STICHTING
 MATHEMATISCH CENTRUM
 2e BOERHAAVESTRAAT 49 AMSTERDAM

S 411
SP 115

A Form of regular variation and its application to the domain of attraction of the double exponential
 distribution

L. de Haan

Reprinted from

Z. Wahrscheinlichkeitstheorie verw. Geb.

1971

A Form of Regular Variation and Its Application to the Domain of Attraction of the Double Exponential Distribution*

Laurens de Haan $\star \star$

Introduction

In 1930 Karamata introduced the concept of regular variation of a positive function at infinity. He found a striking characterisation of the class of regularly varying functions. Several related forms of regular behaviour at infinity can be defined. At first a new type of regular behaviour is studied in Section 1.

The results of this section are applied to a problem in extreme value theory: we consider a sequence of independent random variables

$$
X_{1}, X_{2}, X_{3}, \ldots
$$

with the same distribution function $F(x)$ and define

Then

$$
Y_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right) .
$$

$$
P\left\{Y_{n} \leqq x\right\}=F^{n}(x) .
$$

A distribution function F is said to belong to the domain of attraction of a nondegenerate distribution function G (notation $F \in D(G)$) when there exist constants $a_{n}>0$ and b_{n} such that

$$
F^{n}\left(a_{n} x+b_{n}\right) \rightarrow G(x)
$$

weakly. Gnedenko [2] proved in 1943 that only three types of distribution functions have non-empty domains of attraction. In addition he gave characterizations of their domains of attraction, but he remarked that the characterization of the domain of attraction of the third type

$$
\Lambda(x)=\exp \left(-e^{-x}\right)
$$

cannot be regarded as final and simple enough for applications. In 1949 Mezjler [6] gave another characterization in terms of the inverse function of F. In this paper we give a comparatively simple characterization of $D(\Lambda)$ involving only the distribution function itself. Furthermore we show that this criterion can be used also to characterize the domains of attraction of the two other limit types.

1. A Kind of Regular Variation

First we give the main results of Karamata's papers about regular variation ([5] and [6]).

[^0]Definition 1. A positive function U, defined on $(0, \infty)$ is regularly varying at infinity when

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{U(t x)}{U(t)}=x^{\rho} \tag{1}
\end{equation*}
$$

for all $x>0$. The real number ρ is called the exponent of regularity. When $\rho=0 U$ is called slowly varying at infinity.

Theorem 1. For a positive function U defined on $(0, \infty)$ and summable on finite intervals the following assertions are equivalent.
a) U is regularly varying with exponent $\rho>-1$,
b)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x \cdot U(x)}{\int_{0}^{x} U(t) d t}=\rho+1>0 . \tag{2}
\end{equation*}
$$

c) There exist real functions $c(x)$ and $a(x)$ with

$$
\begin{align*}
& \lim _{x \rightarrow \infty} c(x)=c \quad(0<c<\infty) \tag{3}\\
& \lim _{x \rightarrow \infty} a(x)=\rho>-1
\end{align*}
$$

such that

$$
\begin{equation*}
U(x)=c(x) \cdot \exp \left\{\int_{1}^{x} \frac{a(t)}{t} d t\right\} . \tag{4}
\end{equation*}
$$

Remark 1. For $\rho<-1$ the theorem holds with (2) replaced by

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x U(x)}{\int_{x}^{\infty} U(t) d t}=-\rho-1>0 . \tag{5}
\end{equation*}
$$

Remark 2. It can be proved that the summability of U on finite subintervals of some terminal interval (a, ∞) is implied by the regular variation and the measurability of U (see e.g. [1]). Hence for measurable U a slightly different form of Theorem 1 holds.

Corollary 1. If U is regularly varying with exponent $\rho>-1$

$$
U_{1}(x)=\int_{0}^{x} U(t) d t
$$

is regularly varying with exponent $\rho+1$. If U is regularly varying with exponent $\rho<-1$

$$
U_{2}(x)=\int_{x}^{\infty} U(t) d t
$$

is regularly varying with exponent $\rho+1$.
Definition 1 can be extended to $\rho= \pm \infty$. We define for $x>0$

$$
x^{\infty}= \begin{cases}0 & \text { for } x<1 \\ 1 & \text { for } x=1 \\ \infty & \text { for } x>1\end{cases}
$$

and

$$
x^{-\infty}= \begin{cases}\infty & \text { for } x<1 \\ 1 & \text { for } x=1 \\ 0 & \text { for } x>1\end{cases}
$$

Definition 2. A positive function U defined on $(0, \infty)$ is rapidly varying at infinity when

$$
\lim _{t \rightarrow \infty} \frac{U(t x)}{U(t)}=x^{\rho}
$$

for all $x>0$ with $\rho= \pm \infty$.
For rapidly varying functions we have a much weaker version of Theorem 1.
Theorem 2. A non-decreasing positive function U defined on $(0, \infty)$ is rapidly varying with $\rho=\infty$ iff

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x U(x)}{\int_{0}^{x} U(t) d t}=\infty \tag{6}
\end{equation*}
$$

Proof. a) Suppose that U is rapidly varying with $\rho=+\infty$. By Lebesque's theorem on dominated convergence

$$
\lim _{x \rightarrow \infty} \frac{\int_{0}^{x} U(t) d t}{x U(x)}=\lim _{x \rightarrow \infty} \int_{0}^{1} \frac{U(x t)}{U(x)} d t=\int_{0}^{1} \lim _{x \rightarrow \infty} \frac{U(x t)}{U(x)} d t=0 .
$$

b) On the other hand if there exists a value of $t(0<t<1)$ and a sequence $x_{n} \rightarrow \infty$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{U\left(x_{n} t\right)}{U\left(x_{n}\right)}=c>0, \tag{7}
\end{equation*}
$$

then in view of the monotonicity of the lefthand part of (7) as a function of t

$$
\liminf _{n \rightarrow \infty} \int_{0}^{1} \frac{U\left(x_{n} s\right)}{U\left(x_{n}\right)} d s>0
$$

