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0. Summary and basic notations. For each n let (X1’Y1)""’(Xn’Yn) be

a random sample from a continuous bivariate distribution funection

(af) H(x,y) having marginal dfs F(x) and G(y). All samples are defined
on a single probability space (2,M,P). The bivariate empirical df based
on a sample of size n is denoted by Hn' With respect to the n random
variables (rvs) Xi(Yi) corresponding to the first (second) coordinates,
the empirical df is denoted by Fn(Gn), the i-th order statistic by X
(Yin) and the rank of X, (Yi) by Ri(Qi).

To test the independence hypothesis H(x,y) = F(x)G(y), most common

rank statistics are of the linear type

=

. -1
s n 2?

=]
e
[a]
-

where an(i), bn(i) are real numbers for i = 1,...,n (see Hijek and

Siagk [6]).
By an approach analogous to that of Chernoff and Savage [3] for the
two-sample problem, Bhuchongkul [1] proves asymptotic normality of the

standardized statistic

(0.1) n1/2(Tn—u) - n1/EEIfJn(Fn)Kn(Gn)dHn-uJ .
where
(0.2) 5 (s) = e (1) L K (s) = b (1)

for (i-1)/n < s < i/n and 1 < i < n and where

(0.3) "

[}
N—

fJ(F)K(G)dH
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for some functions J and K. However, the conditions imposed on the
weight functions(wfs) J end K are much stronger than in [3]. Jogdeo
[7] proves asymptotic normality of these statistics by a different
approach, but still needs conditions stronger than in [3].

The first theorem of Section 1 contains Bhuchongkul's Theorem 1 as a
special case; a full proof of the non-trivial uniformity in H is in-
cludéd in our theorem. The proof of this theorem is based upon HSlder's

inequality in the form

(0.4) ”|¢(F)¢(G)|dﬂ < [JI¢|PdI]1/P[Jlequ-J1/°- ;

where I is the identity function on [0,1], dI denotes the Lebesgue measure
restricted to that interval, ¢ and ¥ are functions on (0,1) and p > 1,

q > 1 satisfy p-1 + q—1 =1,

The second theorem in Section 1 gives asymptotic normality under much
weeker conditions on the Wfs—cqnditions equivalent to those in [3]. The

price for this is & condition on the 4f H, keeping it in some sense

similar to the null hypothesis. This condition is

(0.5) aH < clr(1-F)G(1-G drdG

with somefixed C > 1 and § > 0. Mathematically, this condition allows

a direct factorization of the lefthand integral in (0.4) which is more
efficient than H8lder's inequality. Intuitively, this condition prevents
the large X's from occurring in the same pair as large Y's with too high
a probability. Condition (0.5) always holds under the null hypothesis

(with ¢ = 1 and 6 = 0 even). It is also satisfied in the case (proposed



by Lehmann [9]) where H can be written as a polynomial in its marginals
F and G (with appropriately chosen C > 1 and again 6§ = 0) and in the
case (considered by Gumbel [5]) with C = 10. For further information on
the latter class see also Runnenburg and Steutel [11]. Finally (0.5)
helds for all bivariate normal distributions with a sufficiently small
correlation coefficient (use Lemma 2 on page 166 of Feller [4] to see
that (0.5) holds for a-correlation coefficient between -§/(2-3) and
§/(2-¢8)).

Some results of Pyke and Shorack [10] are used.in the proofs. We employ

the notation

p(6,0) = supy . [o(s)-u(s)|

for functions ¢, ¢ on (0,1).



.

1. Statement of the theorems. Let

(1.1) Boy = n1/2IJA [Jn(Fn)Kn(Gn)—J(Fn)K(Gn)]dHn

n

where An==[x1n,xhn) X [Y1n,Ynn). Let

(1.2) r = [1(1-1)]'1 on (0,1).

We introduce the following assumptions (A1) - (A3).

(A1). The functions J , J, K , K and H are such that the rv By, = op(1)
uniformly for all continuous dfs H.

