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o. Summary: and basic notations. For each n let (x1,Y1), ••• ,(Xn,Yn) be 

a random sample from.a continuous bivariate distribution function 

(df) H(x,y) having marginal dfs F(x) and G(y). All samples are defined 

on a single probability space (n,U,P). The bivariate empirical df based 

on a sample of size n is denoted by H. With respect to then random 
n 

variables (rvs) X.(Y.) corresponding to the first (second) coordinates, 
i i 

the empirical df is denoted by F (G ), the i-th order statistic by X. 
n n in 

(Y. ) and the rank of X. (Y.) by R.(Q. ). in i i i i 

To test the independence hypothesis H(x,y) = F(x)G(y), most common 

rank statistics are of the linear type 

Ti= n--1. li'~ 1· a (R,) b (Q.); n · . Li= n i· n i 

where a (i), b (i) are real numbers for i = 1, ••• ,n (see Hajek and 
n n 

~idak [6]). 

By an approach analogous to that of Chernoff and Savage [3] for the 

two-sample problem, Bhuchongkul [1] proves asymptotic normality of the 

standardized statistic 

( 0. 1) n 1/ 2(T -µ) = n 1I2cJJJ (F. )K (G )dH -µ] n n n n n n 

where 

(0.2) J (s) = a (i) , K (s) = b (i) 
n n n n 

for (i-1)/n < s .::_ i/n and 1 < i < n and where 

(0. 3) · µ = JJJ(F)K(G)dH 
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for some functions J and K. However, the conditions imposed on the 

weight functions(wfs) J and K are much stronger than in [3], Jogdeo n n 

[7] pre►ves asymptotic normality of these statistics by a different 

approac:h, but still needs conditions stronger than in [3]. 

The fi:r·st theorem of Secta.on 1 contains Bhuchongkul' s Theorem 1 as a 

special. case; a full proof of the non-trivial uniformity in H is in­

cluded in our theorem. The proof of this theorem is based upon Holder's 

inequality in the form 

(o.4) 

where I is the identity function on [O, 1J, dI denotes the Lebesgue measure 

restric:ted to that interval, ~ and ijJ are functions on ( 0, 1) and p > 1, 

1 -1 Cl > 1 S,atisfy p - + Cl = 1 • 

The sec:ond theorem in Section gives asymptotic normality under much 

weaker conditions on the wfs-conditions equivalent to those in [3], The 

price for this is a condition on the df H, keeping it in some sense 

similar to the null hypothesis. This condition is 

(0.5) dH.:. C[F(1-F)G(1-G)r012a.FdG 

with somefixed C .::_ 1 and o > O. Mathematically, this condition allows 

a direc:t factorization of the lefthand integral in ( 0. 4) which is more 

efficie:nt than Holder's inequality. Intuitively, this condition prevents 

the large X's from occurring in the same pair as large Y's with too high 

a proba,bili ty. Condition ( 0. 5) always holds under the null hypothesis 

(with G = 1 and o = 0 even). It is also satisfied in the case (proposed 
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by Leh!ill8.nn [9]) where H can be written as a polynomial in its marginals 

F and G ( with appropriately chosen C > 1 and again o = 0) and in the 

case (considered by Gumbel [5]) with C = 10. For further information on 

the latter class see also Runnenburg and Steutel [11]. Finally (0.5) 

holds for all bivariate normal distributions with a sufficiently small 

correlELtion coefficient ( use Lemma 2 on page 166 of Feller [4 J to see 

that (0.5) holds for a~correlation coefficient between _;_5/(2..:0) and 

a/(2-0)). 

Some reisul ts of Pyke and Shorack [ 10 J are used in the proofs. We employ 

the notation 

p(¢,ijJ) = supO<s< 1 l<P(s)-ijJ(s)I 

for functions <P, \/; on (CJ, 1 ) . 
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1. Statement of the theorems. Let 

( 1. 1 ) = n1/ 2JJ [J (F )K (G )-J(F )K(G )Jd.H 
~ n n n n n n n 

n 

where~ =[X1 ,X ) x [Y 1 ,Y ). Let n n nn n nn 

( 1.2) r = [I(1-I)J-1 on ( 0, 1). 

We introduce the following assumptions (A1) - (A3). 

(A1). The functions Jn, J, Kn, Kand Hare such that the rv Bon= 

uniformly for all continuous dfs H, 

o ( 1 ) 
p 

(A2). The functions J and Kare defined and continuous on (0,1), They 

have a derivative except for at most a finite number of points. In the 

open .intervals between these points the derivatives are continuous. 

