corollary 2). 

Remark. For distribution functions with x 0 = oo Corollary 4 is proved in 
Gnedenko's paper. 

A number of related results including other characterisations of D (A)_ will be 
published elsewhere. 
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