This contradicts (6).
Remark 3. For $\rho=-\infty$ Theorem 2 holds with (6) replaced by

$$
\lim _{x \rightarrow \infty} \frac{x^{-1} U(x)}{\int_{x}^{\infty} U(t) \frac{d t}{t^{2}}}=\infty
$$

A related form of Karamata's theorem (Theorem 1) is given in the next theorem.
Theorem 3. For a real-valued function V defined on $(0, \infty)$ and summable on finite intervals the following assertions are equivalent.
a) For every $a>0$

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\{V(a x)-V(x)\}=\rho \log a \tag{8}
\end{equation*}
$$

where ρ is a real constant.
b) $\quad \lim _{x \rightarrow \infty}\left\{V(x)-\frac{1}{x} \int_{0}^{x} V(t) d t\right\}=\rho$.
c) There exist real functions $c(x)$ and $a(x)$ with

$$
\begin{align*}
& \lim _{x \rightarrow \infty} c(x)=c \quad(-\infty<c<\infty) \tag{10}\\
& \lim _{x \rightarrow \infty} a(x)=\rho
\end{align*}
$$

such that

$$
\begin{equation*}
V(x)=c(x)+\int_{0}^{x} \frac{a(t)}{t} d t . \tag{11}
\end{equation*}
$$

Proof. Relation (8) holds iff

$$
U(x)=\exp \{V(x)\}
$$

is regularly varying at infinity with exponent ρ. Hence the equivalence of a) and c) is contained in Theorem 1. The implication $c) \Rightarrow b$) is a matter of standard calculation. For the proof of the implication $b) \Rightarrow c$) we define

$$
\begin{equation*}
g(x)=V(x)-\frac{1}{x} \int_{0}^{x} V(t) d t \tag{12}
\end{equation*}
$$

Then

$$
\begin{aligned}
\int_{1}^{x} \frac{g(t)}{t} d t & =\int_{1}^{x} \frac{V(t)}{t} d t+\frac{1}{x} \int_{0}^{x} V(t) d t-\int_{0}^{1} V(t) d t-\int_{1}^{x} \frac{V(t)}{t} d t \\
& =-\int_{0}^{1} V(t) d t+V(x)-g(x),
\end{aligned}
$$

hence

$$
\begin{equation*}
V(x)=\int_{0}^{1} V(t) d t+g(x)+\int_{1}^{x} \frac{g(t)}{t} d t . \tag{13}
\end{equation*}
$$

Remark. If (8) holds with $\rho>0, V$ is slowly varying at infinity.
The next theorem can be seen as an attempt to characterize a subclass of the class of slowly varying functions with functions which behave even more regularly.

Theorem 4. For a real-valued strictly increasing function V which is defined on $(0, \infty)$ the following assertions are equivalent.
a) For every positive a and $b \neq 1$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{V(a x)-V(x)}{V(b x)-V(x)}=\frac{\log a}{\log b} . \tag{14}
\end{equation*}
$$

b) The function

$$
\begin{equation*}
V(x)-\frac{1}{x} \int_{0}^{x} V(t) d t \tag{15}
\end{equation*}
$$

is slowly varying at infinity.
c) There exists a slowly varying function g such that

$$
\begin{equation*}
V(x)=c+g(x)+\int_{1}^{x} \frac{g(t)}{t} d t . \tag{16}
\end{equation*}
$$

d) For every $a>0$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{V(a x)-V(x)}{V(x)-\frac{1}{x} \int_{0}^{x} V(t) d t}=\log a \tag{17}
\end{equation*}
$$

Proof. a$) \Rightarrow \mathrm{b}$). Writing $(b>0,0<a<1)$

$$
\frac{V(b x)-V(a b x)}{V(x)-V(a x)}=\frac{V(x)-V(a b x)}{V(x)-V(a x)}-\frac{V(x)-V(b x)}{V(x)-V(a x)}
$$

and using (14) we see that the function

$$
h(x)=V(x)-V(a x)
$$

is slowly varying for every $0<a<1$.
By Theorem 1 this implies

$$
\lim _{x \rightarrow \infty} \frac{\frac{1}{x} \int_{0}^{x} V(t) d t-\frac{1}{a x} \int_{0}^{a x} V(t) d t}{V(x)-V(a x)}=1,
$$

hence

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left\{\frac{V(x)-\frac{1}{x} \int_{0}^{x} V(t) d t}{V(x)-V(a x)}-\frac{V(a x)-\frac{1}{a x} \int_{0}^{a x} V(t) d t}{V(x)-V(a x)}\right\}=0 . \tag{18}
\end{equation*}
$$

By Fatou's lemma we have

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{V(x)-\frac{1}{x} \int_{0}^{x} V(t) d t}{V(x)-V(a x)} \geqq \int_{0}^{1} \liminf _{x \rightarrow \infty} \frac{V(x)-V(t x)}{V(x)-V(a x)} d t=\int_{0}^{1} \frac{\log t}{\log a} d t>0 . \tag{19}
\end{equation*}
$$