(A2). The functions J and K are defined and continuous on (0,1). They
have a derivative except for at most a finite number of points. In the

open intervals between these points the derivatives are continuous.

The functions Jn’ J, J', Kn, K, K' satisfy

IJI < Dra, IJ ] < Dr® for n > 1, IKI < Dr-, IK [ < Drb for n > 1
= n! = - = n! — =
on (0,1) and

3] < pe® , x| < D

where defined on (0,1). Here D > 0 and a, a', b, b' are fixed numbers

satisfying

a(2+8)p.<1, b(2+8)q. <1, (a'-1/2+8)p,<1, ba,<1, ap.<1, (b'-1/2+8)qg <1
2 2 3 3

1 1

for some 0 < § < 1/2 and P, 9 > 1 satisfying p;1 + q;1 =1 for i=1,2,3.
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(A3). The bivariate df H is continuous. The class of all continuous
bivariate dfs H will be denoted by H.
THEOREM 1.1. Let J , J, J', K , K, K' and H satisfy (A1), (A2) and (A3).

n
Then n1/2(

Tn-u)+dN(O,62) with finite u and o> given by (0.3) and (2.7).
Moreover, the convergence is uniform for H in H.

COROLLARY. Theorem 1.1 is true if a =b = 1/4 - § and a' =Db' = 5/4 - §
for some 6 > 0.

PROOF. Teke p, = q; =2, py = q3 = 4/3 and py =g, = 4. O

This corollary is stronger than Theorem 1 of [1] in which a =b = 1/8 - §
and a' = b' = 1, Moreover in [1] H is supposed to be absolutely continuous
and J and K twice differentiable.

In the next theorem we shall need assumptions (A1') - (A3').

(A1'). Condition (A1) holds uniformly for all continuous dfs H satisfying
(0.5) for some fixed C > 1 and 0 < & < 1/2.

(A2'). The functions J s J, J' and K s K K' satisfy (A2) on (0,1) with
a,b = 1/2 - § and a',b' = 3/2 - § for some 0 < § < 1/2,

(A3'). The bivariate df H is continuous and satisfies (0.5) for some

fixed C > 1 and 0 < § < 1/2. The class of all such dfs H will be denoted
by HCG'

THEOREM 1.2. Let J , J, J', K , K, K' and H satisfy (A1'), (A2') and
(A3'). Then n1/2(Tn—u)+dN(0,c2) with finite u and o° given by (0.3) and
(2.7). Moreover, the convergence is uniform for H in HC&'
_ REMARK. Suppose Jn(i/n) = E(Xin) and Kn(i/n) = E(Yin) where X has 4f
F and Y has df G. Let further J = F-1 and K = G_1. Then (A1) holds if
J and K satisfy (A2). See also [1], Theorem 2.

Suppose Jn(i/n) = J(i/(n+1)) and Kn(i/n) = K(i/(n+1)). Then (A1) holds

if J and K satisfy (A2) and (A1') holds if J and K satisfy (A2').
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2. Proof of the theorems. Define £, = F(X;) and n; = G(Y,). Then
51,...,£n and Nyseee,n are each sets of independent rvs uniformly dis-
tributed on [0,1]. Denote the corresponding ordered samples by

-1 _ . .
Eqpoerrobyy 88d Ny 5eeesn . Let F (s) = inf{x: F(x) > s} and

n
G—1(t) = inf{y: G(y) > t}. Define the empirical processes

1/2[Gn(G_1)—I] on [0,1]. These processes

n1/2

U = n1/2[F (F-1)—I] and V. =n
n n

n
1/2

satisfy Un(F) =n (Fn—F) and Vn(G) = (Gn-G) on (—w,+),

We now give. the basic application of the mean value theorem. The theorems
will be proved under the assumption that both J en K fail to have a

derivative in just one point, say in s, and t, respectively. For y in

1
a neighborhood of 0 define the sets

R -1 ‘
SY1 =F ([Y,s1—ylu[s1+y,1—yl), SY2 =G ([Y,t1—y]u[t1+y,1—yl),

(2.1)

QYn = {w: sup|Fn-F‘ <vy/2, sup|Gn—G| < y/2} .

