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THE LIKELIHOOD RATIO TEST FOR THE 

MULTINOMIAL DISTRIBUTION 

J. OOSTERHOFF 

University of Nijmegen 

W.R. VAN ZWET 

University of Leiden 

1. Introduction and summary 

Let X(N) = (x;N), ... ,~N)) be a random vector having a multinomial 

distribution with parameters N and p = ( p 1 , , , . ,Pk) ~ 

( 1 • 1 ) P(X(N) = xJp) 

where, x = (x 1, ••• ,~) is a vector with nonnegative integer components 

with sum N and pis any point in the simplex 

k 
( 1. 2) I 

i=1 
y. = 1' 

]. 
y. > 0 for i = 1 , •.• ,k} • 

]. 

(N) (N) (N) By Z = (z 1 , .•• ,Zk ) we denote the random vector with components 

X~N) 
( 1 • 3) 

]. 
=--

N 
]. = 1 , ••• ,k • 

For N = 1,2, ... , consider tests based on Z(N) for the hypothesis 
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against the alternative 

where A0 and A1 are disjoint subsets of Q and A= A0uA 1 may be a proper 

subset of Q, It is assumed that the sizes aN of the tests depend on N 

in such a way that a + 0 for N + 00 • The likelihood ratio·test based 
N 

on Z(N) for H against K rejects H for large values of the statistic 

( 1. 4) 
k 

inf sup I 
p€A0 rr€A i=1 

z~N) log rri 
J. p. ' 

J. 

possibly with randomization on the set where the statistic assumes its 

cri tic:al value. 

In [2] W. Hoeffding considered a special case of this situation 

where A= n, in which case the likelihood ratio statistic (1.4) reduces 

to 

( 1. 5) 

z ~N) 
J. log-­
p. 

J. 

The pa.per [2] is devoted to making precise the following proposition in 

this case: 

"If a given test of size aN is "suffioientiy different" from a likeli­

hood ratio test, then there is a likelihood ratio test of size~ aN whioh 

is oonsiderably more powerful than the given test at ''most" points pin 

the set of alternatives when N is large enough, provided that aN +Oat 
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a suitable rate;" 

By "considerably more powerful" is meant here that the ratio of the 

error probabilities of the second kind at p of the two tests tends to 

zero :more rapidly than any power of N. 

The condition that "a ➔ 0 at a suitable rate" will typically imply 
N 

that 1:x.N tends to zero more rapidly than any power of N, i.e. that 

-log aN/log N ➔ oo, 

If the likelihood ratio test is much better than a given test for 

most alternatives, it is natural to ask how much worse it can be for 

the rE:imaining alternatives or sequences of alternatives. Let SN denote 

the power function of the size-aN likelihood ratio test based on Z(N) 

for H against Kand lets; be the size-aN envelope power for testing H, 

i.e. /3; ( p) is the power at p of the size-aN most powerful test based 

on Z(N) for H against the simple alternative p, The shortcoming of the 

size-c(N likelihood ratio test for a given N is defined by 

( 1. 6) 

The main purpose of this paper is to show that for a simple hypothesis 

Hand under a condition concerning the speed of convergence of aN to 

zero, the shortcoming of the likelihood ratio test converges to zero 

uniformly on the set of alternatives. We note that for testing the 

0 0 0 simple hypothesis H: p = p (p EA) against K: pEA 1 = A-{p} the likeli-

hood ratio statistic (1,4) reduces to 

( 1. 7) 
k 

sup I 
TfEA i=1 

Tf • 
l log -
0 p. 
l 
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THEOREM 1.1. 

0 Let A be an arbitrary subset of n, p an arbitrary point of A and let 

~ denote the shortcoming of the 

on Z(N) for H: p = po against K: 

size-aN likelihood ratio test based 

0 p€A 1 = A-{p }. If 

lim aN = 0 -log aN = o(N) for N + 00 

' ' N➔oo 

then 

lim sup RN(p) = 0 
N+oo p€A1 

Al though Hoe ff ding.' s result and theorem 1 . 1 are complementary in 

the sense mentioned above, we wish to point out that they are of an 

entireily different nature. Hoe ff ding' s theorem concerns fixed alternatives 

and the performance of the likelihood ratio test is compared to that of a 

fixed sequence of tests by considering the ratio of error probabilities 

of the, second kind. The alternatives at which the likelihood ratio test 

is considerably more powerful in Hoeffding's sense are necessarily 

alternatives where the power of the likelihood ratio test tends to one 

very rapidly. Since also the convergence of aN to zero is assumed to 

be fast, the probabilities to be considered under the hypothesis as 

well as under the alternative are all probabilities of large deviations. 

The tools used to estimate these probabilities are theorems 2.1 and A.1 

in [2] which are reproduced here as lemma 2.6. 

In theorem 1.1 on the other hand the performance of the likelihood 

ratio test is compared at each alternative to that of the most powerful 
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test for that alternative. The comparison is in terms of power difference 

and the result is uniform on the set of alternatives. Alternatives or 

sequences of alternatives for which the power of the-likelihood ratio 

test tends to one play a role only in so far as uniformity is concerned 

and the theorem is basically concerned with sequences of alternatives 

for which the power of the likelihood ratio test remains bounded away 

from one. Under alternatives we only have to compute probabilities of 

small deviations which is done by applying the central limit theorem. 