The functions J, J, J', K, K, K' satisfy 
n n 

a .::_ Dr , 

on (0,1) and 

IJ' I 
I 

< Dra , IK' I b' 
< Dr 

where defined on (0,1). Here D > 0 and a, a', b, b' are fixed numbers 

satisfying 

for some O < o < 1/2 and pi,qi > 1 satisfying p~1 + qi 1 = 1 for i = 1,2,3, 
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(A3) . '.rhe bi variate df H is continuous. The class of all continuous 

bi vari1ate dfs H will be denoted. by H. 

THEOREM 1,1, Let J, J, J', K, K, K' andH satisfy (A1), (A2) and (A3), n n 

Then n 112 (Tn-µ)+dN(o,cr 2 ) with finiteµ and cr2 given by (0,3) and (2.7). 

Moreov13r, the convergence is uniform for H in H. 

COROLLA.RY. Theorem 1.1 is true if a= b = 1/4 - o and a' = b' = 5/4 - o 

for some & > O. 

PROOF. Take p1 = 41 = 2, p2 = 43 = 4/3 and p3 = q2 = 4. □ 

This c<:>rollary is stronger than Theorem 1 of [ 1 J in which a = b = 1 /8 - o 

and a' = b' = 1. Moreover in [11 His supposed to be absolutely continuous 

and. J and K twice differentiable. 

In the next theorem we shall need assumptions (A1 ') - (A3'). 

(A1'). Condition (A1) holds uniformly for all continuous dfs H satisfying 

(0,5) for some fixed C ;:_ 1 and O < o < 1/2. 

(A2'). The functions J , J, J' and K, K, K' satisfy (A2) on (0,1) with 
n n 

a,b = ·1/2 - o and a' ,b' = 3/2 - o for some O < o < 1/2. 

(A3'). The bivariate df His continuous and satisfies (0,5) for some 

fixed C > 1 and O < o < 1/2. The class of all such dfs H will be denoted 

THEOREM 1 . 2 . Let J , J , J ' , K , 
n n 

1/2 2 (A3'). Then n (Tn-µ)+dN(O,cr ) 

K, K' and H satisfy (A1' ), (A2') and 

2 with finiteµ and cr given by (0,3) and 

(2,7). Moreover, the convergence is uniform for Hin Hco· 

REMARK. Suppose J (i/n) = E(X. ) and K (i/n) = E(Y. ) where X has df n in n in 

F and Y has df G. Let further J = F-l and K = G-l. Then (A 1) holds if 

J and K satisfy (A2). See also [ 1], Theorem 2. 

SupposE: J (i/n) = J(i/(n+1)) and K (i/n) = K(i/(n+1)). Then (A1) holds 
n n 

if J and K satisfy (A2) and (A 1') holds if J and K satisfy (A2'). 
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2. Proof of the theorems.Define~- = F(X.) and n. = G(Y.), Then 
1 1 , 1 1 

~1, ... ,~n and n1, ••• ,nn are each sets of independent rvs uniformly dis-

tributed on [0,1]. Denote the corresponding ordered samples by 

~ 1 , • , . , ~ and n 1 , , .• , n . Let F- 1 ( s) = inf{ x: F ( x) > s} and n nn n· nn -

G- 1(t) = in£{y: G{y) > t}. Define the empirical processes 

U = n112[F (F-1)-I] and V = n 112[G (G-1)-IJ on [0,1]. These n n n n . processes 

satisfy U (F) = n112 (F -F) and V (G) = n112(G -G) on (-00 ,+00 ), n n n n 

We now give the basic application of the mean value theorem. The theorems 

will be proved under the assumption that both Jen K fail to have a 

derivative in just one point, say in s 1 and t 1 respectively. For yin 

a neighborhood of O define the sets 

-1 ) sy 1 = F {[y,s 1-yJu[s 1+y,1-y] , sy2 = -1 ( G [y,t 1-y]u[t 1+y,1-y]), 

( 2. 1) 

n = {w: suplF -Fl < y/2, suplG -GI < y/2} . yn n n 

Define the set S = S x S in the plane. Let x(n ) denote the in-Y y1 y2 yn 

dicator function of n . For almost every win n the mean value theorem Yn yn 

gives 

(2.2) n112J(F )K(G) = n112J(F)K(G) + U (F)J'(~ (F))K(~ (G)) n n n, n n 

+ V (G)K'(~ (G))J(~ (F)) 
n n n 

for all (x,y) in~ nS. In (2.2) the functions~ and~ are defined by 
n y n n 

~ (F) = F· + 6(F -F) and~ (G) = G + a(G -G) where a= a is a n n n n w,x,y,n 

number between O and 1 given by the mean value theorem; and application 
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of the mean value theorem is valid when w is in rl, and (x,y) is in 
yn 

t:, nS for some y > 0. Thus 
n Y 

112 I3 10 n (T -µ) = ·-1 A. + Bo + r. B. n i- in n l1=1 yin 

where Bon is defined in (1.1) and 

B1n = n 112JJ J (F )K (G )d.H, B 2 = -x(rt )n112JJ J(F)K(G)d.H , 
t:,c n n n n n y n yn t:,c n 
n n 

