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é Form of Regular Variation
and Its Application to the Domain of Attraction
of the Double Exponential Distribution®

LAURENS DE HAANX*

Introduction

In 1930 Karamata introduced the concept of regular variation of a positive
function at infinity. He found a striking characterisation of the class 01? regularly
varying functions. Several related forms of regular behaviour at infinity can be
defined. At first a new type of regular behaviour is studied in Section L.

The results of this section are applied to a problem in extreme value theory:
we consider a sequence of independent random variables

Xl’ Xz, X3, .o
with the same distribution function F(x) and define

Y,=max(X,, X,,..., X,).
Then
PiY,=x}=F"(x).

A distribution function F is said to belong to the domain of attracti?n of a non-
degenerate distribution function G (notation FeD(G)) when there ex1st constants
a,>0 and b, such that
F'(a,x+b,)— G(x)

weakly. Gnedenko [2] proved in 1943 that only three types of distribution
functions have non-empty domains of attraction. In addition he £aVe char:ac-
terizations of their domains of attraction, but he remarked that the characteriza-
tion of the domain of attraction of the third type

A(x)=exp(—e %)

cannot be regarded as final and simple enough for applications. In 194 Megjler [6]
gave another characterization in terms of the inverse function of F. In this paper
we give a comparatively simple characterization of D(A) involving only the
distribution function: itself. Furthermore we show that this criterion ¢an be used
also to characterize the domains of attraction of the two other limit tyPes.

1. A Kind of Regular Variation
First we give the main results of Karamata’s papers about regular vanation

([5] and [6]).

* Report S 411 (SP 115) Statistische Afdeling, Mathematisch Centrum, Amster dam.
** Mathematisch Centrum, Amsterdam.
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Definition 1. A positive function U, defined on (0, c0) 1s regularly varying at

infinity when -~ U(tx) . (1)

for all x> 0. The real number p is called the exponent of regularity. When p=0 U
is called slowly varying at infinity.

Theorem 1. For a positive function U defined on (0, c0) and summable on finite
intervals the following assertions are equivalent.

a) U is regularly varying with exponent p> — 1,

U
b) lim —— (xzﬂmp+1>0. (2)

X

T U@ dr
0

c) There exist real functions c(x) and a(x) with

Imc(x)=c (0<c< )

e 3)
lim a(x)=p> —1
such that T x
[
U(x)mc(x)*exp{f ai) dt}. (4)
1
Remark 1. For p < — 1 the theorem holds with (2) replaced by
lim <Y _ _,_1>o0. (5)
T (U@ de

Remark 2. It can be proved that the summability of U on finite subintervals
of some terminal interval (a, o) is implied by the regular variation and the
measurability of U (see e.g. [1]). Hence for measurable U a slightly different form

of Theorem 1 holds.
Corollary 1. If U is regularly varying with exponent p> — 1

U,(x)= fo(t) dt

is regularly varying with exponent p+ 1. If U is regularly varying with exponent

p<—1 00
U,(x)= | U(t)dt

is regularly varying with exponent p + 1.
Definition 1 can be extended to p= +o00. We define for x>0

0 for x<1
x® =11 for x=1

v for x>1
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and o for x<1

x~ =1 for x=1

O for x> 1.

Definition 2. A positive function U defined on (0, co) 1s rapidly varying at
infinity when

Iim Utz x) = x*
-0 U(t)

for all x>0 with p= + .
For rapidly varying functions we have a much weaker version of Theorem 1.

Theorem 2. A non-decreasing positive function U defined on (0, c0) is rapidly
varying with p = oo iff
. x U(x)
Iim ——

X = QO

. = 00. (6)
| U(r) dt

Proof. a) Suppose that U 1s rapidly varying with p= 4+ 0o. By Lebesque’s
theorem on dominated convergence

| U(t)dt L Uxd)

lim -2 = lim
T T Wi g0

t=0.