As aN is allowed to tend to zero either slowly or fast, we are dealing 

with intermediate as well as large deviations under the hypothesis. In 

1/6 the former case where :-log aN = o ( N ) , theorem 1 • 1 was first proved 

by using classical limit theorems by J. Oosterhoff in [3] under the 

additional assumptions that A= n and that po is an interior point of 

56, We shall use this result (lemma 3,1) as a starting point for our 

investigation in the case where aNtendsto zero slowly.· In the case 

where1~N tends to zero fast the resulting probabilities of large devia­

tions are dealt with in the same manner as is done in [2]. 

The condition -log aN = o(N) in theorem 1.1 is unduly restrictive 

and occurs there only for the sake of simplicity. In fact we shall show 

that it may be replaced by the assumption that there exists E > 0 such 

that f'or all sufficiently large N 

( 1.8) a > 
N 

NE 
e 

0 0 where pm is the smallest positive coordinate of p . Moreover, further 

refinements of this condition are possible. 
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The reason that we need an assumption of this.type at all, is to 

avoid complications arising from the fact that under sequences of 

alternatives converging sufficiently fast to certain boundary points 

of Q, the distribution of the likelihood ratio statistic degenerates 

too rapidly. The nature of these complications is most easily made 

clear for alternatives located at the extreme points of Q (i.e. the 

points with a coordinate equal to 1). 

EXAMPLE 1,1. 

0 0 -1 Take :for p the point with coordinates p. = k i = 1, ... ,k, and 
i 

. . -N suppol3e that A contains all extreme points of Q, Choose a.N = k . The 

statistic (1,7) assumes its maximum value if Z~N) = 1 for some i. Since 
i 

P(ZiN) = 1lpo) = k-N for each i, the size-a.N likelihood ratio test re-

jects H: p = po with probability k- 1 if Z~N) = 1 for some i and hence 
i 

-1 its power at each of the extreme points of Q is equal to k • For each 

0 
i, the size-a.N most powerful test for H: p = p against the simple 

alternative p. = 1 rejects H if Z~N) = 1 and has power 1 at p. = 1. 
i i i 

The shortcoming of the likelihood ratio test at each of the extreme 

points of Q is therefore equal to 1-k- 1 for every N. 

It is of course easy to modify this example in such a way that no 

randomization occurs. 

Whereas Hoeffding's result is restricted to the case where A= Q 

but allows a composite hypothesis H, theorem 1 .1 places no restriction 

on A but deals only with a simple hypothesis H. In section 4 we shall 

show by means of a counter-example that even for the case where A= Q 

theorem 1.1 does not hold in general for a composite hypothesis H. 
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Section 2 of this paper contains some preliminary results on the 

multinomial distribution. In section 3 we prove theorem 1.1 and show 

that the condition -log aN = o(N) may be replaced by ( 1.8). Section 4 

is devoted to the case where,the hypothesis His composite. 

2. Preliminary results 

F'or any set Acn we shall denote by AN the set of all yEA for which 

Ny has integer coordinates. 

LEMMA 2. 1. 

For any Acn for which AN is non-empty, the function f(p) = P(Z(N)EA!p) 

assumes its maximum value only at points pin the convex hull of AN. 

PROOF. Let TI be a point in the complement of the convex hull of AN. 

Since AN contains only finitely many points its convex hull is closed 

N and hence there exists a hyperplane separating TI and A, i.e. there 

exists a vector a= (a 1, ... ,ak) such that I a.(z.-TI.) > 0 for all zEAN. i i i 

Because l z. = l TI, = 1 we may choose a in such a way that I a.TI. = 0 i i i i 

and I a.z. > 0 for all zEAN. As la.TI. = 0 and a.Tr. = 0 whenever Tr. = O, i i i i i i i 

the points with coordinates Tr. + Ea.TI. are points of n for all sufficiently i i i 

small 1~ > 0. Hence 

k a! . f ( p ) I p=Tr 
k 

IN P(Z(N)=zlTr) ( 2. 1 ) I a. 7f. = I a. Nz. = 
i=1 i i i=1 i ZEA i i 

l N P(Z(N)=zjTr) 
k 

= N I a z. 
ZEA i=1 i i 
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is a directional derivative off at TT in a direction in Q multiplied 

by a nonnegative constant. Note, however, that a.TT. may be eg_ual to J.. J.. 

zero for all J.. if TT . = 0 for some i. J.. 

If f(TT) > o, then ( 2. 1 ) is positive because l a.z. > 0 for all J.. J.. 
N ZEA and consequently f does not have a maximum at TT• If f( TT) = 0 the 

same 

(2.2) 

conclusion holds since 

For z,pEQ we define 

k 
I(z,p) = l 

i=1 

AN is non-empty. 11 

z. 
J.. z. log -

J.. pi 

where z. log(z./p.) = 0 by definition if z. = 0. It is well known that J.. J.. J.. J.. 

for fixed p this function is convex in z, positive unless z = p and 

finite if p. IO for all i. In lemma 2.2 we show that under p the random J.. 

variable I(Z(N) ,p) is of order at most N- 1 in probability uniformly 

J..n p • 

LEMMA 2.2. 

For every E > 0 there exists A> 0 such that for all N 

PROOF. For 0 < 

z. 
J.. z. log - = 

J.. p. J.. 

sup P(I(Z(N) ,p) > A I p) 
-N pEQ 

< E 

z. < 1 ' 0 < p. < 1 ' J.. J.. 

z.-p. z.-p. 
log( 1 J.. J.. ) < J.. J.. z. + z. 

J.. P· - J.. P· J.. J.. 
( z. -p. ) + = J.. J.. 