B 3 = x(rt )n112JJ [J(F )K(G )-J(F)K(G)]d.H, 
y n yn t:, nSc n n n 

n Y 

B 4 = x(rtc )n 112cJJ J(F )K(G )d.H -JJJ(F)K(G)d.H ], 
y n yn t:, n n n n 

n 

B 5 = -x(rt )ff U (F)J' (F)K(G}d.H, 
y n yn t:,c n 

n 

B 6 = -x(rz )ff u (F)J'(F)K(G)d.H, 
y n yn t:, nSc n 

n Y 

B 7 = x(rt )JJ U (F)[J'(<P (F))K('¥ (G))-J'(F)K(G)]d.H, 
y n yn t:, ns n n n n 

n Y 

B 8 = x(rz. )JJ u (F)J'(F)K(G)d(H -H), 
y n yn t:, ns n n 

n Y 

B 9 =-x(rtc )JJu (F)J'(F)K(G)d.H, y n yn n 
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By .1 On = X ( Q ) ff V ( G ) K ' ( 'l' ( G ) ) J ( ~ ( F ) ) dH 
yn 6 ns n n n n 

n y 

- f fvn(G)K'(G)J(F)dH. 

Since t1_5 B. = x(n )ff u (F)J'(~ (F))K('l' (G))dH 
1- yin yn 6 ns n n n n 

- f Jun(E')J'(F)K(G)dH is s~et~ic to By 10n' we will not treat By 10n in 

the seq_u,el. 

We now proceed by proving the asymptotic normality of the first order 

terms. 

The rv A 1n can be written in the form 

(2.3) A1n = n-1/2 '~ A li=1 1in' 

where the A1. = J(F(X.) )K(G(Y.)) - µ are independent and identically 
ln l l 

distributed (iid). Applying (o.4) with p = p 1 and q_ = q_ 1 (applying (0.5)) 

it is seen that under (A2 ) ( under A2' ) the rv A1 in has a finite absolute 

moment of order 2 + o1 for some o1 > 0. Moreover this moment will be 

uniformly bounded for H within H (HC0).Finally the mean of this rv is O. 

-1/2 ,n ( ) Because Un(F) = n li= 1 [¢x. F -FJ, where 

(2.4) ¢x. (F(x)) 
l 

we have 

( 2. 5) 

l 

= o if x < xi and ¢x. (F(x)) = 
l 

-112 In 
= n . 1 A2. ' 1= in 

if X > X.' 
- l 
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wher!i the A2in = JJ [<l>x_-(F)-FJJ'(F)K(G)d.H are idd. For o as in (A2) 
i 

(or (A2')) we have 

IA2. I < max{~~1/2+o/4,(1-~. )-1/2+0/4} ;D2.JJra;-1/2+o/4(F)rb(G)dH. 
in - i i · 

The first random factor possesses an absolute moment of order 2 + o2 

for some o2 > O. Applying (0.4) with p = p2 and q = q2 (applying (0.5)) 

we see that the second non-random factor is uniformly bounded for Hin 

H (Hb0 ) under the assumptions of Theorem 1.1 (Theorem 1.2). Hence A2in 

has a finite absolute moment of order 2 + o2 , which is uniformly bounded 

for Hin H (HC0). The mean of this rv is O. 

Analogously we can write 

(2.6) A = -1/2 tn 
3n n li=1 A3in' 

with A3in = Jf c<1>y_ (G)-G]K'(G)J(F)d.H. The rv A3in has a finite absolute 
i 

moment of order 2 + o2 which is uniformly bounded for Hin H (HC0). The 

mean again is 0-. 

Combining (2.3), (2.5) and (2.6) we get A1n + A2n + A3n➔d N(O,cr2 ) uni­

formly for H within H (HC0) by Esseen 1 s·theorem (see e.g. [3], section· 4). 