Combining (18) and (19) we obtain

$$
\lim _{x \rightarrow \infty} \frac{\left\{V(x)-\frac{1}{x} \int_{0}^{x} V(t) d t\right\}-\left\{V(a x)-\frac{1}{a x} \int_{0}^{a x} V(t) d t\right\}}{V(x)-\frac{1}{x} \int_{0}^{x} V(t) d t}=0
$$

b) $\Rightarrow \mathrm{c}$). Defining

$$
g(x)=V(x)-\frac{1}{x} \int_{0}^{x} V(t) d t
$$

we get (see (13))

$$
V(x)=c+g(x)+\int_{1}^{x} \frac{g(t)}{t} d t .
$$

c) \Rightarrow d). For $a>1$ we have

$$
\begin{equation*}
\frac{V(a x)-V(x)}{V(x)-\frac{1}{x} \int_{0}^{x} V(t) d t}=\frac{g(a x)}{g(x)}-1+\int_{1}^{a} \frac{g(t x)}{g(x)} \frac{d t}{t} \tag{20}
\end{equation*}
$$

Since the relation

$$
\lim _{x \rightarrow \infty} \frac{g(t x)}{g(x)}=1
$$

holds uniformly on [1, a] (see [1]), we obtain (17) by letting $x \rightarrow \infty$ in (20).
$\mathrm{d}) \Rightarrow \mathrm{a})$. Trivial.
Remark. The requirement that V is strictly increasing is only used to ensure the finiteness of the expression to the right of the lim sign in (14) and may be replaced by the requirement: for each $a>1$ there exists a $M(a)$ such that for $x>M(a)$

$$
V(a x)-V(x)>0 .
$$

Remark. It is not difficult to show that a positive function V satisfying (14) is slowly varying at infinity. It is not true that (14) implies (8) for a $\rho \in[0, \infty]$.

Corollary 2. Theorem 4 remains valid if we replace everywhere $\lim _{x \rightarrow \infty}$ by $\lim _{x \downarrow 0}$ (of course now " slowly varying" has to be read as "slowly varying at $x=0$ ").

Proof. If $h(x)$ is slowly varying at $x=0$ i. e. if for each $x>0$

$$
\lim _{t \downarrow 0} \frac{h(t x)}{h(t)}=1,
$$

then $x^{-2} h\left(\frac{1}{x}\right)$ is regularly varying with $\rho=-2$ and by Remark 1

$$
\lim _{x \downarrow 0} \frac{x h(x)}{\int_{0}^{x} h(t) d t}=\lim _{y \rightarrow \infty} \frac{h(y)}{y \int_{y}^{\infty} h\left(\frac{1}{t}\right) \frac{d t}{t^{2}}}=1
$$

The remainder is easy.

2. Preliminaries

First we list some well-known results on the domain of attraction of the double exponential law used in the sequel (cf. [3]).

Lemma 1. Let $\left\{F_{n}\right\}$ be a sequence of distribution functions. Suppose that there exist sequences of real numbers $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ with

$$
a_{n}>0 \quad \text { for } n=1,2,3, \ldots
$$

such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{n}\left(a_{n} x+b_{n}\right)=G(x) \tag{21}
\end{equation*}
$$

weakly where G is non-degenerate distribution function.
Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{n}\left(\alpha_{n} x+\beta_{n}\right)=G^{*}(x) \tag{22}
\end{equation*}
$$

holds with G^{*} non-degenerate and real numbers $\alpha_{n}>0$ and β_{n} iff

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{a_{n}}=A>0, \quad \lim _{n \rightarrow \infty} \frac{\beta_{n}-b_{n}}{a_{n}}=B \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{*}(x)=G(A x+B) . \tag{24}
\end{equation*}
$$

We say that a distribution function F belongs to the domain of attraction of a non-degenerate distribution function G (notation $F \in D(G)$) if for suitably chosen constants $a_{n}>0$ and b_{n}

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F^{n}\left(a_{n} x+b_{n}\right)=G(x) \tag{25}
\end{equation*}
$$

for all continuity points x of G.
Theorem 5. A distribution function F can belong only to the domain of attraction of one of the following types of distribution functions:

$$
\begin{align*}
\phi_{\alpha}(x) & = \begin{cases}0 & \text { for } x \leqq 0 \\
\exp \left(-x^{-\alpha}\right) & \text { for } x>0\end{cases} \tag{26}\\
\psi_{\alpha}(x) & = \begin{cases}\exp \left(-(-x)^{\alpha}\right) & \text { for } x \leqq 0 \\
1 & \text { for } x>0 .\end{cases} \tag{27}\\
\Lambda(x) & =\exp \left(-e^{-x}\right) . \tag{28}
\end{align*}
$$

In (26) and (27) α is a positive constant.
In the sequel we use the notation

$$
\begin{equation*}
x_{0}=x_{0}(F)=\sup \{x \mid F(x)<1\} \leqq \infty . \tag{29}
\end{equation*}
$$

Theorem 6. a) The distribution function F belongs to the domain of attraction of $\phi_{\alpha}(x)$ iff $1-F(x)$ is regularly varying with exponent $-\alpha$.
b) The distribution function F belongs to the domain of attraction of $\psi_{\alpha}(x)$ iff $x_{0}<\infty$ and $1-F\left(x_{0}-\frac{1}{x}\right)$ is regularly varying with exponent $-\alpha$.