2 ( z. -p. ) 
J.. J.. 
P· J.. 
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Since under p, = Z~N) log(Z~N)/p.) = 0 a.s, if p. = O, we have 
i i i i 

under p 

0 < I ( Z (N) ) < - ,P 

with probability 1 . It follows that 

E(I(Z(N) ,p) IP) < I 
p.;=O 

i 

p. ( 1-p. ) 
i i 

Np. 
i 

k-1 < 
- N 

Application of Markov's inequality completes the proof. I I 
0 

Let Q denote the interior of Q, 

o k 
(2,3) Q = {(y1, ... ,yk)I) y. = 1, y. > 0 for i = 1, ... ,k} 

i i i=1 

0 0 

and define for p EQ, pEQ, 

(2.4) 
k P· 2 
\ ( i ) -l pi log 0 

i=1 p i 

k p. 2 
l pi log ~) 

i=1 l), 
·i 

We sha11 have to consider the asymptotic distribution of 

k 
( 2. 5) I 

i=1 

under p for fixed pOE~ and varying pEQ, The distribution of T(N) under 
p 

pis degenerate if and only if the positive coordinates of pare pro-

0 portional to the corresponding coordinates of p (as before we take 

0 log O = 0 by definition). For p ;if po and p _> E > 0 (i.e. p. > E for 
i -



10 

all i = 1, ... ,k) the following lemma provides a uniform normal approxi­

mation. By~ we denote the standard normal distribution function. 

LEMMA 2.3. 
0 0 

For any fixed p ES°t and E > O, 

(N) 0 
. T - I(p,p ) 1/2 

lim P( . 0 N ~ ajp) = ~(a) 
N➔oo a (p ,p ) 

uniformly for all a and all pES°t with p ¥ po and p .:::._ E, 

PROOF, Under p the distribution of NT(N) is the same as that of 
p 

N 

I 
j=1 

Y. 
J 

where Y1, •.. ,YN are independent and identically distributed random 

variables with 

(2.6) P(Y. 
J 

l = 1 , •. , ,k. 

Hence 

(2.7) (N) I 0 E(T p) = I(p,p) , 
p 

( 2. 8) 

Let F be the distribution function of 
N:,P 
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and form= 2,3 , let v denote them-th absolute central moment of 
m,p 

Y .. Since the distribution of Y. is degenerate only if the positive 
J J • 

coordinates of pare proportional to the corresponding coordinates of 

po, v is positive and finite if p # po and PE~. Hence by the Berry-
m,p 

0 0 
Es seen theorem (cf. [ 1 J) we have for all a and N and for all pd2, p # p , 

(2.9) J FN ( a ) - <P ( a ) J ,P 
-3/2 -1/2 

< C \)3,p \)2,p N ' 

where c is a constant independent of a, N and p. By (2.6) 

k 

I 
j=1 

m 
P· n. 

k p. 
l pi log ~I \) = 

m,p J J i=1 p 
i 

3 = max p.n. is positive and finite and as 
j J J 

a result 

-3/2 < 3( 2)-3/2 
v3 v2 - kptnt ptnt ,P ,p 

-1/2 -1/2 
= kpt .::_ kE 

Together with (2.9) this proves the lemma. I J 

LEMMA ;2.4. 

For every fixed pOE~ and E > 0 there exist O < M1 < M2 < 00 such that 

0 2 0 0 
M1 I(p,p) ,:_ cr (p,p) ,:_M2 I(p,p ) 
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for all pe:Q with p > e:. 

0 

PROOF. By expanding the logarithms involved we find that for pe:Q with 

maxlp.-p?j < o, 
1 1 

(2.10) 

0 2 

I(p,pO) 
k (p.-p.) 

= 1/2 I 1 1 + 0(03) 
0 

i=1 P· 1 

(2.11) 

0 2 
2 0 k (p. -p.) 

+ O(o 3) I 1 1 er (p,p ) = 0 i=1 p. 
1 

The proof is completed by noting that for p outside a neighborhood of 

0 0 2 0 p and p > e:, both I(p,p) and er (p,p) are bounded away from zero and 

infinity, I I 
For poe:AcQ we shall have to consider 

k 
sup l 
TIEA i=1 

TI. 
1 log -
0 

P· 1 

0 where z. log(rr./p.) = 0 by definition if z. = 0. Note that under pe:A 
1 1 1 1 

this random variable is defined (possibly +00 ) with probability 1, 

LEMMA ~~. 5. 

0 Let A be an arbitrary subset of Q, p an arbitrary point of A and define 

0 A1 = A--{p } . Furthermore, let cN and aN, N = 1 ,2,... , be sequences of 

nonnegative real numbers such that 

lim cN = 0 
N-+<x> 

lim NcN = 00 

N-+<x> 



Then 

tends to zero for N ➔ 00 • 

PROOF. Under pEA 1, 

k 
sup l 
7TEA i=1 

TI. k 
log _1:. > ' 0 - l 

p. i=1 
i 

a.s. since under p, 0.::.. I(Z(N) ,p) 

if we show that 

13 

< 00 a.s .. Hence the lemma is proved 

tends to zero for N ➔ 00 By lemma 2.2 it suffices to show that for 

every A> 0 

(2.12) 

for N ➔ 00 , We consider three cases. 