. 2 . . [1] . b The variance cr is, as in , given y 

(2,7) cr 2 = Var[J(F(X))K(G(Y)) + JJ[<j>X(F)-F]J'(F)K(G)d.H 

+ .J J [<l>y( G )-G]K' (G )J(F)d.H] 

with <I> as defined in (2.4). 
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We now turn to the second order terms. The term Bon is dealt with in 

(A1) and (A1'). The asymptotic negligibility of the other second order terms 

will be given in Section 4 as corollaries to the lemmas of Section 3. 
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3. Some lemmas. We start with a number of lemmas that are useful for 

both theorems. 

LEMMA 3,1. For any T.::., 0 the function rT is symmetric about 1/2, de­

creasing on (0,1/2] and has the property that for each Sin (0,1) there 

exists a constant M = MS such that rT(Ss) ,:_MrT(s) for O < s ,:_ 1/2 and 

rT(1-S(1-s)) ,:_MrT(s) for 1/2 < s < 1. 

PROOF. On (0,1/2] we have rT(Ss) = (Ss)-T(1-Ss)-T ,:_ S-TrT(s). A similar 

argument applies to the interval (1/2,1). D 

CONVENTION 3,1. Let nn denote a subset of n and let S = s1 x s2 denote 

a product set in the x,y-plane. The symbol 8 = 8 will denote a function 
n 

defined for win n and (x,y) in A nS that satisfies O ,:_ e < 1. (The 
n n 

function 8 will typically arise in various applications of the mean 

value theorem; as in (2.2),) For such 8 we let~ (F) = F + e(F -F) and 
n n 

f (G) = G + 8(G -G). 
n n 

LEMMA 3,2. For K = 0 or K = 1 and for each r;.::., O, T.::., 0 and e > O, 

there exists a positive constant M = M ~ (not depending on n) such 
K,~,T,€ 

that P(Q ) > P(Q) - e for all n and uniformly for H within H; where en n 

PROOF. It is well-known that for each E > 0 there exists a constant 

S = S in (0,1) such that P(n 1 ) > 1 - e/3 for all n where 
e e n 

n = {w: Ss < F (F- 1(s)) < 1 - S(1-s) for~ < s < ~ } ; 
e1n - n 1n - nn 

and such that P(n 2 ) > 1 - e/3 for all n where 
E n 
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n = {w: St< G (G-\t)) < 1 - 8(1-t) for n1 <·:t < n } .. 
e2n - n · n - nn 

See e.g. Lemma 2.5 of Pyke and Shorack[1u]. Because of the definition 

of~ (F) (especially because O < e < 1) on n nn 1 we have 
n . - - n en 

SF < ~ (F) < 1 - 13( 1-F) for x in [x1 ,X )ns 1. By Lemma 3, l this implies - n - n nn 

that for some constant Mr we have rr;(~ (F)) < Mr rr;(F) for x in 
~,e n - ~,e 

[X1 ,X )ns1 on the set n nn 1 • Analogously we have 
n nn n en 

r'(l (G)) < M r'(G) for yin [Y1 ,Y )ns2 on the set n nn 2 . If n - , ,e n nn n e n 

K = 0 we have ju (F) I K = 1 for all x and each w. If K = 1, Lemma 2.2~ 
n 

of[1O] implies for each e > 0 the existence of a constant M such that 
€ 

P(n 3 ) > 1 - e/3 for all n where 
e n 

n 3 = {w: lu (F)I < M r-112+0/ 4(F) for all x} . 
e n n e 

Hence n ~(n nn 1 nn 2 nn 3 ) where P(n 1 nn 2' nn 3 ) > 1-e. D en n en en en en en en 

Some special choices will illustrate the use of this lemma. Taking 

e = o on n x b ·we have~ (F) = F and l (G) = Q. Taking e = 1 on n x b n n n n 

we have~ (F) = F and l (G) = G. By ta.king in the latter case more-n n n n 

over K = O, r; =a,,= b we have with probability larger than 

P(n)-e = 1 - e that IJ(Fn)K(Gn)I ~Mra(F) rb(G) for (x,y) in An' uni­

formly inn and H. 

LEMMA 3,3. For each e > 0 there exists an index ne such that 

P(j~ (F)-Fj < e, jl (G)-Gj < e for all (x,y) in A nS) 
n n n 

> P(n) - e 
n 

for all n > ne and uniformly for H within H. 