Theorem 7. The distribution function F belongs to the domain of attraction of $\Lambda(x)$ iff

$$
\lim _{n \rightarrow \infty} F^{n}\left(a_{n} x+b_{n}\right)=\Lambda(x)
$$

or equivalently

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left\{1-F\left(a_{n} x+b_{n}\right)\right\}=e^{-x} \tag{30}
\end{equation*}
$$

with

$$
\begin{align*}
& b_{n}=\inf \left\{x \left\lvert\, 1-F(x) \geqq \frac{1}{n}\right.\right\} \tag{31}\\
& a_{n}=\inf \left\{x \left\lvert\, 1-F(x) \geqq \frac{1}{n e}\right.\right\}-b_{n}
\end{align*}
$$

Remark. It can be seen (cf. [4]) that the choice (31) for the stabilizing coefficients also holds for distribution functions attracted to the other limit types.

Theorem 8. The distribution function F belongs to the domain of attraction of $\Lambda(x)$ iff it is possible to choose a function A with

$$
z A(z)>0 \quad \text { when } \quad z \neq 0
$$

and

$$
\lim _{z \uparrow x_{0}} A(z)=0
$$

such that for every x

$$
\begin{equation*}
\lim _{z \uparrow x_{0}} \frac{1-F(z+z A(z) x)}{1-F(z)}=e^{-x} \tag{33}
\end{equation*}
$$

Remark. In Gnedenko's paper the continuity of A is required but in his proof this property is not used.

The next theorem is due to von Mises ([8]). The theorem is extended in Gnedenko's paper.

Theorem 9. Suppose that the distribution function F is twice differentiable. Define

$$
\begin{equation*}
f(x)=\frac{F^{\prime}(x)}{1-F(x)} \tag{34}
\end{equation*}
$$

If

$$
\begin{equation*}
\lim _{x \nmid x_{0}} \frac{d}{d x}\left(\frac{1}{f(x)}\right)=0 \tag{35}
\end{equation*}
$$

then $F \in D(\Lambda)$.

3. The Domain of Attraction of $\boldsymbol{\Lambda}$

Lemma 2. If $F \in D(\Lambda)$, there exists a continuous and strictly increasing distribution function G such that

$$
\begin{equation*}
1-F(x) \sim 1-G(x) \quad \text { for } x \uparrow x_{0} \tag{36}
\end{equation*}
$$

Proof. Suppose first $x_{0}=\infty$. By Theorem 8 there is a positive function A with
such that for all x

$$
\lim _{z \rightarrow \infty} A(z)=0
$$

such that for all x

$$
\begin{equation*}
\lim _{z \rightarrow \infty} \frac{1-F(z+z A(z) x)}{1-F(z)}=e^{-x} \tag{37}
\end{equation*}
$$

Both sides of (37) are monotone functions of x hence (37) holds uniformly for $0 \leqq x \leqq 1$. Taking $x(z)=z^{-1}$ we obtain

$$
\begin{equation*}
\lim _{z \rightarrow \infty} \frac{1-F(z+A(z))}{1-F(z)}=1 \tag{38}
\end{equation*}
$$

From this we see

$$
\begin{equation*}
\lim _{z \rightarrow \infty} \frac{1-F(z)}{1-F(z-0)}=1 \tag{39}
\end{equation*}
$$

Let $\left\{z_{n}\right\}_{n=1}^{\infty}$ be an enumeration of the points of discontinuity of F. We define $F_{1}(x)$ in the following way: $F_{1}\left(z_{1}\right)=F\left(z_{1}-0\right), F_{1}(z)$ linear on $\left[z_{1}, z_{1}+A\left(z_{1}\right)\right]$ with $F_{1}\left(z_{1}+A\left(z_{1}\right)\right)=F\left(z_{1}+A\left(z_{1}\right)\right)$ and $F_{1}(z)=F(z)$ when $z \notin\left[z_{1}, z_{1}+A\left(z_{1}\right)\right]$.

Now $F_{2}(z)$ equals $F_{1}(z)$ if $z_{1}<z_{2} \leqq z_{1}+A\left(z_{1}\right)$; otherwise $F_{2}(z)$ is constructed by putting $F_{2}\left(z_{2}\right)=F_{1}\left(z_{2}-0\right)$ and making F_{1} linear on $\left[z_{2}, z_{2}+A\left(z_{2}\right)\right]$ or $\left[z_{2}, z_{1}\right]$ if $z_{2}<z_{1} \leqq z_{2}+A\left(z_{2}\right)$. In this way we construct a sequence of distribution functions F_{n}. As the intervals I_{n} where the function is changed are disjoint, $H(z)=$ $\lim _{n \rightarrow \infty} F_{n}(z)$ exists and is a continuous distribution function. If $H(z) \neq F(z)$ for a z then there exists an n such that $H(z)=F_{n}(z)$ and $H(z) \neq F_{k}(z)$ for $k<n$, so
and

$$
F\left(z_{n}-0\right) \leqq H(z) \leqq F\left(z_{n}+A\left(z_{n}\right)\right)
$$

$$
\frac{1-F\left(z_{n}-0\right)}{1-F\left(z_{n}+A\left(z_{n}\right)\right)} \geqq \frac{1-H(z)}{1-F(z)} \geqq \frac{1-F\left(z_{n}+A\left(z_{n}\right)\right)}{1-F\left(z_{n}\right)} .
$$

Hence by (38) and (39)

$$
\begin{equation*}
\lim _{z \rightarrow \infty} \frac{1-H(z)}{1-F(z)}=1 \tag{40}
\end{equation*}
$$

In an analogous way we proceed to make the function strictly increasing. Let $\left\{u_{n}\right\}$ be an enumeration of the initial points of intervals where H is constant and $\left\{v_{n}\right\}$ the corresponding endpoints. The construction of a sequence H_{n} is analogous to the construction of the sequence F_{n} using now the intervals $\left[u_{n}, v_{n}+A\left(v_{n}\right)\right]$ instead of $\left[z_{n}, z_{n}+A\left(z_{n}\right)\right]$. The function $G(z)=\lim _{n \rightarrow \infty} H_{n}(z)$ is a continuous and strictly increasing distribution function and as above we see

$$
\begin{equation*}
\lim _{z \rightarrow \infty} \frac{1-G(z)}{1-H(z)}=1 \tag{41}
\end{equation*}
$$