(i.) 0 ° . -1 Suppose that p EQ, Since cN +~+AN ➔ 0 for N ➔ 00 , there exists 

E > 0 such that for all sufficiently large N the set 

{zlzEQ,I(z,pO).::.. cN + ~ + AN- 1} is contained in the convex set 

{zlzEQ,z. > E for i = 1, ... ,k}. By lemma 2.1 the supremum over Qin 
i -

(2.12) may therefore be replaced by the supremum over the set of all 
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pd"l with p .:.. E . Furthermore, we may again use the fact that under p 

a.s. 

(N) 
and O < I(Z ,p) < 00 a.s .. It follows from lemma 2.2 that to prove 

(2.12) it is sufficient to show that for every A> 0 ands> O 

(2.13) sup 
P.:..E 

P(c -a - fl< I Z~N) log Pi< c +a+ fl 
N N N - i=l i O - N N N 

pi 

tends to zero for N ➔ 00 , 

Jp) 

The condition NcN ➔ 00 implies that cN is positive for all suf­

ficiently large N; together with the condition N~c; 7 ➔ 0 it also yields 

(2.14) 

for -1 0 for all sufficiently large N. N ➔ oo Hence cN - aN - AN > As 

for 0 the random variable (2.13) is equal to 0 a, s., the p = p in supremum 

(2.13) may be restricted to the set of all p 'f 
0 

with Applying in p P.:._E, 

lemma 2.3 we find that it suffices to show that for every A> 0 and 

E > 0 

(2.15) 

0 tends to zero for N ➔ 00 , uniformly for all p 'f p with p > E, 
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Define, for N = 1,2, ..• , 

0 . 0 
C 

Q = { p I pE Q ' p 'f' p p.:::_i::, I(p,p) < ...!} 
N, 1 ' -2 

Q {p I pEQ' p 'f' 0 0 CN 
= p p .:,_ E , I ( p ,P ) > -} 

N,2 ' 2 

For pEStN 1, (2.15) is bounded above by 
' 

1 -

1 -1 
qi ( 2 cN - ~ - AN 

0 o(p,p) 

and by (2.14) and lemma 2.4 

1 -1 
2 cN - ~ - AN 

o(p,po) 

1/2 1/2 
1/2 cNN cNN 

N ~ ---- > ------- > 
0 - 0 1 /2 -2o(p,p) 2(M2I(p,p )) 

NcN 1/2 
> (--) ➔ 00 

- 2M2 
for N ➔ 00 • 

For pEQN 2 , (2.15) is bounded above by 
' 

< (a + AN-1) (~)1/2 ➔ 0 
N M1cN 

by the mean value theorem, lemma 2.4 and (2.14). Hence the suprema of 

(2.15) over both QN, 1 and QN, 2 tend to zero which proves the lemma for 

0 0 
p EQ, 
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(ii) Suppose that po is a boundary point but not an extreme point of 

Q; without loss of generality we assume that for some 2.::, m .s_ k-1, 

p? :JO for i = 1, ... ,m and p? = 0 for i = m+1, ... ,k. Since I(z,po) = 00 

i i 

if zi :JO for some m+1 .s_ i.::, k, the set {zlze:r.?,I(z,po).::, cN+8w+AN- 1} 

is contained in the convex set {zlze:r.?,z.=0 for i = m+1, ... ,k}. By 
i 

lemma 2.1 the supremum over Qin (2.12) may therefore be replaced by 

the supremum over all pe:r.l with p. = 0 for i = m+1, ... ,k. But under 
i 

any p with p. = 0 for i = m+1, ... ,k, 
i 

m 

I 
i=1 

Z~N) 
i log--

0 p. 
i 

a,s. 

d ( (N) (N)) · . 1 . "b t· . an z1 , ... ,Zm has a multinomia distri u ion with parameters N 

and (p 1, .•• ,pm). Thus we have reduced the problem of proving (2.12) to 

the same problem in a lower dimensional parameter space where 

(p~, ... ,p~) is now an interior point. This has been dealt with in (i). 

(iii) Suppose that po is an extreme point of r.i. This implies that 

I(Z(N) ,p0 ) can only assume the values O and 00 • Since cN-aN > 0 for all 

sufficiently large N, (2.12) is immediate.I I 

Wt; remark that in the proof of lemma 2. 5 we have made use of the 

condition cN-+ 0 only to ensure that in case (i), for every A> 0 

for some is> 0 for all sufficiently large N, whereas in case (ii) it 

is needed that the same condition holds for the reduced lower dimensional 

problem. As 8w + AN- 1 = o(cN) by (2.14), lemma 2.5 will continue to hold 

if we replace the condition cN-+ 0 by the following assumption. For all 



sufficiently large N the set {zlzEQ,I(z,p0 ) < c} remains bounded away 
- N 

from the set of all points zEQ that have z. = 0 for all i for which 
i 

0 . . 0 ~ . . p. = 0 but also for at least one i with p. r 0. This extension of lemma 
i i 

2,5 is: the main step in relaxing the condition -log a,N = o(N) in theorem 

1. 1 (cf. section 3). 

We complete this section by stating the result on large deviations 

of W. Hoeffding in [2] that we already referred to in section 1, For a 

non-empty set AcQ and pEQ, define 

(2.16) 
k 

I(A,p) = inf I(z,p) = inf L 
ZEA ZEA i=1 

z. 
i z. log -

i pi 

N If A is empty we take I(A,p) = +o>, We recall that for any AcQ, A 

denotes the set of all ZEA for which Nz has integer coordinates. 

LEMMA 2.6 (Hoeffding). 