-13-

PROOF. The definition of ~n gives at once that l~n(F)-FI 2., J:ii112 1un(F)I 

for x in [X1 ,X )ns 1, where lu (F)I = O (1) uniformly inn and F by n nn n p 

Lemma 2.2 of [10]. 0 

LEMMA 3.4. sup < IH (x,y)-H(x,y)I+ 0 uniformly for Hin Has n + 00 • -oo x,y<oo n p 

PROOF. This follows from Theorem 1-m of Kiefer [8]. D 

For any natural number k assign to each bounded function~ on [0,1] the 

number hk(~) defined by hk(~) = p(~,~k); where ~k is the step function 

derived from~ by ~k(O) = ~(O) and ~k(s) = ~(i/k) for (i-1)/k < s 2.. i/k 

and i = 1 , ••• ,k. 

LEMMA 3.5. h_ (U )+ 0 as k,n + 00 • --k n p 

PROOF. The U -processes converge weakly to a separable tied-down Wiener n 

process u0.see Billingsley [2]. In Pyke and Shorack[10] these U - and 
.n 

, -row , row 

u0-processes are replaced by Un- and u0-processes on a single new probability 
~ ,,., ~ 

space (n,1J,P). (See also Skorokhod [12J:) They sa.tisfy'the condition 

p(Un,UO)+a.s. 0 as n + oo. !low ~(Un).:. p(Un,UO) + p(UO,uO,k) + p(UO,k'un,k). 

+ 
a. s. 0 as n + 00 (independently of k). 

~ Moreover for almost every w the function U is uniformly continuous on 
0 

[0,1] so that p(U ,u0 k)+ Oas k➔oo.This implies h. (U )+ 0 for 
0. , a.s -K n a.s. 

~ k,n + 00 • Because the new processes U have the same finite dimensional n 

distributions as the original processes U, we can translate this last 
n 

result into the claim stated in the lemma. 0 

CONVENTION 3,2. By v we will understand the random index 1 2., v(w) 2., n 

such that (X ,Y) is the observation with largest first coordinate. By 
V V 

-
>. we wilJ:-understand the random index 1<.::_ >.(w) 2_ n such that (X,.,Y,.) 

is the observation with largest second coordinate. 
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LEMMA 3.,6. P( fo < t; < 1-a }nfo < n < 1-a} )-➔ 1 as n ➔ 00 , uniformly n- v- n n- v-

for H within H provided only na ➔ 0 as n ➔ 00 • 
n 

PROOF. The probability of the complement is bounded above by 

4(1-[1-a Jn) ➔ Oas n ➔ 00 , independently of H, 0 
n 

We conclude this section with some lemmas needed for Theorem 1.2. 

LEMMA 3,,7. P(for some index i the observation (X. ,Y.) equals (X ,Y )-)➔O 
i i nn nn 

as n ➔ 00 , uniformly for H within H Co , 

PROOF .. This probability equals P(n = n ). Let S 
v nn n 

-1 = n log n. Then 

= n } = n 1 un2 where n 1 = {n =n }n[{~ <1-8 }u{n <1-S }J and nn n n n v nn nn- n nn- n 

= {n1 =n }n[{t; >1-S }n{n >1-S }]. It follows that 
v nn. nn n nn n 

P(n 1n) < P(~ <1-S ) + P(n <1-S ) = 2(1-S )n ➔ o - nn- n nn- n n 

as n ➔ 00 , and that 

= 1 - P(n~ 1{F(X.) + G(Y.) < 2(1-S )}) i= i i n 

= 1 - {1 - ff ~dH}n . 

By (0.5) and Holder's inequality this last expression is bounded by 

as n ➔ 00 , because 2(1-o) > 1 if O < o < 1/2. In these expressions the 
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symbol !:,. denotes the region {F(x) + G(y) > 2( 1-13 )} in 2-dimensional 
- n 

number space and c1 is some constant depending on Cando only. D 

LEMMA 3,8. P(y < n < 1-y) + 1 as n +~,uniformly for H within He~' n- v- n u 

-o if y = n n 

PROOF. This probability equals 1 - P(O < n < y: ) - P( 1 - y < n < 1). 
- v n n v -

Because of the independence of the sample elements and because all 

observations have unequal coordinates with probability 1, we have 

P(O<n <y) = nP([n~-11{F(X.)<F(X )}Jn{O<G(Y )<y }) 
- v n i= i - n - n n 

where the symbol t:,. now denotes the region 

-1 ) {x1 < x , •.• ,x 1 < x ,Y < G (y } - n n- - n n - n 

in 2n-dimensional number space. First calculate 

J:: J:: dH(x1,y1) = F(xn) and next J:: J:~ F(xn)dH(x2 ,y2 ) = F2(xn). 