. Uxn)
dt= | lim d
Jim 55

b) On the other hand if there exists a value of t(O<t< 1) and a sequence
x, — o0 such that

Ut _ o (7)

I -
e U(X,)

then in view of the monotonicity of the lefthand part of (7) as a function of ¢

1
lim inf [ — o S)

————ds>0.
=00 ¢ U(xn)

This contradicts (6).

Remark 3. For p= — o0 Theorem 2 holds with (6) replaced by

— 1
lim :} U—£2—-=oo.
[ U0

A related form of Karamata’s theorem (Theorem 1)is given in the next theorem.

Theorem 3. For a real-valued function V defined on (0, c0) and summable on
finite intervals the following assertions are equivalent.
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a) For every a>0

Im {V(ax)—V(x)}=ploga (3)
where p is a real constant.
b) lim {V(x)-—--—-—-—_ f V(t) dt} .. (9)

c) There exist real functions c(x) and a(x) with

limc(x)=c (—o0<c<0)

e 10
lim a(x)=p 19

such that (t)
(ﬂ“dﬂ+5a (11)

[
Proof. Relation (8) holds iff

U(x)=exp{V(x)}

1s regularly varying at infinity with exponent p. Hence the equivalence of a) and ¢)
is contained in Theorem 1. The implication ¢) = b) is a matter of standard cal-
culation. For the proof of the implication b) = c) we define

g(x)mV(x)—-}; fo(t)dt. (12)
0
Then
fg(t) f V(t) dt+-—-—-—-—-j V(t)dt— jV(t)dt-—- jx Vt(t) dt
= — j Viydt+ V(x)—g(x),
hence

Vix)= j V(t)dt+ g(x)+ _f g(t) .. (13)

Remark. If (8) holds with p >0, V 1s slowly varying at infinity.

The next theorem can be seen as an attempt to characterize a subclass of the
class of slowly varying functions with functions which behave even more regularly.

Theorem 4. For a real-valued strictly increasing function V which is defined on
(0, o0) the following assertions are equivalent.

a) For every positive a and b= 1

lim Via x)---- Vix) log a
swo V(bx)—V(x) logh’

(14)
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b) The function
1 X
Vix)—— | V(t)dt (15)
X 0
is slowly varying at infinity.

c) There exists a slowly varying function g such that

x [
Vix)=c+g(x)+ | g(t) dt. (16)
!
d) Forevery a>0
Iim Via x):f Vix) —=log a. (17)

0 |
Vix)—— | V(t)dt
X 0
Proof. a) = b). Writing (b>0,0<a< 1)

Vibx)—V(abx) V(x)=V(abx) V(x)=V(bx)

——————

V(x)-'---“ Via x) V(ix)— V(a x) ] Vi(x)— V(ax)

and using (14) we see that the function

h(x)=V(x)— V(a x)

1s slowly varying for every O<a< 1.
By Theorem 1 this implies

1 X 1 ax |
— | V() dt— | V() dt
lim —9 ro
X — 0O V(.)C) — V(a X) ’
hence
X 1 ax
V(x)——-}-- j' Vitydt Vi(ax)— f Vt)dt
lim ___To - "o = (13)
X— a0 V(x)—V(ax) V(x)—V(ax) |
By Fatou’s lemma we have
V(x) . fV(t) dt
. 1 .
.. X 4 .. . Vi(x)—V(tx) logt
> f t = dt>0. (19
llﬂgf Vix)—V(ax) — é[ h:slcllg] Vix)— V(ax) a 5 loga ~ (19)

Combining (18) and (19) we obtain

{V(x)-—--—i—- jx V(t)dt}-—-—{V(a X) — alx T V(t) dl}
lim ——— 0 - < o =0
Y V(x)-—-—--—-;c—- Oj V(t) dt

17 Z.Wahrscheinlichkettstheorie verw. Geb., Bd. 17
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b) = c). Defining

g(x)=V(x)—— | V(t)dt
0
we get (see (13))
V(x):c—i—g(x)—i—f git) dt.
c)=d). Fora>1 we have
V(iax)— V(x) g(a x) ¢ g(tx) dt
: - =- — 14 | = . (20)
V(x)“"‘““i“f V(t) dt g(x) 1 g(.)C) l
0
S] he relat:
Ince the relation i g (t x) .
x~o0 g(X)

holds uniformly on [1, a] (see [1]), we obtain (17) by letting x — o0 1n (20).
d) = a). Trivial.