Define the set SY = SY1 x SY2 in the plane. Let x(QYn) denote the in-

dicator function of QYn' For almost every w in Qyn the mean value theorem

gives

(2.2) n1/2J(Fn)K(Gn) = n1/2J(F)K(G) + Un(?)J'(®n(F))K(W (G))

+ V(6K (¥ (6))3(2 (7))

for all (x,y) in AnnSY. In (2.2) the functions ¢ eand ¥ are defined by

@ (F) =F + 6(F -F) and ¥ (G) = G + 6(G -G) where 6 = 9 is a
n n n n WX ,y,n

number between 0 and 1 given by the mean value theorem; and application
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of the mean value theorem is valid when w is in QYn and (x,y) is in

A nS for some Yy > 0. Thus
n -y

1/2 03 | 10
n (Tn_U) - zi?1 Aip ¥ Bon ¥ zi=1 BYin
where By is defined in (1.1) and
_ 1/2
AL =m0 T J(F)K(G)dHn - | |J(F)k(G)aHul,

o
I

JJUn(F)J'(F)K(G)dH, Ay = JJVn(G)K'(G)J(F)dH,

Y3n

By = x(an)n1/2[JJA J(F_)K(G )aH —JJJ(F)K(G)dHnJ, ,
Y5n yn
y6n

B = X(QYn)I L U (F)J'(F)K(G)d(Hn—H),

v8n n

|
|
|
|

Y9n



Byion = X(QYn)JIA . V_(G)K'(¥_(6))J(e (F))an
n

- JJVH(G)K'(G)J(F)dH-

Since 2§=5.3Yin = x(QYn)JfA . u, (F)ar (e (F))K(¥ (G))aH

n .y
_ . . . . .
[[Un(F)J (F)K(G)dH is symmetric to By10n’ we will not treat BY1On in

the sequel.

We now proceed by proving the asymptotic normality of the first order

terms.

The rv A1n can be written in the form

_ .-1/2 tn
(2.3) Ap =0 Lizt A2

= J(F(X.))K(G(Y.)) - u are independent and identically

where the A, .
1in 1 1

distributed (iid). Applying (0.4) with p = p, and q = q, (applying (0.5))

it is seen that under (A.) (under A2') the rv A has a finite absolute

2 1in

moment of order 2 + &, for some 61 > 0. Moreover this moment will be

1

uniformly bounded for H within H (H,.).Finally the mean of this rv is 0.

Cs

Because U (F) = 172 22=1 [¢, (F)-F1, where

X.
1
(2.4) oy (F(x)) = 0 if x < X, and ¢, (F(x)) =1if x > X.,
1 i

we have

_ _=1/2 ¢n
(2.5) Aoy =1 7% Linq Apip

2n
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where the Aein = (J[¢X(F)—FJJ'(F)K(G)dH are 1idd. For S as in (A2)
1

(or (A2')) we have
—1/2+6/h,(1—€i)_1/2+6/h} ‘D?'era'—1/2+6/L(F)rb(G)dH-

< max{g,

IA2in|
The first random factor possesses an absolute moment of order 2 + 62

for some 62 > 0. Applying (0.L4) with p = P, end q = g, (applying (0.5))
we see that the second non-random factor is uniformly bounded for H in
H (Hé6) under the assumptions of Theorem 1.1 (Theorem 1.2). Hence A2in
has a finite absolute moment of order 2 + 62, which is uniformly bounded

for H in H (HCG)' The mean of this rv is 0.