After (n-1) steps our original integral, taking into account the factor 

n, can be written as 

By (0,5) this expression is bounded by 
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C -1+0/2 -0+02/2 -o/2+02/2 0 < 2 n n n = n + 

as n + 00 , because -o/2 + 02/2 < O if O < o < 1. In these expressions 

c1 and c2 are some constants depending on Cando only. In the same 

way it. can be shown that P(1-y < n < 1) + 0 as n + 00 • All this is n v-

uniform for Hin Hee· D 
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4. Uniform negligibility of the B terms. 
n 

COROLLARY 4.1. B1n+p0 as n + 00 , uniformly for H within H (HC0 ). 

PROOF. This rv is bounded by'~ B1. where li=1 in 

B11 n = n112 1J (1)1J IK (G (y))ldH (X ,y) , 
n [y y ) n n n nn 

1n' nn 

B12 = n112 1J (1)K (1)!J dH (x,y) , 
n n n {(X y )} n 

nn' nn 

B13 = n112 1K (1)1J IJ (F (x))ldH (x,Y ) . 
n n [X X ) n n n nn 

1n' nn 

Under the assumptions of Theorem 1 ~.1 we have at once tha.t·,the · 

. d b 3 2 -1/2 a+b O . 'f ml sum of these terms is boun ed y D n n + as n + 00 ,- uni or y 

for H in H. (Note that a+b < 1 /2 by (A2) and recall formula ( O. 2).) 

Under the assumptions of The.orem: 1.2·consider first B11 n. Because the 

random element G (y) is strictly bounded away from O and 1 on [y1 ,Y ) n n nn 

we see that IK (G (y))I < Drb(G (y)) on that interval. Application of n n - n 

Lemma 3.2 with 9 = 1, Q = n, S = (~,+00 ), K = ~ = 0 and,= b gives 
n 

that rb(G (y)) < Mrb(G(y)) on Q ; with P(Q ) > 1-e uniformly inn and 
n - en en 

uniformly for H in H. Hence B11 < DMn- 112 1J (·1) lrb(n ) on Q , using 
n - n v en 

Convention 3.2. For brevity, put n- 112 1J (1)1 = y and note that by 
n n 

( ) -0 . 
A2' yn ~D 1 n for some constant D1 ::_D, independent of H. Let 

' 1~ )~ Q = {y < n < 1-Y. }. Then B < DMY (1-Y + 0 as n + 00 on 1n n- v- "ll 11n- n n 

nennn 1n. Applying Lemma 3.8 we see that P(n1n) + 1 as n + 00 uniformly 

for H within Hee· Hence P(Qennn 1n) > 1-2e for n large enough, uniformly 

for H within Hee· A symmetric argument can be used for B13n. For the rv 

B12n use Lemma 3.7 to see that the set on which this rv may have a value 

unequal to O has probability converging to Oas n + oo~ uniformly for 

H within Hee· D 
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COROLLARY 4.2. For each y the rv B 2 + 0 as n + 00 , uniformly for H Y n p 

within H (Hee). 

PROOF. Irrespective of y this rv is bounded by If= 1 B2in' where 

using Convention 3.2. 

Under the assumptions of Theorem 1.1 let 

n = fo < E; < 1-a }n{a< < n ► < 1-a },· with a = ·na+b..:.3/ 2 Note that 1n · .n - v - . n n - v - . n n 

na + O. Then 
n 

(. ) 1-a-b( )-a-b :na 1-a +O n n '· 

as n + 00 on n1n. Lemma 3.6 gives that P(n 1n) + 1 uniformly for Hin H. 

For the rv B22n a symmetric: argument applies. 

Under the assumptions of Theorem 1.2 let 

n2 = {8 < E; < J-8 }n{y < n < 1-y }, with 8 = ·(I).'log n)- 1 and n n-v- n n-v- n n 

y = n-0 • Then B21 < D2 n- 112 8-a y-b(-1-8 )-a (1-y )-b +Oas n + 00 on 
n n- n n n n 

the set n2n' because a= 1/2 - o and b = 1/2 - o by (A2'h By Lemma 3.6 

and Lemma 3,8 we see that P(n2n) + 1 as n + 00 , uniformly for Hin Hee· 

The rv B22n can be treated in a similar way. D 

COROLLARY 4.3. The rv B 3 + 0 as y+O uniformly in all n and H·.within 
y n p 

PROOF. For arbitrary win n, take (x,y) in~ . The closed line segment 
n 

from (F(x),G(y)) to (F (x),G (y)) has at most two points in common with 
·n n 

the pair of lines F(x) = s 1 and G(y) = t 1 in the plane. On the closed 
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segment JK is continuous, and on the open sub-segments between these 

points it is even continuously differentiable, Hence;the mean value 

theorem applies step wise. Consequently for almost every win n we can 

write 

( 4. 1) n 112J(F )K(G) = n112J(F)K(G) + l~ 1 c.[U (F)J'(if>. (F))K('l'. (G))' n n 1= 1 n in in 