Remark. The requirement that V is strictly increasing 1s only used to ensure
the finiteness of the expression to the right of the lim sign in (14) and may be

replaced by the requirement: for each a>1 there exists a M(a) such that for
x> M(a)
V(ax)— V(x)>0.

Remark. 1t is not difficult to show that a positive function V satisfying (14) 1s
slowly varying at infinity. It is not true that (14) implies (8) for a pe[0, co].

Corollary 2. Theorem 4 remains valid if we replace everywhere lim by lin (of
course now “slowly varying™ has to be read as * slowly varying at x=0").

Proof. If h(x) 1s slowly varying at x=0 1.e. if for each x>0

h(t x) _

E
L0 h(t) L,
|
then x~ % h (-—;C-—-) 1s regularly varying with p= —2 and by Remark 1
1%1-;""(") = lim — h(i’) —=1.
X Y O
Jh(t)dt yih (*) >
5 ; \t/ t

The remainder 1s easy.

2. Preliminaries

First we list some well-known results on the domain of attraction of the double
exponential law used 1n the sequel (cf. [3]).

Lemma l. Let {F,} be a sequence of distribution functions. Suppose that there
exist sequences of real numbers {a,} and {b,} with

a,>0 for n=1,2,3,...,
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such that
lim F,(a, x+b,)= G (x) (21)

n-— 00

weakly where G is non-degenerate distribution function.
Then

hm £, (a, x +f,)= G*(x) (22)

n = Q0

holds with G* non-degenerate and real numbers o, >0 and B, iff

—b
im " — 450, lim Pn=% _p (23)
n-s oG aﬂ n— oo aﬂ
and
G*(x)=G(A x+ B). (24)

We say that a distribution function F belongs to the domain of attraction of a
non-degenerate distribution function G (notation Fe D(G)) if for suitably chosen
constants a,>0 and b,

lim F"(a, x + b,)= G(x) (25)

n— O
for all continuity points x of G.

Theorem 5. A distribution function F can belong only to the domain of attraction
of one of the following types of distribution functions:

O or x<0
qsa(x)m{ L Jorxs 26

exp(—x~% for x>0.

exp(—(—x)*) for x=0
— 27
Va(x) {1 for x>0. (27)
A(x)=exp(—e™7). (28)

In (26) and (277) o is a positive constant.
In the sequel we use the notation

xo=Xo(F)=sup{x|F(x)<1}=c0. (29)

Theorem 6. a) The distribution function F belongs to the domain of attraction of
b, (x) iff 1 — F(x) is regularly varying with exponent — a.
b) The distribution function F belongs to the domain of attraction of Y (x) iff
1 A

Xog<oo and 1 —F (xc, -—-;—) is regularly varying with exponent — a.

Theorem 7. The distribution function F belongs to the domain of attraction of

A(x) iff
Iim F"(a,x +b,) = A(x)
or equivalently ,
Iimn{l—F(a,x+b,)}=e"" - (30)

N O

17"
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with

bnminf{xum—F(x);_—}-—}
’ (31)

.. 1
anmlnf{xll—-F(x); }-—-—-b,,.
e

!

Remark. It can be seen (cf. [4]) that the choice (31) for the stabilizing coefficients
also holds for distribution functions attracted to the other limit types.