Analogously we can write

_ =1/2 tn
(2.6) Ay =m0 7 Ay Ay

with A n has a finite absolute

3i

moment of order 2 + 62 which is uniformly bounded for H in H (H

3in = IJ[¢Yi(G)—G]K'(G)J(F)dH. The rv A

CG)' The

mean again is O-

.. 2 .
Combining (2.3), (2.5) and (2.6) we get A, v A+ A3h+d N(0,0°) uni-

formly for H within H (HCG) by Esseen's theorem (see e.g. [3], section k).

The variance o2 is, as in [1], given by

(2.7) o2 = Var[J(F(X))K(G(Y)) + JJ[¢X(F)-F]J'(F)K(G)dH

+‘JJ[¢Y(G)—G]K'(G)J(F)dH]

with ¢ as defined in (2.4).
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We now turn to the second order terms. The term BOn is dealt with in

(A1) and (A1'). The asymptotic negligibility of the other second order terms

will be given in Section L4 as corollaries to the lemmas of Section 3.
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3. Some lemmas. We start with a number of lemmas that are useful for

both theorems.
LEMMA 3.1. For any T > O the function r' is symmetric about 1/2, de-
creasing on (0,1/2] and has the property that for each B in (0,1) there
exists a constant M = MB such that r (Bs) j_MrT(s) for 0 < s < 1/2 and
r (1-8(1-s)) i.MrT(s) for 1/2 < s < 1.

T -T -T -T T ..
PROOF. On (0,1/2] we have r (Bs) = (Bs) (1-Bs)” < B r (s). A similar
argument applies to the interval (1/2,1). O

CONVENTION 3.1. Let Qn denote a subset of @ and let S = S, x 82 denote

1

a product set in the x,y-plane. The symbol 6 = 6n will denote a function
defined for w in @ and (x,y) in AnnS that satisfies 0 < 6 < 1. (The
function 6 will typically arise in various applications of the mean
value theorem; as in (2.2),) For such 6 we let @n(F) =F + e(Fn—F) and

= + - .
wn(G) G e(Gn G)

LEMMA 3.2. For k = 0 or k = 1 and for each ¢ > 0, T > 0 and € > O,

there exists a positive constant M = M (not depending on n) such

Kol ,T,HE
that P(Qen) > P(Qn) - ¢ for all n and uniformly for H within H; where
_ . ) K T T “
e, = {w in Q: |Un(F)] r (®n(F)) r (Wn(ﬁ)).

<M rg-K(1/2—G/h)(F) rT(G) for all (x’y) in AnnS} .

PROOF. It is well-known that for each € > O there exists a constant

B = se in (0,1) such that P(Q€1n) > 1 - ¢/3 for all n where

= {4 =1 .
2 4, = lu: Bs f_Fn(F (s)) <1 -8(1-s) for g, <s < End 3

and such that P(Qe ) > 1 - ¢/3 for all n where

2n
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_ . -1 , ) )
Qpn = {w: Bt 2 G (G (t)) <1 - B(1-%t) for Ny <8 <3 -

See e.g. Lemma 2.5 of Pyke and Shorack[10]. Because of the definition
of & (F) (especially because 0 < 6 < 1) on ©_nQ we have
n - - n €iln
_ _ . ns. . . e
BF < ¢ (F) <1 - B(1-F) for x in [X, ,X )NS,. By Lemma 3.1 this implies

that for some constant M, _ we have rC(Qn(F)) =M r°(F) for x in
E] b

[Xm,Xnn)nS1 on the set an951n° Analogously we have

T T )
r (Wn(G)) < M r (G) for y in [Y1n’Ynn)nS

on the set @ nQ . If
— T,€ n €

2 2n

k = 0 we have lUn(F)||< = 1 for all x and each w. If « = 1, Lemma 2.2"
of [10] implies for each € > O the existence of a constant M8 such that

P(Q . ) > 1 - ¢€/3 for all n where

€3n

r_1/2+6/h(F) for all x}

Hence @ 2(Q nQ . nQ . nQ__ ) where P(Q . nQ ) > 1-e. O
en ' n €

n e2n €3n eln e2nnge3n

Some special choices will illustrate the use of this lemma. Taking

6 =0 on Q X An'we have ¢n(F) = F and wn(G) = G. Taking 6 = 1 on £ x A

we have @n(F) Fn and Wn(G) = Gn. By taking in the latter case more-

a, T = b we have with probability larger than
b
(

over K 0, C

P(2)-¢ = 1 - ¢ that |J(F_ )k(c )| < Mr®(F) r (G) for (x,y) in 4 _, uni-

n’
formly in n and H.

