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A Form of Regular Variation .,,.. . 
and Its Application to the Domain of Attraction 

LAURENS DE HAAN** 

Introduction 

In 1930 Karamata introduced the concept of regular variation of a positive 
function at infinity. He found a striking characterisation of the class of regularly 
varying functions. Several related forms of regular behaviour at infinity can be 
defined. At first a new type of regular behaviour is studied in Section 1. 

The results of this section are applied to a problem in extreme value theory: 
we consider a sequence of independent random variables 

with the same distribution function F(x) and define 

Y,, = max ( X 1, X 2 , ••• , X n). 
Then 

p { Y,, < X} = pn ( X). 

A distribution function F is said to belong to the domain of attraction of a non
degenerate distribution function G (notation FeD(G)} when there exist constants 
an>O and bn such that 

F"(an X + bn) ➔ G (x) 

weakly. Gnedenko [2] proved in 1943 that only three types of distribution 
functions have non-empty domains of attraction. In addition he gave charac
terizations of their domains of attraction, but he remarked that the characteriza
tion of the domain of attraction of the third type 

A(x)=exp(-e-x) 
' 

cannot be regarded as final and simple enough for applications. In 1949 Me~ler [6] 
gave another characterization in terms of the inverse function off. In this paper 
we give a comparatively simple characterization of D (A) involving only the 
distribution function· itself. Furthermore we show that this criterion can be used 
also to characterize the domains of attraction of the two other lirnit types. 

1. A Kind of Regular Variation 

First we give the main results of Karamata's papers about regular variation 
. ([5] and [6]). 
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Definition 1. A positive function U, defined on (0, oo) is regularly varying at 
infinity when 

1m ---=Xp (1) 
r-oo U(t) 

for all x > 0. The real number p is called the exponent of regularity. When p = 0 U 
is called slowly varying at infinity. 

Theorem 1. For a positive function U defined on (0, oo) and summable on finite 
intervals the following assertions are equivalent. 

a) U is regularly varying with exponent p > -1, 

b) 1m x = p + 1 > 0. (2) 
x-co 

U(t) dt 
0 

c) There exist real functions c(x) and a(x) with 

lim c(x)=c (0 < c <co) 
(3) 

lima(x)=p>-1 
x- 00 

such that 
U (x) = c(x) · exp • 

1 t 
(4) 

Remark 1. For p < -1 the theorem holds with (2) replaced by 

Im-
00
---= -p-1 >0. 

x-oo 
U(t) dt 

(5) 

:x 

Remark 2. It can be proved that the summability of U on finite subintervals 
of some terminal interval (a, oo) is implied by the regular variation and the 
measurability of U (see e.g. [1]). Hence for measurable U a slightly different form 
of Theorem 1 holds. 

Corollary 1. If U is regularly varying with exponent p > -1 

X 

U(t) dt 
0 

is regularly varying with exponent p + 1. If U is regularly varying with exponent 
p<-1 ~ 

U(t) dt 
X 

is regularly varying with exponent p + 1. 

Definition 1 can be extended to p = + oo. We define for x > 0 

0 for x < 1 

1 for x 1 

for x> 1 

, , 

, 
, 
, 
, 
, , , 

' I 
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00 

1 

0 

for x< 1 

for x= 1 

for x> 1. 
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Definition 2. A positive function U defined on (0, oo) is rapidly varying at 
infinity when 

for all x>O with p= +oo. 

1
. U(tx) 
1m---=xP 

r-oo U(t) 

For rapidly varying functions we have a much weaker version of Theorem 1. 

Theorem 2. A non-decreasing positive function U defined on (0, oo) is rapidly 
varying with p = oo iff 

1
. x U(x) 
1m x ro. 

X-+ 00 
(6) 

U(t) dt 
0 

Proof a) Suppose that U is rapidly varying with p= + oo. By Lebesque,s 
theorem on dominated convergence 

X 

U(t) dt 

lim -0
---= lim 

x-oo x U(x) x- O'.) 0 U(x) 

1 

lim---
0 x-oo U(x) 

=0. 

b) On the other hand if there exists a value of t (0 < t < 1) and a sequence 
Xn > 00 such that 

1m---=c>O, 
n- oo V(x,.) 

then in view of the monotonicity of the lefthand part of (7) as a function oft 

This contradicts (6). 