Uniformly for all AcQ and all pEQ, 

(2. 17) 

Moreover, for any pEQ and any sequence ~cQ with convex complements, 

I(~,p) = I(~,p) + O(N- 1 log N) , 

hence 

(2.18) P(Z(N)~~lp) = exp[-NI(~,p) + O(log N)] . 
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3. Proof of theorem 1 . 1 

(N) 0 
The size-aN likelihood ratio test based on Z for H: p = p 

. ~ O . t H i"f against K: pr p reJec s 

k 
( 3. 1 ) I 

i=1 

Z~N) 
i log -- > c 

0 - N 
P· i 

with possible randomization if equality occurs. For this case, where 

A= rl, J. Oosterhoff [3] showed that theorem 1.1.holds under the additional 

0 0 

assumptions that p Erl and that aN tends to zero slowly. In his proof 

he found that under his conditions -log aN ~ NcN for N ➔ 00 , which im­

plies the conclusions concerning cN in the following lemma. 

LEMMA 3,1 (Oosterhoff). 

0 0 

Let p be an arbitrary point of rl and let RN denote the shortcoming of 

the size-aN likelihood ratio test (3.1) for H: p = po against K: pErl-{po}. 

If 

then 

log ,.,, = o(N1/6) 
- "'N 

lim sup RN(p) = 0 
N➔oo p::f.pO 

and Ne ➔ 00 , c ➔ 0 for N ➔ 00 

N N 

for N ➔ 00 , 

0 0 

Wie begin by removing, as far as possible, the restriction p Erl in 

lemma 3, 1. 
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LEMMA 3.2. 

0 Let p be an arbitrary point of Q and let~ denote the shortcoming of 

the size-aN likelihood ratio test (3,1) for H: p = po against K: pe:Q-{po}. 

If 

then 

lim aN = 0 
N-+oo 

log "' = o(N1/6) - ""N 

lim sup ~(p) = 0 • 
N-+oo p#pO 

for N-+ 00 , 

Moreover, NcN-+ 00 , cN-+ 0 for N-+ 00 unless po is an extreme point of Q, 

0 ° 0 PROOF. If p e:Q lemma 3.2 is merely a repetition of lemma 3,1. If p is 

an extreme point of n, then the likel~hood ratio test is uniformly most 

powerful and hence its shortcoming is identically equal to zero for all 

N. We may therefore suppose that po is a boundary point but not an 

extreme point of Q; without loss of generality we assume that for some 

0 0 2 :.,m 2,. k-1, p. # 0 for i = 1, •.. ,m and p. = 0 for i = m+1,.,.,k, 
i i 

In this case any admissible size-aN test for H: p = po against 

K: p # po rejects H with probability 1 if Z~N) # 0 for at least one 
i 

d . . . ( ) . (N) i = m+·1, ... ,k, an with probability qiN z 1, ... ,zm if Zi = zi for 

i = 1, .... ,m and zlN) = 0 for i = m+1, ... ,k. The size-aN likelihood ratio 

test (3,1) is of this type with 

> 
m z. 

( 3. 2) qiN(z1,•··,zm) 0 if I i 
= z. log- = CN 

i=1 i 0 
p. 

0 
i 

< 

where O < 0 < 1. 
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Let us introduce an auxiliary random vector z(N) = (Z~N) ' ... ,Z~N)) 

such that NZ(N) has a multinomial distribution with parameters N and 

P = (p 1 , ••• ,pm), where pis any point in 

(3,3) 
~ m 
~ = {(y1 , ... ,y )I I Y· = 

m i= 1 1 
1, y. > 0 for J. = 1, .•. ,m} • 

J. 

Since P(z~!~ = ... = Z~N) = olp0) = 1, we have for the size-aN likeli­

hood ratio test as well as for any admissible size-aN test 

~o o o o where :P = (p 1 , ••• ,pm). For the power of such a test at p :f. p we have 

( 3. 5) 

where 

(3.6) 
m 

7T = I 
i=1 

p. 
J. 

= p = 0 
m 

for J. = 1 'I I I ,m I 

For the random vector Z(N), consider the auxiliary problem of 

~ ~ ~o ~ ~o ~ 
testing H: p = p against K: p 'f p , where p denotes the parameter 

. . t· f ~z(N) A t f h' bl ·11 . vector of the distribu ion o . tes or tis pro em wi reJect 

~ ~(N) 
H with probability ~N(z) if Z = z. Such a test has size aN if and 

~ only if ~N satisfies (3.4), and its power at pis given by 
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(3.7) 

Thus there exists a 1-1 correspondence between the class of size-a.N 

tests for H based on Z(N) that reject H with probability 1 if Z~N) # O 
l 

. ~ 
for at least one i = m+1, ... ,k and the class of all size-a.N tests for H 

~(N) 
based on Z . Here corresponding tests have the same function cj>N and 

hence by (3,5) and (3,7) we find that for all p with p. # 0 for at least 
l 

one i = 1, .•• ,m, their power functions satisfy 

(3.8) 

where TT and pare defined by 
+ ~+ 

(3.6). Let SN and SN denote the size-aN 

envelo:pe power functions for testing Hon the basis of Z(N) and Hon 

. ~(N) t· s· the basis of Z respec. ively. ince 

for Henter into the determination of 

(3.8) that 

( 3, 9) 

only admissible size-a.N tests 

+ SN' it follows from (3,5) and 

= 0 

N N ~+ ~ 
1 - TT + TT SN(p) otherwise, 

where TT and pare defined by (3.6). 