If $x_{0}<\infty$ we have

$$
\lim _{z \uparrow x_{0}} \frac{1-F(z+z A(z) x)}{1-F(z)}=e^{-x}
$$

with

$$
z A(z)>0
$$

and

$$
\lim _{z \uparrow x_{0}} A(z)=0 .
$$

By taking $x(z)=x_{0}-z$ we obtain

$$
\begin{equation*}
\lim _{z \uparrow x_{0}} \frac{1-F\left(z+z A(z)\left(x_{0}-z\right)\right)}{1-F(z)}=1 \tag{42}
\end{equation*}
$$

As

$$
z A(z)\left(x_{0}-z\right)>0
$$

and

$$
\lim _{z \uparrow x_{0}} z A(z)\left(x_{0}-z\right)=0,
$$

relation (42) implies

$$
\lim _{z \uparrow x_{0}} \frac{1-F(z)}{1-F(z-0)}=1
$$

the remainder of the proof is analogous to the proof for the case $x_{0}=\infty$.
Lemma 3. Let $\left\{F_{t}\right\}$ be a family of distribution functions $\left(-\infty<t<t_{0} \leqq \infty\right)$. Suppose that there exist real-valued functions $a(t)>0$ and $b(t)$ such that

$$
\lim _{t \uparrow t_{0}} F_{t}(a(t) x+b(t))=G(x)
$$

weakly, where G is a non-degenerate distribution function. Then

$$
\lim _{t \uparrow t_{0}} F_{t}(\alpha(t) x+\beta(t))=G^{*}(x)
$$

holds with G^{*} non-degenerate and real-valued functions $\alpha(t)>0$ and $\beta(t)$ iff

$$
\lim _{t \uparrow t_{0}} \frac{\alpha(t)}{a(t)}=A>0, \quad \lim _{i \uparrow t_{0}} \frac{\beta(t)-b(t)}{a(t)}=B
$$

and

$$
G^{*}(x)=G(A x+B)
$$

Proof. Analogous to the proof of Lemma 2 (see Feller [2] p. 246).
Corollary 3. If for a distribution function F

$$
\begin{equation*}
\lim _{z \uparrow x_{0}} \frac{1-F(z+z A(z) x)}{1-F(z)}=e^{-x} \tag{43}
\end{equation*}
$$

holds with
and
then

$$
\begin{equation*}
\lim _{z \uparrow x_{0}} \frac{1-F(f(z)+z B(z) x)}{1-F(z)}=e^{-x-b} \tag{44}
\end{equation*}
$$

holds iff

$$
\begin{gather*}
\lim _{z \uparrow x_{0}} \frac{B(z)}{A(z)}=1 \tag{45}\\
\lim _{z \uparrow x_{0}} \frac{f(z)-z}{A(z)}=b .
\end{gather*}
$$

Proof. Take in Lemma 3

$$
F_{t}(x)=1-\frac{1-F(x)}{1-F(t)} \quad \text { and } \quad G(x)=1-e^{-x}
$$

The fact that $F_{t}(-\infty)>0$ is immaterial.
Lemma 4^{1}. If $F \in D(\Lambda)$ then for all $a>1$

$$
\begin{equation*}
\lim _{y \downarrow 0} \frac{V\left(a^{-1} y\right)-V(y)}{V\left(e^{-1} y\right)-V(y)}=\log a \tag{46}
\end{equation*}
$$

with for $0<y<1$

$$
V(y)=\inf \{x \mid 1-F(x) \geqq y\}
$$

Proof. We use Theorem 7 and make first the remark that if a_{n} in (30) is replaced by

$$
\alpha_{n}=V\left(\frac{1}{a n}\right)-V\left(\frac{1}{n}\right)
$$

for an arbitrary $a>1$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left\{1-F\left(\alpha_{n} x+b_{n}\right)\right\}=a^{-x} \tag{47}
\end{equation*}
$$

this can be seen by a simple adaptation of Gnedenko's proof.
Combination of (30) and (47) gives by Lemma 1

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{V\left(\frac{1}{n a}\right)-V\left(\frac{1}{n}\right)}{V\left(\frac{1}{n e}\right)-V\left(\frac{1}{n}\right)}=\log a . \tag{48}
\end{equation*}
$$

Using the monotonicity of V we see from (48)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{V\left(\frac{1}{n+1}\right)-V\left(\frac{1}{n}\right)}{V\left(\frac{1}{n e}\right)-V\left(\frac{1}{n}\right)}=0 \tag{49}
\end{equation*}
$$

From (47) we obtain also

$$
\lim _{n \rightarrow \infty} n\left\{1-F\left(\alpha_{n+1} x+b_{n+1}\right)\right\}=a^{-x}
$$

Using Lemma 1 again we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{V\left(\frac{1}{(n+1) a}\right)-V\left(\frac{1}{n+1}\right)}{V\left(\frac{1}{n a}\right)-V\left(\frac{1}{n}\right)}=1 \tag{50}
\end{equation*}
$$

[^1]Now defining

$$
U(x)=V\left(\frac{1}{x}\right)
$$

we see (using the entier function)

$$
\frac{U(a[y])-U([y]+1)}{U(e[y])-U([y])} \leqq \frac{U(a y)-U(y)}{U(e[y])-U([y])} \leqq \frac{U(a([y]+1))-U([y])}{U(e[y])-U([y])}
$$