Theorem 8. The distribution function F belongs to the domain of attraction of
A(x) iff it is possible to choose a function A with

zA(z)>0 when z=%0

and (32)
liTm A(z)=0 '
such that for every x 0
. 1—F(z+z A(z) x)
| B L= 33
z!fl.;g 1 — F(z) © (33)

Remark. In Gnedenko’s paper the continuity of A4 is required but in his proof
this property is not used.

The next theorem is due to von Mises ([8]). The theorem is extended 1n
Gnedenko’s paper.

Theorem 9. Suppose that the distribution function F is twice differentiable.

Define
_ F(x)
f(x)= 1“-'FG~') ~ (34)
If
.. d ] _
iim - () =© (35)

then FeD(A).

3. The Domain of Attraction of A

Lemma 2. If FeD(A), there exists a continuous and strictly increasing distribu-
tion function G such that

]l —F(x)~1—-G(x) for xTxq. (36)
Proof. Suppose first x,= 0. By Theorem & there 1s a positive function 4 with

Iim A(z)=0.

such that for all x “
| —F(z+z A(z) x)

1 N  —e— X 37
zl-l-*To | — F(z) € (37)
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Both sides of (37) are monotone functions of x hence (37) holds uniformly for
0<x<1. Taking x(z)=z"! we obtain

1---F(z+A(2«_’_))

‘ - — 1. 38
M TR ) 58)
From this we see
. 1 — F(2)
| | =1. 39
im0 59)

Let {z,},~; be an enumeration of the points of discontinuity of F. We define
Fi(x) 1n the following way: F,(z,)=F(z, —0), F;(z) linear on [z,, z; + A(z,)] with
Fi(z; +A(z,))=F(z, + A(z,)) and F,(z)= F(z) when z¢[z,, z; + A(z,)].

Now F,(z) equals F,(z) if z; <z, £z, + A(z,); otherwise F,(z) 1s constructed by
putting F,(z,)=F,(z,—0) and making F, linear on [z,, z,+ A(z,)] or [z, z;]
if z, <z, =z,+ A(z,). In this way we construct a sequence of distribution func-
tions F,. As the intervals I, where the function is changed are disjoint, H(z)=
lim F,(z) exists and 1s a continuous distribution function. If H(z)% F(z) for a z

n— Q0

then there exists an n such that H(z)= F,(z) and H(z)= F,(z) for k<n, so

F(z,—0)<H(z)SF(z,+ A(z,))

and
l - F(z,—0) >} —H(z) > L “F(E”-‘-A(Z"))
| —F(z,+A(z,)) — 1—F(z) — 1—F(z,) |
Hence by (38) and (39)
. 1—H(2)
- 1. 40
MR (49

In an analogous way we proceed to make the function strictly increasing. Let
{u,} be an enumeration of the initial points of intervals where H 1s constant and
{v,} the corresponding endpoints. The construction of a sequence H, 1s analogous
to the construction of the sequence F, using now the intervals [u,,v,+ A(v,)]
instead of [z,,z,+A4(z,)]. The function G(z)=1im H,(z) 1s a continuous and

n-—» 0O

strictly increasing distribution function and as above we see

. 1 —=-G(2)
lim - =

hm e @)

If xo <co we have
1 —F(z+z Aﬁ(z)m.?c)m

X

L T < =€
with
zA(z)>0
and
lim A(z)=0.

zTxo
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By taking x(z)= x,— z we obtain

| -F(z+zA(z)(xo—2))

lim —— % -1 -
21 1~ F(2) (42)
AS
z A(z)(xg—2)>0

and

1%m z A(z)(xqg—2)=0,
relation (42) implies

lim ——1&) __y.

zTxo lmF(Z—*O) o
the remainder of the proof is analogous to the proof for the case x, = o0.