The likelihood ratio test for the auxiliary problem of testing H 

against K is based on the statistic I(Z(N) ,p0 ). As the function cj>N for 

the size-a.N likelihood ratio test given by (3.2) satisfies (3,4), this 

function is also the test function of the size-a.N likelihood ratio test 
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for H against K. In the first place this implies that the critical 

values of the two size-aN likelihood ratio tests are both equal to the 

same n'UI!].ber cN. In the second place it means that (3,9) will continue 

. . + ~+ to hold if the envelope power functions SN and SN are replaced by the 

~ power functions SN and SN of the size-aN likelihood ratio tests. Hence, 

~ if~ and~ denote the shortcomings of the size-aN likelihood ratio 

~ ~ tests for H against Kand for H against K respectively, then 

0 

~(p) = 

= p = 0 
m 

otherwise, 

- - -o where~ and pare defined by (3,6). Since~< 1 and ~(p) = O, 

(3, 10) 

~o ~ Asp is an interior point of n we may apply lemma 3,1 to the auxiliary 

testing problem to conclude that the right-hand side of ( 3-. 1.0) tends to 

zero and that NcN + ~, cN + 0 for N +~.I I 
Our next step will be to remove the restriction A= n. 

LEMMA 3,3, 

0 Let A be an arbitrary subset of n, p an arbitrary point of A and let 

~ denote the shortcoming of the 

(N) 0 . on Z for H: p = p against K: 

size-aN likelihood ratio test based 

0 
p£.A 1 = A-{p } • If 



(3.11) 

then 

lim aN = 0 
N-+oo 

23--

log a = o(N 116 ) - N 

lim sup RN(p) = 0 • 
N-+oo p€/\1 

for N ➔ 00 , 

0 PROOF. If p is an extreme point of n, the likelihood ratio test for H 

against K is uniformly most powerful against Kand hence its short­

coming is equal to zero for all pe:11. 1 and all N. We may therefore suppose 

that pis not an extreme point of n. 

The size-aN likelihood ratio test for H against K rejects H if 

(3, 12) 
k 

sup l 
rre:11. i=1 

possibly with randomization if equality occurs. Let us compare this 

0 test with the size-aN likelihood ratio test (3.1) for H against p ~ p . 

By lemma 3,2 the shortcoming of the latter test vanishes uniformly 

0 for all p ~ p for N ➔ 00 and hence lemma 3,3will be proved if we show 

that 

k 
P(sup l 

rre:11. i=1 

Tr • 
1 ~ 

log O ~ cN' 
p. 

]. 

tends to zero for N ➔ 00 , where cN is the constant that occurs in (3,1). 

0 As p :Ls not an extreme point of n, lemma 3. 2 also ensures that cN ➔ 0 

and NcN ➔ 00 for N ➔ 00 • Furthermore we note that under any pe:11. 

(3. 13) 
k 

sup l 
rre:A i=1 

1 rri < I(Z(N) 0) og O - ,p 
p. 

]. 

a. s. . 
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Since the tests (3.1) and (3.12) nave the same size, it follows that 

* * cN and cN may be chosen in such a way that cN .::_ cN. To prove lemma 3. 3 

it is therefore sufficient to show that 

k 
P( sup l 

TrEA i=1 

Tr. 
i 

log O.::. cN, 
p. 

i 

tends to zero for N + 00 • As cN + 0 and NcN + 00 for N + 00 , this is the 

content of lemma 2. 5 for aN = 0. 11 

We now turn to the case where aN tends to zero fast. 

LEMMA 3,4. 

Lemma 3,3 holds if the conditions (3.11) concerning aN are replaced by 

(3. 14) 
-log aN 

lim ---- = oo 

N+00 (log N) 2 
-log aN = o(N) for N + 00 

PROOF. For the same reason as in the proof of lemma 3,3 we may restrict 

attention to the case where po is not an extreme point of~. Consider 

the size-aN likelihood ratio test (3.1) for H: p = po against p ¥ po. 

. ( 0) . The convexity of I z,p in z ensures that the sets 

have convex complements. By the second part of lemma 2.6 
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0 = exp[-NI(~,P) + O(log N)] = exp[-NcN + O(log N)J , 

or NcN ,:_ -log aN + O(log N). This implies that cN + 0 for N + 00 by the 

second. part of (3.14). For zi::Q, the function I(z,pO) assumes all values 

0 0 in the interval [O,-log p J where p is the smallest positive coordinate m m 

of po. As po is not an extreme point of Q, -log po> 0 and hence 
m 

0 0 < c < -log p for all sufficiently large N. For these values of N, 
- N m 

0 I(BN,P ) = cN and by the second part of lemma 2.6 

Hence 

aN = exp[-NcN + O(log N)] , NcN = -log aN + O(log N) 

together with ( 3. 14) this yields 

(3. 15) 
NcN 

lim ------2- = 00 

N+oo (log N) 
lim cN = 0 
N+oo 

By the first part of lemma 2.6 there exists a number O <a< 00 

independent of N, such that for every N and every z (N) i::QN with 

I(z(N) ,p0 ) < CN - a(log N)/N, 



0 Obviously, any size-aN test for H: p = p cannot reject H with probability 

-1 (N) (N) 
larger than N if Z assumes one of these values z , Hence the 

size-aN envelope powers; for testing H satisfies 

(3, 16) 

0 for all p ~ p, where 

(3, 17) 