The righthand member is the same as

$$
\frac{U(a([y]+1))-U([y]+1)}{U(e[y])-U([y])}+\frac{U([y]+1)-U([y])}{U(e[y])-U([y])}
$$

and this by (48), (49) and (50) tends to $\log a$ as y tends to infinity. The lefthand side tends to the same limit so

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \frac{U(a y)-U(y)}{U(e[y])-U([y])}=\log a \tag{51}
\end{equation*}
$$

and this in combination with (48) gives the assertion of the lemma.
Lemma 5. If $F \in D(\Lambda)$ then

$$
\begin{equation*}
\lim _{z \uparrow x_{0}} \frac{1-F(z+z A(z) x)}{1-F(z)}=e^{-x} \tag{52}
\end{equation*}
$$

for all x with

$$
\begin{equation*}
A(z)=\frac{\int_{z}^{x_{0}}\{1-F(t)\} d t}{z\{1-F(z)\}} \tag{53}
\end{equation*}
$$

Proof. By Lemma 2 and Corollary 3 we need only consider continuous and strictly increasing distribution functions.

By Lemma 4

$$
\begin{equation*}
\lim _{y \downarrow 0} \frac{V\left(a^{-1} y\right)-V(y)}{V\left(e^{-1} y\right)-V(y)}=\log a \tag{54}
\end{equation*}
$$

for all $a>1$ with

$$
V(y)=(1-F)^{-1}(y)
$$

By Theorem 4 and Corollary 2 (used for $-V$) relation (54) is equivalent with

$$
\begin{equation*}
\lim _{y \downarrow 0} \frac{V\left(a^{-1} y\right)-V(y)}{\frac{1}{y} \int_{0}^{y} V(t) d t-V(y)}=\log a \tag{55}
\end{equation*}
$$

Taking $a=e$ and using Lemma 1 we see

$$
\lim _{n \rightarrow \infty} n\left\{1-F\left(a_{n} x+b_{n}\right)\right\}=e^{-x}
$$

with

$$
\begin{aligned}
& b_{n}=V\left(\frac{1}{n}\right) \\
& a_{n}=n \int_{0}^{1 / n} V(t) d t-V\left(\frac{1}{n}\right) .
\end{aligned}
$$

Now it is not difficult to see (using (49), (51), (55) and Lemma 1) that
with

$$
\begin{equation*}
\lim _{y \downarrow 0} y^{-1}\{1-F(a(y) x+b(y))\}=e^{-x} \tag{56}
\end{equation*}
$$

$$
\begin{align*}
& b(y)=V(y) \\
& a(y)=\frac{1}{y} \int_{0}^{y} V(t) d t-V(y) . \tag{57}
\end{align*}
$$

Putting $y=1-F(z)$ in (56) and (57) we obtain (52) and (53).
Lemma 6. If for a distribution function F

$$
\begin{equation*}
\lim _{z \uparrow x_{0}} \frac{1-F(z+z A(z) x)}{1-F(z)}=e^{-x} \tag{58}
\end{equation*}
$$

for all x with $z A(z)>0$ for $z \neq 0$ and
then

$$
\lim _{z \uparrow x_{0}} A(z)=0
$$

$$
\begin{equation*}
\frac{1-F_{1}(z+z A(z) x)}{1-F_{1}(z)}=e^{-x} \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{1}(x)=1-\int_{x}^{x_{0}}\{1-F(t)\} d t . \tag{60}
\end{equation*}
$$

Proof. By the Lemma's 3 and 5

$$
\begin{equation*}
A(z) \sim \frac{\int_{z}^{x_{0}}\{1-F(t)\} d t}{z\{1-F(z)\}} \quad \text { for } z \uparrow x_{0} \tag{61}
\end{equation*}
$$

In (58) we substitute $z=y+y A(y) s$ with s an arbitrary real number; then:

$$
\lim _{y \uparrow x_{0}} \frac{1-F(y+y A(y) s+(y+y A(y) s) A(y+y A(y) s) x)}{1-F(y+y A(y) s)}=e^{-x} .
$$

With (58) this becomes

$$
\begin{equation*}
\lim _{y \uparrow x_{0}} \frac{1-F(y+y A(y) s+(y+y A(y) s) A(y+y A(y) s) x)}{1-F(y)}=e^{-(x+s)} \tag{62}
\end{equation*}
$$

Applying Corollary 3 we obtain from (58) and (62)

$$
\begin{equation*}
\lim _{y \uparrow x_{0}} \frac{A(y+y A(y) s)}{A(y)}=1 \tag{63}
\end{equation*}
$$

for all s.
Combining (58), (61) and (63) we obtain (59).
Lemma 7. If for a positive non-decreasing function f defined on $\left(-\infty, x_{0}\right)$ with

$$
\begin{gather*}
\lim _{z \uparrow x_{0}} f(x)=\infty \\
\lim _{z \uparrow x_{0}} \frac{f(z+z A(z) x)}{f(z)}=e^{x} \tag{64}
\end{gather*}
$$

(where $x_{0} \leqq \infty$), the relation
holds for all x and a properly chosen function A with

$$
z A(z)>0 \quad \text { for } z \neq 0
$$

and
then also

$$
\lim _{z \uparrow x_{0}} A(z)=0
$$

$$
\begin{equation*}
\lim _{z \uparrow x_{0}} \frac{f_{1}(z+z A(z) x)}{f_{1}(z)}=e^{x} \tag{65}
\end{equation*}
$$

for all x where
and

$$
f_{1}(x)=\int_{x_{1}}^{x} f(t) d t
$$

$$
x_{1}= \begin{cases}x_{0}-1 & \text { when } x_{0}<\infty \\ 1 & \text { when } x_{0}=\infty\end{cases}
$$