Lemma 3. Let {F,} be a family of distribution functions (— o0 <t<ty=< 00).
Suppose that there exist real-valued functions a(t)>0 and b(t) such that

lim F,(a(t) x+b(t))= G(x)

tTto

weakly, where G is a non-degenerate distribution function. Then

lim F,(x(t) x+ B (1) = G* (x)

tTto

holds with G* non-degenerate and real-valued functions o(t)>0 and B(t) iff

o (t) P (f)'—b(t) .

11 =A>0, I ~ =B
I%I;{:l a(t) ~ :rlTItl;»1 a(t)

and
G*(x)=G(A x + B).

Proof. Analogous to the proof of Lemma 2 (see Feller [2] p. 246).
Corollary 3. If for a distribution function F

1 —F(z+zA(2)x)

) ———— — e % 43
ll'rrg 1 —F(z) © 43)
holds with
zA(z)>0
and
1iTm A(z)=0,
then ( ( )
. 1—-F(f(z)+zB(z)x) _,_, (44)
fim [—F(2) — €
holds iff
. B(z)
lim A) =1
#1xo A2 (45)
lim f(z)--z =b.

1
zTXo A(Z)
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Proof. Take in Lemma 3

1 — F(x)

LO=1-97F0

and G(x)=1—e™".

The fact that F,(— o0)>0 is immaterial.
Lemma4'. If FeD(A) then for all a> 1

i 2@ )=V

3 Ve Ty v OB o

with for 0 <y <1
V(y)=inf{x|1-F(x)Zy}.

] Proof. We use Theorem 7 and make first the remark that if g, in (30) 1s replaced
y
()
an 7

Imn{l—F(o¢,x+b,)}=a"*; (47)

n— OO0

for an arbitrary a>1 then

this can be seen by a simple adaptation of Gnedenko’s proof.
Combination of (30) and (47) gives by Lemma 1

/ ia) Y (“‘}“)

lim — — - =loga. (48)
s v
ne n

Using the monotonicity of V' we see from (48)

|
V( n—lk-l)wv(-;)
lim — =0, (49)
e
ne n

From (47) we obtain also

lim n{l—F(a,,, x+b,,)}=a"*

n—s» O

Using Lemma 1 again we get

1 I
() (55
i NmtbDal  Antl] o (50)

n-—» O 1 1
/()
nda n

L Cf. Mejzler [7].
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Now defining
1
Ux)=V (__.__)

X

we see (using the entier function)

U@y ~-Uyl+1) _ Ulay-Ul) _ UDI+D)-Uly])
Ue[yD)—U([y]) ~Uely)-UyD) ™ UlelyD)—U(lyl

The righthand member 1s the same as

U@+ D)-UmI+)  Uy]+D-UD]

Ue[y])— U([¥]) Ue[y])— U([¥])

and this by (48), (49) and (50) tends to log a as y tends to infinity. The lefthand side
tends to the same limit so

. U(ay)—U(y)
1 7
y— Ule[y]) - U(y))

and this in combination with (48) gives the assertion of the lemma.
Lemma 3. If FeD(A) then

. 1-F(z+zA(z)x)
1 S E—— —p %
lerJ{gl:) 1 — F(Z) € (52)

=loga (51)

for all x with

| {1—F(t)} dt

z4(}3')m z —Z_{l ——-—F(z)} . (53)

Proof. By Lemma 2 and Corollary 3 we need only consider continuous and
strictly increasing distribution functions.

By Lemma 4

. Via= y)—=V(y)

L A 4
vlo Ve~ y)—V(y) log a (54)

for all a>1 with
Viy)=(1—-F)"'().

By Theorem 4 and Corollary 2 (used for — V) relation (54) 1s equivalent with
, Via=ty)—V
po V@ ) -Vl

o 1 f V() dt — V(y)
Y o

-=loga. (55)

Taking a=e and using Lemma 1 we see

lim n{1—F(a,x+b,)}=e" "

n— OO
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with

n

a,=n ;[/HV(t) dt—V (-—-L) ..