1 

lim inf 
n-ro 0 

Remark 3. For p = - oo Theorem 2 holds with (6) replaced by 

Im -
00
----= 00 . 

X t 

(7) 

A related form of Karamata's theorem (Theorem 1) is given in the next theorem. 

Theorem 3. For a real-valued function V defined on (0, ro) and summable on 
finite intervals the fallowing assertions are equivalent. 
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a) For every a>O 

lim { V(ax)- V(x)} = p log a 
X-+00 

where p is a real constant. 

b) 
1 X 

lim V(x)- V(t)dt =p. 
X-+00 X 0 

c) There exist real functions c(x) and a(x) with 

such that 

lim c(x)=c (-oo<c<oo) 
X-+ 00 

lim a(x)=p 
X-+00 

X a(t) 
V(x)=c(x)+ --dt. 

0 t 

Proof Relation (8) holds iff 

U(x)=exp { V(x)} 

(8) 

(9) 

(10) 

( 11) 

is regularly varying at infinity with exponent p. Hence the equivalence of a) and c) 
is contained in Theorem 1. The implication c) z,.. b) is a matter of standard cal
culation. For the proof of the implication b) > c) we define 

1 X 

g(x) = V(x)- V(t) dt. 
X 0 

(12) 

Then 
1 

1 t 
V(t) dt-

o 1 t 
, 

l 

V(t) dt + V(x)-g(x), 
0 

hence 

V(x)= 
0 1 t 

(13) 

Remark. If (8) holds with p > 0, Vis slowly varying at infinity. 

The next theorem can be seen as an attempt to characterize a subclass of the 
class of slowly varying functions with functions which behave even more regularly. 

Theorem 4. For a real-valued strictly increasing function V which is defined on 
(0, co) the fallowing assertions are equivalent. 

a) For every positive a and b =t= 1 

-V(x) log a 
Im-----= 

x-oo V(b x)-V(x) log b · 
(14) 
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b) The function 
l X 

V(x)- V(t) dt 
X 0 

is slowly varying at infinity. 

c) There exists a slowly varying function g such that 

V(x) 
1 t 

d) For every a>O 
V(a x)- V(x) 

lim -------= log a. 
1 X 

X-+00 

V(x)-- V(t)dt 
X 0 

Proof a) :• b). Writing (b > 0, 0 <a< 1) 

V(b x)- V(a bx) V(x)- V(a bx) V(x)- V(b x) 
------= ------

V(x) V(a x) V(x) V(a x) V(x) V(a x) 

and using (14) we see that the function 

h(x)= V(x)-V(ax) 

is slowly varying for every O <a< 1. 
By Theorem 1 this implies 

1 x 1 ax 

V(t) dt- V(t) dt 
x O ax 0 lim----------= 1, 

x- oo V(x)- V(a x) 

hence 
1 X 

V(x)- V(t) dt 
1 ax 

V(a x) V(t) dt 

lim 
X-+ 00 

X 0 ax 0 

V(x}-V(ax) V(x)- V(ax) 

By Fatou's lemma we have 

1 X 

V(x)- V(t) dt 
X 0 

=0. 

liminf-------> 1m1n -----
V(x)- V(a x) 0 x- oo V(x)- V(a x) 0 log a 

Combining (18) and (19) we obtain 

. - . 1 ~ 1 af 
· V(x)- V(t) dt >-• V(a x)- V(t) dt > 

X o a X . lim ---=--______ ____::_______..:::___ _____ o __ ----=-::;__ = O 
1 X • 

V(x)- V(t) dt 

-

X-tOO 

X 0 

17 Z. Wahrscheinlichkeitsthe()rie verw. Geb .• Bd. 17 
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(15) 

(16) 

(17) 