Proof. Analogous to the proof of Lemma 6. First we use Theorem 4 to find

$$
A(z) \sim \frac{\int_{x_{1}}^{z} f(t) d t}{z f(z)} \quad \text { for } z \uparrow x_{0}
$$

then by Lemma 3

$$
\lim _{y \uparrow x_{0}} \frac{A(y+y A(y) s)}{A(y)}=1
$$

for all s. As in the proof of Lemma 6 the assertion of this lemma follows.
Now we are able to prove the main theorem.
Theorem 10. A distribution function F is in the domain of attraction of the double exponential distribution iff

$$
\begin{equation*}
\lim _{x \uparrow x_{0}} \frac{\{1-F(x)\}\left\{\int_{x}^{x_{0}} \int_{y}^{x_{0}}\{1-F(t)\} d t d y\right\}}{\left\{\int_{x}^{x_{0}}\{1-F(t)\} d t\right\}^{2}}=1 \tag{66}
\end{equation*}
$$

Proof. a) Suppose $F \in D(\Lambda)$. By Lemma 5 this is equivalent to

$$
\begin{equation*}
\lim _{z \uparrow x_{0}} \frac{1-F(z+z A(z) x)}{1-F(z)}=e^{-x} \tag{67}
\end{equation*}
$$

with

$$
\begin{equation*}
A(z)=\frac{\int_{z}^{x_{0}}\{1-F(t)\} d t}{z\{1-F(z)\}} \tag{68}
\end{equation*}
$$

By Lemma 6 we know that

$$
\begin{equation*}
F_{1}(x)=1-\int_{x}^{x_{0}}\{1-F(t)\} d t \tag{69}
\end{equation*}
$$

also satisfies (67) and (68). But then by Lemma $5 F_{1}(x)$ also satisfies (67) with

$$
\begin{equation*}
A_{1}(z)=\frac{\int_{z}^{x_{0}} \int_{y}^{x_{0}}\{1-F(t)\} d t d y}{z \int_{z}^{x_{0}}\{1-F(t)\} d t} \tag{70}
\end{equation*}
$$

and by Lemma 3

$$
A(z) \sim A_{1}(z) \quad \text { for } z \uparrow x_{0}
$$

This is equivalent with (66).
b) Suppose that (66) holds. By Theorem 8 and Theorem 9 we know that the distribution function F_{2}, defined for sufficiently large values of x by

$$
\begin{equation*}
F_{2}(x)=1-\int_{x}^{x_{0}} \int_{y}^{x_{0}}\{1-F(t)\} d t d y \tag{71}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\lim _{z \uparrow x_{0}} \frac{1-F_{2}\left(z+z A_{2}(z) x\right)}{1-F_{2}(z)}=e^{-x} \tag{72}
\end{equation*}
$$

with
and

$$
\begin{equation*}
z A_{2}(z)>0 \quad \text { for } z \neq 0 \tag{73}
\end{equation*}
$$

$$
\lim _{z \uparrow x_{0}} A_{2}(z)=0
$$

As the function

$$
f(x)=\frac{1}{1-F_{2}(x)}
$$

satisfies (64), by Lemma 7 the function

$$
f_{1}(x)=\int_{x_{1}}^{x} f(t) d t
$$

also satisfies (64). But by (66) this function is asymptotically equivalent to

$$
f_{2}(x)=\int_{0}^{x}\{1-F(t)\}\left\{\int_{t}^{x_{0}}(1-F(s)) d s\right\}^{-2} d t \sim\left\{\int_{x}^{x_{0}}(1-F(t)) d t\right\}^{-1} \quad \text { for } x \uparrow x_{0}
$$

Thus $F_{1}(x)$ defined by (69) satisfies (72). Hence by (66)

$$
\lim _{z \uparrow x_{0}} \frac{1-F(z+z A(z) x)}{1-F(z)}=\lim _{z \uparrow x_{0}}\left\{\frac{1-F_{1}(z+z A(z) x)}{1-F_{1}(z)}\right\}^{2} \cdot \lim _{z \uparrow x_{0}} \frac{1-F_{2}(z)}{1-F_{2}(z+z A(z) x)}=e^{-x}
$$

This completes the proof.

4. A Unifying Approach

For distribution functions with $x_{0}<\infty$ we are now able to combine the results on the domain of attraction of the two limit distributions.

Theorem 11. Let F be a distribution function with $x_{0}<\infty$. The sequence

$$
F^{n}\left(a_{n} x+b_{n}\right)
$$

tends to a non-degenerate distribution function for a proper choice of the constants $a_{n}>0$ and b_{n} iff

$$
\begin{align*}
& b_{n} \text { iff } \tag{74}\\
& \lim _{x \nmid x_{0}} \frac{\{1-F(x)\}\left\{\int_{x}^{x_{0}} \int_{y}^{x_{0}}\{1-F(t)\} d t d y\right\}}{\left\{\int_{x}^{x_{0}}\{1-F(t)\} d t\right\}^{2}}=c \text { with } \quad \frac{1}{2}<c \leqq 1 .
\end{align*}
$$

F is in the domain of attraction of ψ_{α} with $\alpha=(1-c)^{-1}-2$ if $c<1 . F$ is in the domain of attraction of Λ if $c=1$.