Now it is not difficult to see (using (49), (51), (55) and Lemma 1) that

lifrol vy H1—F(a(y) x+b(y)}=e" (56)
y
with
b(y)=V()
1 2 (57)
a(y)y=— | V(t)dt—V(y).
Y o
Putting y=1-— F(z) in (56) and (57) we obtain (52) and (53).
Lemma 6. If for a distribution function F
. 1-F(z+zA(2)x) _
TETNIA) o 58
O : 58)
for all x with z A(z)>0 for z+0 and
liTm A(z)=0,
then
1 -f-Fl(z+zA(z) x)_._:e"-x (59)
1 . F]_ (Z)
where
F(x)=1— | {1-F(t)} dt. (60)
Proof. By the Lemma’s 3 and 5
| {1—-F(r)} dt
~E for : 61
A(Z) Z{I—F(Z)} ZTx() ( )
In (58) we substitute z=y+ y A(y) s with s an arbitrary real number; then:
lim 1-Fly+yA0)s+y+y AW) ) Ay +y AQY) S),.ff.)__:e"{
y1Txo 1—F(y+yA(y)s)
With (58) this becomes
1—F(y+yAQ)s+(+y AW ) AP+y AW )X) _ e (g2)

i R
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Applying Corollary 3 we obtain from (58) and (62)

ltm A(y+yA(y) )
yTXo A(y)

= ] (63)
for all s.
Combining (38), (61) and (63) we obtain (59).

Lemma 7. If for a positive non-decreasing function f defined on (— o0, x,) with

liTm f(x)=o00
(where x4 < o0), the relation
o f(z+zA(z)x)“_ex (64)
z TXo f(Z)

holds for all x and a properly chosen function A with

zA(z)>0  for z=£0

and
Iim A(z)=0,
zTxo
then also
lim fi(z+2 A(2) x) — o* (65)
zTxo ji(Z)

for all x where

fix)= [ £ di

and
xo—1 when xg<o0

xlm
1 when x5 =00.

Proof. Analogous to the proof of Lemma 6. First we use Theorem 4 to find

| f(2)dt
A(z)~-—— for ztx,,
(D~ xq
then by Lemma 3
_ A(y+y AW s)
1 r =1
leI-g A(y)

for all s. As 1n the proof of Lemma 6 the assertion of this lemma follows.
Now we are able to prove the main theorem.

Theorem 10. A distribution function F is in the domain of attraction of the
double exponential distribution iff

{1-F(x)}{Jfofe{l-—F(t)}dtdy}
lim 7 %o — ) 2 - (66)
xTXg
{j {1—F(t)} dt}
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Proof. a) Suppose FeD(A). By Lemma 5 this is equivalent to

11— F(z+z A(:z)f)

1 o =7
2 170 | — F(2) ¢ (67)
with
| {1—F(t)} dt
A(z)=-2— 68
(2) (1= F@) (63)
By Lemma 6 we know that
F(x)=1— | {l-F()} dt (69)
also satisfies (67) and (68). But then by Lemma 5 F,(x) also satisfies (67) with
|\ | {1=F(@)}dtdy
A (2)=—5— (70)

z | {1—F(t)} dt
and by Lemma 3
A(z)~A,(z) for zTx,.

This 1s equivalent with (66).

b) Suppose that (66) holds. By Theorem 8 and Theorem 9 we know that the
distribution function F,, defined for sufficiently large values of x by

F,(x)=1—| | {1-F(t)}dtdy (71)
X ¥
satisfies
. 1*‘“F2(Z+ZA2(Z)X) -
1 PN ) - 72
21-1121 1 —F,(z) ‘ (74)
with
zA,(z)>0 for z#0
and 2(‘ (73)
As the function
1
T TR

satisfies (64), by Lemma 7 the function

fi(9= [ f(t) de
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also satisfies (64). But by (66) this function 1s asymptotically equivalent to

X0 X0

15 (x)= jx{l-—-F(t)} {j (1—F(s)) ds}ﬂzdtw{j (1------‘-»F(t))dt}m1 for x7x,.