(18) 

t> - (19) 
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b) > c ). Defining 
1 X 

g(x) = V(x)- V(t) dt 

we get ( see ( 13)) 

V(x) 

c) > d). For a> 1 we have 

V(a x)- V(x) 

Xo 

1 X 

V(x)-- V(t)dt 
g(x) 

X 0 

Since the relation 
l
. g(tx) 
lffi --= 1. 

x-aJ g(x) 

a g (t x) 

i g(x) 

dt 
• 

t 

holds uniformly on [1, a] (see [l]), we obtain (17) by letting x ) oo in (20). 
d) > a). Trivial. 

(20) 

Remark. The requirement that V is strictly increasing is only used to ensure 
the finiteness of the expression to the right of the lim sign in (14) and may be 
replaced by the requirement: for each a> 1 there exists a M(a) such that for 
x>M(a) 

V(ax)- V(x)>O. 

Remark. It is not difficult to show that a positive function V satisfying (14) is 
slowly varying at infinity. It is not true that (14) implies (8) for a pE[O, oo]. 

Corollary 2. Thel>rem 4 remains valid if we replace everywliere lim by lim ( of 
x-oo xtO 

course now "" slowly varying'' has to be read as '' slowly varying at x =0 '' ). 

PrcJoj: If h (x) is slowly varying at x =0 i.e. if for each x > 0 

then x- 2 h 

I
. h(t x) 
lffi h = 1, 

rtO (t) 
1 

is regularly varying with p = -2 and by Remark 1 
X 

1
. x h(x) 
lffi X 

xLO 
h(t) dt 

0 

y-oo 
y h 

y 

1 

t 

dt 
t2 

The remainder is easy. 

2. Preliminaries 
First we list some well-known results on the domain of attraction of the double 

exponential law used in the sequel ( cf. [3]). 

Lemma 1. Let {~} be a sequence of distribution functions. Suppose that there 
e:x:i.'>t .sequences of real numbers {an} and { bn} with 

an> 0 for n = 1, 2, 3, ... , 
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suc~h that 
lim F,.(anx+bn)=G(x) (21) 
n-oo 

weakly where G is n<Jn-degenerate distribution func:ti(Jn. 

Then 
(22) 

n-co 

holds with G* non-degenerate and real numbers cxn > 0 and /Jn ijj' 

1. Ctn 0 1m-=A> , 1m---=B (23) 
n-oo a n 

G*(x)=G(A x+B). (24) 

We say that a distribution function F belongs to the domain of attraction of a 
non-degenerate distribution function G notation FED(G)) if for suitably chosen 
constants an> 0 and bn 

(25) 
n-oo 

for all continuity points x of G. 

Theorem 5. A distribution function F can belong only to the domain of attraction 
of one of the following types of di.stribution functions: 

0 for x<O 
(26) <Pa(x) 

exp( x-a) for x>O. 

exp( ( x)a) for x<O 
1/Ja(x) (27) 

1 for x>O. 

A ( x) = exp ( - e - x). (28) 

In (26) and (27) ex is a positive constant. 

In the sequel we use the notation 

x 0 =x0 (F)= sup {xlF(x)< 1} < oo. (29) 

Theorem 6. a) The distribution function F belongs to the domain of attraction of 
<Pa(x) ifJ 1-F(x) is regularly varying with exponent - et. 

b) The distribution function F belongs to the domain of' attraction of 1/Jrx(x) iff 
1 ' 

x 0 < oo and 1 -F x 0 - -- is regular I y varying with exponent - ct. 
X 

' 

Theorem 7. The distribution function F belongs to the domain of attraction of 
A(x) ifj' 

n-oo 

or equivalently 
limn {1-F(anx+bn)} =e-x • (30) 
n-oo 

17* 
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with 

bn=inf X l -
n 

(31) 

an== inf xi 1-
n e 

Remark. It can be seen (cf. [ 4]) that the choice (31) for the stabilizing coefficients 
also holds for distribution functions attracted to the other limit types. 