+ V (G)K'('l'. (G))J(if>. (F))J , n in in 

for all (x,y) in A. In (4.1) the functions if>. and 'l'. are defined n in in 

for some e. similarily to equation (2.2). For each 1 = 1,2,3 thee. 
1 1 

are defined for almost all win n and for (x,y) in A. Both thee. and 
n 1 

the c. lie between O and 1. This implies that IB 3 I < l~ 1 B 3 . ; 1 . y n - 1= yin 

where 

B = Ii=1 ff I U ( F ) I r 8 ' ( if> . , ( F )}r b ( 'l' . · ( G) ) dH 
' y31n 8 nsc n in : in n 

n y 

B = Ii=1 ff Iv (~)lrb 1 ('l'. (G))ra(if>. (F))dH y32n 8 nSc n in in n 
n y 

Let R be the real line. Because s~c((s~ 1xR)u(Rxs~2)), we have (if nen 

is the set arising from application of Lemma 3.2 withe= e. for win 
1 

Q = Q and with K = 1, ~=a',, = b) that 
n 
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Under the assumptions of Theorem 1.1 apply (o.4) to each of the terms 

in the bound for this expectation. Then the first of these terms is 

seen to be bounded by 

ff (a'-1/2+o)p . 1/p ff b½ 1/42 
3D2M[ r' ,_- -- , 2 (F)dH] 2[ r (G)dHJ 

Sc xR Sc xR 
y1 y1 

I· (a'-1/2+o)p · 1/p J bq 1/q 
2- 3D2M[ ·c r 2 (F)dF] ?[ r 2(G)dG] 2 

s 1 y 

which is less thah E2 for O < 

. . (a'-1/2+o)p2 summability of r • 

y < y , uniformly for H within H by.the 
E 

The same is similarily true for the second 

term in the bound for E(x(n )B 31 ). Moreover the set n has probability En y n Ell 

larger than 1-E, uniformly inn and H within H. Hence 

P(x(n )B 31 > E) < 2E2/E = 2E for all n, all Hin Hand all 0 < y < y 
En y n - E 

by Markov's inequality. Thus B 31 + 0 as y+0 uniformly inn and Hin H. 
y n p 

Finally the entire argument can be repeated for By32n. 

Under the assumptions of Theorem 1.2 apply (0,5) to each of the terms 

in the bound for this expectation. Then the first of these terms is at 

once seen to be bounded by 

as y+0 uniformly inn and H within Hee· The same holds for the second 

term in the bound for E(x(n )B 31 ). Recalling that P(n · ):> 1-E En y n Ell 

uniformly inn and H within Hand repeating the same argument for 

B the corollary is proved. 0 y32n' 
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COROLLARY 4.4. For each y the rv B 4 + 0 as n + 00 , uniformly for H 
Y n P 

within H. 

PROOF. For a fixed Y, by the Glivenko-Cantelli lemma the factor 

x(~~n) = 0 on a set whose probability approaches 1 as n + 00 , uniformly 

in the marginals F and G for Hin H. (Note that 

IFn-FI _< n-1/2 sup_oo<x<oo supO<s~1 I u I.) n □ 

COROLLARY 4,5, Uniformly in y the rv B 5 + 0 as n + 00 , uniformly for 
Y n P 
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PROOF. First remark that ru (F) Ir 112- 0 / 4 (F) · is bounded in probability 
n 

by a constant M, uniformly inn and the marginal F of Hin H (see [10], 

Lemma 2.2). Because ~cc(([X1 ,X )cxR)u(Rx[y1 ,Y )c)), with probability 
n n nn n nn 

near one we have 

Under the assumptions of Theorem 1 • 1 apply ( 0. 4) to each o·f the terms of 

this bound with p = p2 and q = q2 . Then the first of these terms is 

seen to be bounded by 

as n + 00 ; all this being uniform for Hin H. The corollary is proved 

under the assumptions of Theorem 1.1 because a similar argument holds 

for the second term in this bound. 

Under the assumptions of Theorem 1.2 apply (0,5) to each of the terms 

of this bound. Then the first of these terms in turn is seen to be 

bounded by 

n2Mc[f r 1- 014 (F)dFJ[fr112- 012 (G)dGJ+ o 
[X X )c a.s. 