X

Thus F;(x) defined by (69) satisfies (72). Hence by (66)

1—-F(z+zA(2)x)|?
lel(ZS o

e | —F(z+2zA(2) JE:) —im
21 X0 1 — F(z) 27

- X

=€

lim G
ztx0 1 — F,(z 42z A(2) x)

This completes the proof.

4. A Unifying Approach

For distribution functions with x,< oo we are now able to combine the
results on the domain of attraction of the two limit distributions.

Theorem 11. Let F be a distribution function with x, << co. The sequence
F"(a,x+b,)
tends to a non-degenerate distribution function for a proper choice of the constants
a,>0 and b, iff .
(1—F(x)} {5 [ {(1-F)} d d,v}

e 2 =¢ with 3<c=l1. (74)

l1m

x 1x0 {fﬂ{l _F(t)} dt}-’—

F is in the domain of attraction of Wy, withoo=(1—c¢) ' =2 if c<1. F isinthe domain
of attraction of A if c=1.

Proof. For c=1 the content of the theorem 1s part of Theorem 10. Suppose
(74) holds with 3 < ¢ < 1. If we write a(x) for the function to the right of the lim sign
in (74), then for almost all x

X0 X0

o [ J{1=F@}didy
a(x)=1+ " At
X [ (—F@}ar
Hence *
jG 50{1—-F(t)}dtdy .
lim ——— X0 -=1iTm (xg—x)~" j {l1—a(t)}dt=1—c (75)
xTxo (xo—--x) f {I—F([)} it 0 <
and by (74)

e o0 (I—F(y ¢ 79 o)
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From Remark 1 (after a trivial transformation) we see that 1 —F (xo--v-l—-) 1S
regularly varying with exponent 2—(1 —¢)~!. *

Hence by Theorem 6 we have FeD(y,) with oo=(1 —¢)~ ! —2. The converse is
a simple application of Theorem 6, Remark 1 and Corollary 1.

For distribution functions with x, = co there is an additional complication. If
for example Fe D(¢, s) then a(x) is not defined because

| {1-=F(t)} dt=c0.
0
Our final theorem shows that this difficulty is easily overcome.
Theorem 12. Let F be a distribution function with x,=00. The sequence
F'(a,x+b,)

tends to a non-degenerate distribution function for a proper choice of the constants
a,>0 and b, iff

(1— F(x)} {f@ [ {1—Fly < dy}

[

lim =c with 1=Zc¢c<?2. (77)

T x:"{f{l--F(r)} f;}

F is in the domain of attraction of ¢, with a=(c—1)"'—=1if ¢>1. F is in the
domain of attraction of A if c=1.

Proof. For ¢=1 the content of the theorem 1s a consequence of Theorem 10.
Next suppose (77) holds with 1 <c¢<2. As in the proof of Theorem 11 we obtain

%0 d
x* | {1—-F(1)} mﬁ{-—

lim - _ = e—1).
b 1 — F(x) ¢ le—1) (78)

From Remark 1 we see that Fe D (¢,) with a=(c—1)"' —1. The converse is again
a simple application of Remark 1 and Corollary 1.

Corollary 4. Let FeD(A). The function 1—F(x) is rapidly varying at infinity

1
with p= — o0 if xg=o00. The function 1 — F (xo — ) is rapidly varying at infinity
with p= — 00 if x, < 00. *
Proof. The relations (76) and (78) which are also true for c=1, are equivalent
to the statements in this corollary (see Remark 3 and the transformation in the
proof of Corollary 2).

Remark. For distribution functions with xy,=0o0 Corollary4 1s proved in
Gnedenko’s paper.

A number of related results including other characterisations of D(A) will be
published elsewhere.
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