Theorem 8. The distribution function F belongs to the domain of attraction of 
A (x) ifJ it is possible to choose a function A with 

z A (z) > 0 when z =t= 0 

lim A(z)=O 
zixo 

(32) 

.r,uch that for every x 

1m -------= e-x. 
zt xo 1-F(z) 

(33) 

Remark. In Gnedenko's paper the continuity of A is required but in his proof 
this property is not used. 

The next theorem is due to von Mises ([8]). The theorem is extended in 
Gnedenko's paper. 

Theorem 9. Suppose that the distribution function F is twice differentiable. 
Define 

If 

then F ED(A). 

1
. d 
1m

xrxa dx 

F'(x) 

1 

f(x) 
=0, 

3. The Domain of Attraction of A 

(34) 

(35) 

Lemma 2. If FE D(A), there exists a continuous and strictly increasing distribu
tion function G such that 

1-F(x) "-' 1-G(x) for xj x 0 • (36) 

Proof Suppose first x 0 = oo. By Theorem 8 there is a positive function A with 

lim A(z)=O. 
Z-+00 

such that for all x 
1-F(z+zA(z)x) -x 

lim =e . 
1-F(z) 

(37) 
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Both sides of (37) are monotone functions of x hence (37) holds uniformly for 
O<x< 1. Taking x(z)=z- 1 we obtain 

From this we see 

lffi 
1-F(z) 

= 1. 

= 1. 
z-co l-F(z-0) 

(38) 

(39) 

Let {zn}:: 1 be an enumeration of the points of discontinuity of F. We define 
F1(x) in the following way: F1 (z1)=F(z1 -0), F1{z) linear on [z1., z1 +A(z1)] with 
F1(z1 +A(z1) =F(z1 +A(z1) and F1 (z)=F(z) when z¢[z1 , z1 +A(z1)]. 

Now F2 (z) equals F1 (z) if z 1 < z 2 < z 1 + A (z 1); otherwise F2 (z) is constructed by 
putting F2 (z2)=F1 (z2 -0) and making F1 linear on [z2 , z2 +A(z2 )] or [z2 , z1] 

if z2 < z1 < z2 + A (z2 ). In this way we construct a sequence of distribution func
tions F:i. As the intervals In where the function is changed are disjoint, H(z) = 
lim F:t (z) exists and is a continuous distribution function. If H (z) =t= F(z) for a z 
n-0'.) 

then there exists an n such that H (z) = F:i (z) and H (z) =t= Fk (z) for k < n, so 

F(zn -0) < H(z) < F(z,. + A (zn) 
and 

l-F(zn-0) > 1-H(z) > 1-F(zn+A(zn) 
1 - F(zn + A (zn)) 1 F(z) 1-F(zn) 

• 

Hence by (38) and (39) 
. 1-H(z) 

=l. 
-F(z) 

(40) 

In an analogous way we proceed to make the function strictly increasing. Let 
{ un} be an enumeration of the initial points of intervals where H is constant and 
{ vn} the corresponding endpoints. The construction of a sequence Hn is analogous 
to the construction of the sequence ~ using now the intervals [un, vn + A (vn)J 
instead of [zn, zn+A(zn)J. The function G(z)= lim Hn(z) is a continuous and 

strictly increasing distribution function and as above we see 

If x 0 < oo we have 

with 

and 

lm =l. 
z- oo 1 H(z) 

1-F(z + z A (z) x) 
lim =e-x 
ztxo 1-F(z) 

zA(z)>O 

lim A(z)=O. 
zjxo 

(41) 



250 L. de Haan: 

By taking x(z)=x0 -z we obtain 

1 F(z + z A (z)(x0 z) 
lim 1 . (42) 

1 F(z) zTxo 

As 
z A (z)(x0 z)>O 

and 
lim z A(z)(x0 z) 0, 
zj xo 

relation ( 42) implies 
1 F(z) 

lim 1 ; 
1 F(z 0) zj xo 

the remainder of the proof is analogous to the proof for the case x 0 = oo. 