1n' nn 

as n + 00 ; all this being uniform for H within Hee' The corollary is 

proved, because a similar argument holds also in this case for the 

second term in the bound. D 

COROLLARY 4.6. The rv B 6 + 0 as y~O uniformly in all n and H within 
Y n p 

a.s. 0 
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PROOF·, For reasons similar to those in the proof of Corollary 4. 3 we 

have 

on the set n arising from application of Lemma 3,2 withe defined by e:n 

formula ( 2 • 2 ) for w in n · = n and..- ( x ,Y) in /:J. • nS and· with K = 1 , n :.yn n y 

l;=a',,=b, 

Under the assumptions of Theorem 1,1 we get the desired result in the 

same way as in the corresponding part of the proof of Corollary 4.3; 

only it is easier since dH replaces dH. n 

Under the assumptions of Theorem 1,2 we similarily copy Corollary 4,3, 

replacing dHn by dH_, · 0 

COROLLARY 4,7, For each y the rv B 7 ➔ 0 as n ➔ m, uniformly for H - y n p . 

within H. 

PROOF, Consider the set n arising from application of Lemma 3,2 with e:n 

e defined by formula (2,2) for win n = n and (x,·y) in /:J. ns · but n Yn n y' 

this time with K = 1, I;=•= o. Then 

IB 7 I< M supA ns IJ'(4> (F))K('l' {G))-J'(F)K(G)I 
y n - u n n 

n Y 

on n , Since J'(F)K(G) is uniformly continuous on an open set containing e:n 

Sy/2 , application of Lemma 3,3 gives that this bound ➔PO as n ➔ m, on·the 

other hand we have P(n ) ➔ 1-e: as n ➔ m, All of this is uniform for H e:n 

within H, 0 



-24-

COROLLARY 4.8. For each y the rv BYBn+pO as n + 00 , uniformly for H 

within H. 

PROOF. We have IB I < ~3 B · where (see notation above Lemma 3.5) y8n - li=1 y8ikn' 

By81kn = JJ S lun(lf)J~(t)t(◊) - UnJ(t)Jk(F)~(<:¼)ldHn' 
y 

By82kn = JJ J s un,k(F)Jk(F)~(G)d(Hn-H)I 
y 

BY 83kn =ff s lun(F)J'(F)K(G) - un,k(F)Jk(F)~(G)ldH. 
y 

Both ByS,kn and BYB3kn are bounded by the supremum of the integrand; 

which is in turn bounded by 

hk(Un) max · · 1.J' ~s )K(t H y~s ,t.:;__1-Y 

Since J 'K is: uniformly continuous cm the square y ~ s, t ~ 1-y, the 

first term converges in probability to Oas k,n + 00 by Lemma 3.5. The 

second term also converges in probability to Oas k + 00 , even uniformly 

inn, because supO<s~11un,k(s)I ~ supO<s~1lun(s)I is bounded in probability 

ur.i.iformly inn by Lemma 2.2 bf [10].Hence ByB,kn + ByS3kn+pO as k,n + 00 , 

All this moreover is uniform for H within H. By the same Lemma 2.2 of [10] 

it is seen that the values of the step ·function:restricted·to ~y' ·in 

ByB2kn, are bounded in probability (uniformly inn and Hin H) by a 

constant M. Let a .. kn be the value on the rectangle 
J.J 



-25-

R. 'k = (F-1(((i-1)/k,i/k]) x G- 1({(j-1)/k,j/k]))ns • 
1J y 

Hence with probability near one 

If R. 'k 1J 

for each k as n + 00 , uniformly for H within H. This convergence to O is 

seen by Lemma 3.4. These results combined prove th~ corollary. D 

COROLLARY 4.9. For each y the rv B 9 + 0 as n + 00 , uniformly for H Y n p 

within H. 

PROOF. See the proof of Corollary 4.4. D 

We will now show how the results of these corollaries can be combined 

to complete the proof of the theorems. Let therefore an arbitrary 

£ > 0 be given. First use corollaries 4.3 and 4.6 to choose a fixed y 

such that P(jB. I < £/10) > 1-£/10 uniformly inn for i = 3,6. Next 
yin -

use (A1) or (A1') and Corollaries 4.1, 4.2, 4.4, 4.5, 4.7 - 4.9 to 

choose for the above value of y an index n such that 
£Y 

P( !Bini ~ i/10) > 1-£/10 for n > nq and i = 0-1,2,4,5,7..-9- This'.· 

· .. (f9 ) □ implies that Pl· 0 B. < £ > 1-£ for all n > n . 
1= Yin - EY 
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