We note that (3.16) is a slightly modified form of a conclusion due to 

W. Hoeffding in [2]. 

It follows from (3. 16) that the shortcoming RN(p) at p of the 

size-aN likelihood ratio test (3.12) for H against K is bounded above 

by 

k 
P(sup l 

TfEfl. i=1 
Z(_N) Tri * (N) 0 > I 

i log O 2.. CN' I(Z ,p) - CN - aN p) . 
pi 

By the reasoning given in the proof of lemma 3,3 we may assume that 

c; 2,. cN and hence lemma 3.4 is proved if we show that 

tends to zero for N ➔ 00 • By (3.15) and (3, 17), cN ➔ O, NcN ➔ 00 and 

Na:/cN ➔ 0 for N ➔ 00 • Application of lemma 2,5 completes the proof.I I 
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PROOF OF THEOREM 1,1, The theorem is proved by splitting up the sequence 

aN into two sub-sequences satisfying (3.11) and (3.14) respectively 

and applying lemmas 3,3 and 3.4,I I 

In section 1 we claimed that the condition -log aN = o(N) in 

theorem 1.1 may be relaxed. To see how this can be achieved we obviously 

need not consider the proof of theorem 1.1 for the case where aN ➔ 0 

slowly; we only have to inspect the proof of lemma 3,4. 

In proving lemma 3,4 we have made use of the condition -log aN = o(N) 

. 0 only to conclude that cN ➔ 0 for N ➔ 00 , provided that p is not an 

extreme point of Q, This fact was needed on two occasions. In the first 

place it was used to ensure that, if po is not an extreme point of n, 
0 . . 0 

we have O .:::_ cN < -log pm for all sufficiently large N, where pm denotes 

. . . 0 . ( 0) the smallest positive coordinate of p . As the function I z,p assumes 

its largest finite value -log po at those extreme points zEQ for which 
m 

z. = 1 for some i with p? = po, the assertion O < cN < -log po is 
i i m - m 

equivalent to saying that the set 

(3. 18) 

does not contain these specific points of Q, We recall that CN is the 

closure of the acceptance region of the size-aN likelihood ratio test 

() 0 't ../.0 3,1 :for H: p = p agains pr p • 

In the second place, the fact that cN ➔ 0 was used to ensure ap­

plicability of lemma 2,5, However, in the remark following the proof 

of this lemma we pointed out that the lemma remains valid if the con­

dition cN ➔ 0 is replaced by the following assumption. 
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ASSUMPTION 1. For all sufficiently large N the sets CN defined in (3.18) 

remain bounded away from the set D O of 
0 p 

for all i for which p. = 0 but also for 
i 

all points zEQ that have z. 
i 

at least one i with p? f 0. 
i 

= 0 

This assumption obviously implies that, for all sufficiently large N, 

the set CN does not contain any extreme points of n, unless po itself 

is an extreme point. It follows that theorem 1.1 will continue to hold 

if the condition -log a.N = o(N) is replaced by assumption 1. Note that 

assumption 1 imposes no restriction if po is an extreme point of Q. 

One easily verifies that for po< 1 (i.e. p? < 1 for all i), 
i 

inf 
ZED O 

p 

0 I(z,p) 

where :p: is defined as above. Since I(z,pO) is convex and uniformly 

continuous on the set of all z that have z. = 0 for all i with p? = O, 
i i 

assumption 
. . . . 0 
is equivalent to the requirement that if p < 1, there 

exists E > 0 such that for all sufficiently large N, cN .;,_ -log(1-p:) - E. 

Going over the proof of lemma 3,4 we find that this, in turn, is equi­

valent to 

ASSUMPTION 2. There exists E > 0 such that for all sufficiently large 

( (1 0) ) h O d .. N, -log a.N < N -log -p - E , were p enotes the smallest positive 
- m m 

coordinate of po. 

Note that if po is an extreme point of n, assumption 2 imposes no 

restriction on the sequence a.N. As assumptions 1 and 2 are equivalent, 

the condition -log a.N = o(N) in theorem 1.1 may be replaced be the 

obviously weaker assumption 2. 

By sharpening lemmas 2. 3 and 2. 5 one can show that theorem 1 . 1 will 
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still continue to hold if CN does approach D O for N-+ 00 , but does so 
p 

sufficiently slowly. In assumption 2 this corresponds to allowing E to 

tend to zero for N -+ 00 , provided that .. this convergence· is sufficiently 

slow. 

4. The case of a composite hypothesis 

In this section we show by means of a counter-example that theorem 

1.1 breaks down in the case of a composite hypothesis H even 

We consider the binomial case k = 2 and write Z(N) = Z(N) 1 
1 ' 

when I\. = rl, 

and 1-p - Thus NZ(N) has a binomial distribution with para-p = P1 - P2• 

meters N and p where pis an arbitrary point in [0,1]. _ For ZE[0,1], 

pE[0,1] and /\.0c[0,1] we define 

( 4. 1 ) I(z,p) z ) 1-z = z log - + (1-z log --p 1-p 

(4.2) I ( z ,p) • 

If A0 is a proper subset of [0,1] one may consider the problem of 

testing H: pE/\.0 against K: pi/\.0 • A non-randomized likelihood ratio test 

for H against K rejects H if 

(4.3) I ( Z ( N ) , /\.O ) > c 
- N 

the size of this test is 

(4.4) 
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Consider any fixed sequence of positive numbers cN such that 

(4.5) 

We choose two positive integers a and band a sequence~ such that 

0 < ~ < cN for all N and N~ ➔ 0 for N ➔ ~.Next we construct a set 

A0c[0,1] with the following property. There exists an infinite sequence 

of positive integers N1 < N2 < ••• such that for every i the following 

conditions are satisfied. 