Lemma 3. Let { F,} be a family of distribution functions (- oo < t < t0 < ro ). 
Suppose that there exist real-valued functions a(t)>O and b(t) such that 

lim F;(a(t) x + b (t)) = G(x) 
tito 

weakly, where G is a non-degenerate distribution function. Then 

lim F; (rx (t) x + f3 (t) = G* (x) 
tito 

holds with G* non-degenerate and real-valued functions rx(t) > 0 and fj(t) if]. 

and 

1m --=A >0, 
tt to a(t) 

1m----=B 
riro a(t) 

G*(x)=G(Ax+B). 

Proof Analogous to the proof of Lemma 2 (see Feller [2] p. 246). 

Corollary 3. If for a distribution function F 

holds with 

and 

then 

holds ifJ 

1-F(z+zA(z)x -x 
lim-------=e 
zixo 1-F(z) 

z A(z)>O 

lim A(z)=O, 
zj xo 

1-F(f(z) + z B(z) x 
lim 
zt xo 1-F(z) 

lffi --= 1 
zixo A(z) 

-x-b =e 

lffi ---=b. 
zixo A(z) 

(43) 

(44) 

(45) 
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Proof Take in Lemma 3 

1-F(t) 
and G(x)= 1-e-x. 

The fact that Fr (- oo) > 0 is immaterial. 

V(y) 
1m =log a 

YlO V(e- 1 y) V(y) 
(46) 

with for O < y < 1 

V(y)=inf {xi 1-F(x) > y}. 

Proof We use Theorem 7 and make first the remark that if an in (30) is replaced 
by 

1 -V 1 
an n 

for an arbitrary a> 1 then 

limn {1-F(an x+ bn)} =a-x; 
n-oo 

(47) 

this can be seen by a simple adaptation of Gnedenko's proof. 
Combination of (30) and (47) gives by Lemma 1 

V 
1 

V 
1 

lim 
na n 

1 1 n-oo 
V V 

log a. (48) 

ne n 

Using the monotonicity of Vwe see from (48) 

V 1 
n+l n 

lim--------=0. 
1 1 

V -V 
n-oo 

(49) 

ne n 
From (47) we obtain also 

limn { 1-F(Cl.n+ 1 X + bn+1)} =a-x. 

Using Lemma 1 again we get 

1 1 
V V 

n+l (n+ 1) a 1. (50) lim 
1 1 n-oo 

V V 
na n 

1 Cf. Mejzler [7]. 
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Now defining 

U x)= 
X 

we see (using the entier function) 

U(a[y])-U([y] + 1) <-U_(a_y_) __ _ 
U ( e [y]) - U ( [y J) U ( e [y]) - U ( [y J) == U (e [y]) - U ([y]) 

The righthand member is the same as 

U ( e [y ]) - U ( [y]) U ( e [y J) - U ( [y J) 

and this by (48), (49) and (50) tends to log a as y tends to infinity. The lefthand side 
tends to the same limit so 

1m------=loga 
Y- ct) LJ ( e [y]) - LJ ( [y]) 

and this in combination with (48) gives the assertion of the lemma. 

Lemma 5. If' FeD(A) then 

1
. 1-F z+z A(z) x 
lffi ---'-----...:.._ = e-x 

zi xo 1-F(z) 
for all x with 

xo 
., . 

{1-F(t)} dt 

(51) 

(52) 

(53) 

Proof By Lemma 2 and Corollary 3 we need only consider continuous and 
strictly increasing distribution functions. 

By Lemma4 

for all a> 1 with 

-V(y) 
1m ------=log a 

ylO V(e- 1 y)-V(y) 

V (y) = ( 1 - F) - 1 (y). 

By Theorem 4 and Corollary 2 (used for - V) relation (54) is equivalent with 

y 0 

Taking a =e and using Lemma 1 we see 

-V(y) 

limn { 1-F (an x+ bn)} =e-x 
n-+ oo 

(54) 

(55) 
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with 

bn= 
n 

1/n 1 
a11 n V(t) dt - V 

0 n 
• 

Now it is not difficult to see (using (49), (51), (55) and Lemma 1) that 

with 

lim y- 1 1 -F a(y) x + b(y)) 
ytO 

b(y)= V(y) 

l Y 
a(y)= V(t) dt-V(y). 

y 0 

Putting y= 1-F(z) in (56) and (57) we obtain (52) and (53). 