Proof. For $c=1$ the content of the theorem is part of Theorem 10. Suppose (74) holds with $\frac{1}{2}<c<1$. If we write $a(x)$ for the function to the right of the lim sign in (74), then for almost all x

$$
a(x)=1+\frac{d}{d x} \frac{\int_{x}^{x_{0}} \int_{y}^{x_{0}}\{1-F(t)\} d t d y}{\int_{x}^{x_{0}}\{1-F(t)\} d t}
$$

Hence

$$
\begin{equation*}
\lim _{x \uparrow x_{0}} \frac{\int_{x}^{x_{0}} \int_{y}^{x_{0}}\{1-F(t)\} d t d y}{\left(x_{0}-x\right) \int_{x}^{x_{0}}\{1-F(t)\} d t}=\lim _{x \uparrow x_{0}}\left(x_{0}-x\right)^{-1} \int_{x}^{x_{0}}\{1-a(t)\} d t=1-c \tag{75}
\end{equation*}
$$

and by (74)

$$
\begin{equation*}
\lim _{x \uparrow x_{0}} \frac{\int_{x}^{x_{0}}\{1-F(t)\} d t}{\left(x_{0}-x\right)\{1-F(x)\}}=c^{-1}(1-c) \tag{76}
\end{equation*}
$$

From Remark 1 (after a trivial transformation) we see that $1-F\left(x_{0}-\frac{1}{x}\right)$ is
regularly varying with exponent $2-(1-c)^{-1}$.
Hence by Theorem 6 we have $F \in D\left(\psi_{\alpha}\right)$ with $\alpha=(1-c)^{-1}-2$. The converse is a simple application of Theorem 6, Remark 1 and Corollary 1.

For distribution functions with $x_{0}=\infty$ there is an additional complication. If for example $F \in D\left(\phi_{0.5}\right)$ then $a(x)$ is not defined because

$$
\int_{0}^{\infty}\{1-F(t)\} d t=\infty .
$$

Our final theorem shows that this difficulty is easily overcome.
Theorem 12. Let F be a distribution function with $x_{0}=\infty$. The sequence

$$
F^{n}\left(a_{n} x+b_{n}\right)
$$

tends to a non-degenerate distribution function for a proper choice of the constants $a_{n}>0$ and b_{n} iff

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\{1-F(x)\}\left\{\int_{x}^{\infty} \int_{y}^{\infty}\{1-F(t)\} \frac{d t}{t^{3}} d y\right\}}{x^{3}\left\{\int_{x}^{\infty}\{1-F(t)\} \frac{d t}{t^{3}}\right\}^{2}}=c \text { with } 1 \leqq c<2 \tag{77}
\end{equation*}
$$

F is in the domain of attraction of ϕ_{α} with $\alpha=(c-1)^{-1}-1$ if $c>1 . F$ is in the domain of attraction of Λ if $c=1$.

Proof. For $c=1$ the content of the theorem is a consequence of Theorem 10. Next suppose (77) holds with $1<c<2$. As in the proof of Theorem 11 we obtain

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x^{2} \int_{x}^{\infty}\{1-F(t)\} \frac{d t}{t^{3}}}{1-F(x)}=c^{-1}(c-1) \tag{78}
\end{equation*}
$$

From Remark 1 we see that $F \in D\left(\phi_{\alpha}\right)$ with $\alpha=(c-1)^{-1}-1$. The converse is again a simple application of Remark 1 and Corollary 1.

Corollary 4. Let $F \in D(\Lambda)$. The function $1-F(x)$ is rapidly varying at infinity with $\rho=-\infty$ if $x_{0}=\infty$. The function $1-F\left(x_{0}-\frac{1}{x}\right)$ is rapidly varying at infinity
with $\rho=-\infty$ if $x_{0}<\infty$. with $\rho=-\infty$ if $x_{0}<\infty$.

Proof. The relations (76) and (78) which are also true for $c=1$, are equivalent to the statements in this corollary (see Remark 3 and the transformation in the proof of Corollary 2).

Remark. For distribution functions with $x_{0}=\infty$ Corollary 4 is proved in Gnedenko's paper.

A number of related results including other characterisations of $D(\Lambda)$ will be published elsewhere.

References

1. Aardenne-Ehrenfest, T. van, Bruyn, N. G. de, Korevaar, J.: A note on slowly oscillating functions. Nieuw Arch. Wiskunde, II. R. 23, 77-86 (1949).
2. Feller, W.: An introduction to probability theory and its applications 2. New York: Wiley (1966)
3. Gnedenko, B. V.: Sur la distribution limite du terme maximum d'une série aléatoire. Ann. of Math., II. Ser. 44, 423-453 (1943).
4. Haan, L. de: Quantiles and stabilizing constants. Report S 410 (SP 114) Statistische afdeling, Mathematisch Centrum, Amsterdam (1969).
5. Karamata, J.: Sur un mode de croissance régulière des fonctions. Mathematica (Cluj) 4, 38-53 (1930).
6. - Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. math. France 61, 55-62 (1933).
7. Mejzler, D. G.: On a theorem of B. V. Gnedenko. Sb. Trudov Inst. Mat. Akad. Nauk. Ukrain. RSR 12, 31-35 (1949) [Russian].
8. Mises, R. von: La distribution de la plus grande de n valeurs. Rev. math. Union Interbalkan. 1, 141-160 (1936).
Dr. L. de Haan
Stichting Mathematisch Centrum
2e Boerhaavestraat 49
Amsterdam (0.$)$
Netherlands

[^0]: * Report S 411 (SP 115) Statistische Afdeling, Mathematisch Centrum, Amsterdam.
 ** Mathematisch Centrum, Amsterdam.

[^1]: ${ }^{1}$ Cf. Mejzler [7].