(i) A0 contains points Pi,l < Pi,2 with 

(ii) 

I(~ ) = N , p .. 
. 1 ,J 
1 

~-
1 

A0 contains points p. 3 < p. 4 with 
1, 1, 

b I(1--,p .. )= 
N. 1,J 

1 

for J = 1 ,2 • 

for j = 3,4. 

(iii) A0 does not contain points in (p. 1,p. 2 )u(p. 3 ,p. 4). 
1, 1, 1, 1, 

, To· see, tJ:Iat this construction is possible'iwe note that fb:t s½fficiently 

b 
= 1(1 - i ,o) = 

Thus, for any sequence N1 < N2 < ••• with N1-1 .::_max(a,b), points Pi,j 

with properties (i) and (ii) exist for every i. Notice that obviously 

-1 -1 ~ 0 < p. < aN. < p. 2 and p. 3 < 1-bN. < p1.,4 < 1. Since cN ➔ 0 for 1,1 1 1, 1, 1 
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N ➔ 00 , we can also ensure for every O < e: < 1/2 that p < e: < 1-e: < p 
1,2 1,3 

by choosing N1 large enough. Having chosen N1 .:::_max(a,b) + 1 in such a 

way that the above holds for some O < e: < 1/2, we proceed to choose N. 
J. 

for i = 2,3, •.• sequentially in such a way that 

a 
N. < pi-1,1 

J. 

b 
1 - N > P· 1 4 ' i J.- ' 

- ~-
J. 

This is clearly possible as pi- 1, 1 > O, I(O,pi- 1, 1 ) > O, Pi- 1,4 < 1, 

~ I(1,pi_ 1 4 ) > 0 for all i > 2 and cN ➔ 0 for N ➔ 00 However, this implies 
' 

that Pi, 2 < pi- 1, 1 and Pi, 3 > Pi .... 1 , 4 for every i > 2. Because we already 

made sure that p 1,2 < E < 1-e: < p 1, 3 , condition (iii) will be satisfied 

if A0 does not contain other points in an e:-neighborhood of O and 1 

besides the points p ... 
J.,J 

For an arbitrary sequence cN satisfying (4.5) and for a corres-

ponding set A0 that we have just constructed, we consider the sequence 

of likelihood ratio tests (4.3) for H: pEA0 against K: p¢A0 . We shall 

show that aN defined by (4.4) satisfies the conditions aN ➔ 0 and 

-log aN = o(N) of theorem 1.1, but that the shortcoming of this sequence 

of likelihood ratio tests does not tend to zero uniformly for all pr/.A0 . 

By (4.2) and (4.4) 

and since NcN ➔ 00 , aN ➔ 0 for N ➔ 00 by lemma 2.2. Let p0 be an isolated 



32 

point of A0 with O < p0 < 1, e.g. p0 = p 1, 1. For z in a sufficiently 

small neighborhood of p0 , I(z,A0 ) = I(z,p0) and the absolute value of 

the derivative of this function is smaller than o, Since cN + O, the 

set 

(4.6) ~ = {z[o < z < 1 , I ( z , A0 ) > ; } 
- N 

will contain, for all sufficiently large N, a point z(N) for which 

(N) · . d I( (N) ) J:N- 1 b 1 6 Nz is an integer an z ,p0 2,. cN + u • Hence y emma 2. 

and as cN + O, -log a.N = o(N) for N + 00 , 

For N = Ni we need a sharper asymptotic lower bound for a.N, By 

properties (ii) and (iii) of the set A0 

for all i. It follows that for every E > 0 we have for all sufficiently 

large i 

(4.7) 

(N.) 
a > P(Z i = 

N. 
i 

(N. ) 
= exp[-N.cN J P(Z i = 

i . 
i 

-b bb ~ 
> (1-s) e -b, exp[-N.cN J 

• i . 
i 

b I 1 - :L) > 
N. N. 

i i 
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Also, by properties (i) and (iii) of the set A0 

I(!L ) 
N ' p. . = cN. 

i J.,J J. ~-J. 

for j = 1,2 and all i. Because NdN + 0 for N + 00 this implies that for 

every e: > 0 

(N.) 
sup P(Z 1 

pe:Ao 

a I p) = i:'" 
(N.) 

= max P(Z 1 = ; I p. . ) = 
j=1,2 i J.,J J. 

= exp[-N. (;N 
J. • 

J. 

(N.) 
~.)JP(Z 1 

J. 

a 
( ) -a a ~ J 

< 1+e: e -, exp[-N.cN a. i • 
J. 

for all sufficiently large i. Together with (4,7) this implies that 

there exists a number O < ~ ~ 1 such that the test TN that rejects H 

with probability~ if Z(N) = aN- 1 has size at most aN whenever N = Ni 

and i is sufficiently large. Hence, ifs; denotes the size-aN envelope 

power for testing.H, we have shown that for every e: > 0 

(4.8) 
(N.) 

> ~P(Z 1 !L) > ~( 1-e:) 
N. -

J. 

a -a a 
e a! 

for all sufficiently large i. On the other hand, property (i) of the 

~ set A0 ensures that for N = Ni the critical region~ of the likelihood 

ratio test does not contain points in the interval [p. 1,p. 2J. If SN 
J.' J.' 

denotes the power of the size-aN likelihood ratio test, this means that 

for all i 
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where the right-hand side tends to zero for i ➔ 00 • Together with (4.8) 

this proves that the shortcoming of the likelihood ratio test does not 

tend to zero uniformly for all pi.A0 . 
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