Lemma 6. If.for a distributio11 Junction F 

. 1-F(z+zA(z)x 
l1m 
zixo 1 -F(z) 

for all x with z A(z)>O for z=t=O and 

lim A(z)=O, 
ztxo 

then 
1 F1(z+z A(z)x) e-x 

1 F1 (z) 
where 

XO 

F1(X) 1 {l F(t)} dt. 
X 

Proof By the Lemma's 3 and 5 

xo 

{l --F(t)} dt 
for zjx0 • 

In (58) we substitute z=y+ y A(y) s withs an arbitrary real number; then: 

-x 1m --~-------..:......,...---~__:__----~= e . 
yjxo 1-F(y+ Y A(y) S 

With (58) this becomes 

= e-(x+s). 1m--~_::.___:::_:__::.__--=-=::-:-:-~-.;.._----
Yt xo 1-F(y) 

253 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 
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Applying Corollary 3 we obtain from (58) and (62) 

tm------=1 
Yi xo A(y) 

(63) 

for all s. 
Combining (58),. (61) and (63) we obtain (59). 

Lemma 7. If for a positive non-decreasing function f defined on (- oo, x 0 ) with 

limf(x)=oo 
zf xo 

( where x 0 < oo ), the relation 

1m-----=ex 
zjxo f(z) 

holds for all x and a properly chosen function A with 

and 

then also 

for all X where 

and 

zA(z)>O for z=!=O 

lim A(z)=O, 
zfxo 

Iffi ------=ex 
zj xo !1 (z) 

X 

f1(X)= f(t) dt 

x 0 -1 when x 0 < oo 
1 when x 0 oo. 

(64) 

(65) 

Proof Analogous to the proof of Lemma 6. First we use Theorem 4 to find 

z 

f(t) dt 

for zjx 0 , 

then by Lemma 3 

Iffi ------=1 
yjxo A(y) 

for all ~~- As in the proof of Lemma 6 the assertion of this lemma follows. 

Now we are able to prove the main theorem. 

Theorem 10. A distribution function F is in the domain of attraction of the 
double exponential distribution ifJ 

xoxo 

{1-F(x)} {l-F(t)}dtdy 
lim ------c:--_;_x--'--y ------,-

2
,-------=-- = 1 . 

xo xixo 
{l -F(t)} dt 

X 

(66) 
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Proof a) Suppose FED(A). By Lemma 5 this is equivalent to 

zjxo 1-F(z) 
(67) 

with 
XO 

{1-F(t)}dt 

• (68) 

By Lemma 6 we know that 

XO 

F1(X)= 1- {l-F(t)} dt (69) 
X 

also satisfies (67) and (68). But then by Lemma 5 F1 (x) also satisfies (67) with 

XO XO 

{1-F(t)} dt dy 
A 1 (z) = _z__;:__y X_o ____ _ (70) 

z {1-F(t)}dt 
z 

and by Lemma 3 

This is equivalent with (66). 

b) Suppose that (66) holds. By Theorem 8 and Theorem 9 we know that the 
distribution function F2 , defined for sufficiently large values of x by 

satisfies 

with 

and 

As the function 

Xo XO 

F2(X)=l- {1-F(t)} dt dy 
X y 

zixo 1-Fz(Z) 

zA2 (z)>0 for z=t=O 

lim A 2 (z) =0. 
zjxo 

f(x) 
1 

satisfies ( 64 ), by Lemma 7 the function 

X 

Ji (x)= f(t) dt 

(71) 

(72) 

(73) 
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also satisfies (64). But by (66) this function is asymptotically equivalent to 

X XO -2 Xo -1 

f 2 ( x) = { 1 - F ( t)} 1 - F ( s)) d s d t ,_ ( 1 - F ( t)) d t for x j x O • 

0 t X 

Thus F1 (x) defined by (69) satisfies (72). Hence by (66) 

lffi 
zjxo 1-F(z) zr xo 1 -F1 (z) 

2 1-F2 (z) - lim ___ ( _____ ) =e-x. 
zixo 1-F2 z+zA(z)x 

This completes the proof. 

4. A Unifying Approach 

For distribution functions with x 0 < oo we are now able to combine the 
results on the domain of attraction of the two limit distributions. 

Theorem 11. Let F be a distribution function with x 0 < oo. The sequence 

tends to a non-degenerate distribution function for a proper choice of· the constants 
an > 0 and b n ifJ 

xo xo 

{1-F(x)} {1-F(t)} dt dy 

lim ---,---.::.._x---=-y-----::~------=:.,._ = c with ½ < c < 1. 
x jxo xo 2 

{1-F(t)}dt 

(74) 

X 

F is in the domain of attraction of t/1 a. with rx =( l -c)- 1 -2 if c < 1. F is in the domain 
oj' attraction of A if c = 1. 

Proof For c = 1 the content of the theorem is part of Theorem 10. Suppose 
(74) holds with½< c < 1. If we write a(x) for the function to the right of the lim sign 
in (74), then for almost all x 

xo xo 

d 
{1-F(t)} dt dy 

X y 
• 

XO 

{1-F(t)} dt 
X 

Hence 
XO XO 

{1-F(t)}dtdy Xo 

lim x Y 
xt xo xo 

(x0 -x) { 1-F(t)} dt 

= lim (x0 -x)- 1 

xtxo X 

{1-a(t)} dt 1-c (75) 

X 

and by (74) 
Xo 

{1-F(t)}dt 
lim x =c- 1(1-c). 
Xi xo (XO - X) { 1 - F ( X)} 

(76) 
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regularly varying with exponent 2- ( 1 - c)- 1 . X 

Hence by Theorem 6 we have FED(t/la) with a=(l-c)- 1 -2. The converse is 
a simple application of Theorem 6, Remark 1 and Corollary 1. 

For distribution functions with x 0 = oo there is an additional complication. If 
for example FED(¢ 0 . 5 ) then a(x) is not defined because 

{1-F(t)} dt=OO. 
0 

Our final theorem shows that this difficulty is easily overcome. 

Theorem 12. Let F be a distribution function with x 0 = oo. The sequence 

tends to a non-degerzerate distributio11 function for a proper choice of the constants 
an> 0 and bn ~ff 

{1-F(x)} {l 

X-+ 00 

lim ----~x--=-y ____ --:--_ __,;;._ = C with 
00 

t 
x3 {l 

X 

1 <c< 2. (77) 

F is in the domain of attraction of <Pa with a= ( c - 1 )- 1 - 1 if c > 1. F is in the 
domain of attraction of A if c = 1. 

Proof. For c = 1 the content of the theorem is a consequence of Theorem 10. 
Next suppose (77) holds with 1 < c < 2. As in the proof of Theorem 11 we obtain 

00 

x 2 {1-
lim __ x ______ =c- 1 (c-l). 

1-F(x) 
(78) 

x- 00 

From Remark 1 we see that FeD(</Jrx) with a=(c-1)- 1 -1. The converse is again 
a simple application of Remark 1 and Corollary 1. 

Corollary 4. Let FE D(A). The fu11ction 1-F(x) is rapidly varying at infinity 
1 

with p = - oo if x 0 = oo. The function 1- F x 0 --

with p= -oo if x 0 <oo. x 
is rapidly varying at irifinity 

Proof: The relations (76) and (78) which are also true for c = 1, are equivalent 
to the statements in this corollary (see Remark 3 and the transformation in the 
proof of Corollary 2). 

Remark. For distribution functions with x 0 = oo Corollary 4 is proved in 
Gnedenko's paper. 

A number of related results including other characterisations of D (A)_ will be 
published elsewhere. 
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