LEMMA 3.3. For each € > 0 there exists an index nE such that

P([@n(F)-F| < e, lwn(G)-Gl < e for all (x,y) in A nS)

> P(Qn) - €

for all n > n_ and uniformly for H within H.
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PROOF. The definition of ¢ gives at once that |¢n(F)—F| :_ﬁJ/len(F)|

for x in [X, ,X )nS

12 %an , where ]Un(F)I = Op(1) uniformly in n and F by

1
Lemma 2.2 of [10]. O

LEMMA 3.k. sup;w<x’y<m|Hn(x,y)-H(x,y)|+p0 uniformly for H in H as n > =.

PROOF. This follows from Theorem 1-m of Kiefer [8]. [

For any natural number k assign to each bounded function ¢ on [0,1] the
number hk(¢),defined by hk(¢) = p(¢,¢k); where ¢k is the step function

derived from ¢ by ¢, (0) = ¢(0) and ¢, (s) = ¢(i/k) for (i-1)/k < s < i/k
and 1 = 1,...,k.

LEMMA 3.5. h (Un)+po as k,n > @,

k

PROOF. The Uh—processes converge weakly to a separable tied-down Wiener
process Uy.See Billingsley [2]. In Pyke and Shorack[10] these Un- and

U _-processes are replaced byvUn- and 5O-processes on a single new probability

0
~ N~ o~

space (2,AL,P). (See also Skorokhod [12],) They satisfy the condition

+ .
0°%0,x p(Uo,k’Un,k)

U < U U o (1
We see that p(Uo,k’Un,k) __p(Un, UO) Yog, 0@s s (independently of k).

p(Un,UO)*a.s. 0 as n » «, Now hk(Un) 5_p(Un,U

Moreover for almost every w the function abis uniformly continuous on
[0,1] so that p(U U ) 0 as k»».This implies hk(ﬁn)+a

0’7°0,k” a.s

k,n > », Because the new processes Un have the same finite dimensional

0 for
.S,
distributions as the original processes Un’ we can translate this last
result into the claim stated in the lemma. [

CONVENTION 3.2. By v we will understand the random index 1 < v(w) < n

such that (Xv’Yv) is the observation with largest first coordinate. By

A we wilijunderstand the random index 1< A(w) < n such that (X,,Y

A A)

is the observation with largest second coordinate.
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LEMMA 3.6. P({a < & 5_1—an}h{an <n, 2 1-a})=>1 as n > «, uniformly

for H within H provided only na > 0 as n > =,

PROOF. The probability of the complement is bounded above by

h(1—[1—an]n) + 0 as n > », independently of H. [

We conclude this section with some lemmas needed for Theorem 1.2,

LEMMA 3.7. P(for some index i the observation (Xi,Yi) equals (Xnn,Ynn)0+O
as n > ®, uniformly for H within HCG'

PROOF. This probability equals P(nv = nnn)' Let Bn = n“1 log n. Then

{ny=n_} =0, ua vhereqa = {n\)=nnn}n[{snng-en}u{nnng—sn}] and
QZn = {nv=nﬁn}n[{gnn>1_8n}n{nnn>1_8h}]' It follows that
' _ n
P(Q1n),3 P(&nnjj—sn) + P(nnnjj-sn) =2(1-8 )" >0

as n »> °, and that

P(, ) < P(U]_ {F(X,) + G(¥,) 2 2(1-8)})

2n

1 - P(n;_ {F(x,) +6(¥,) < 2(1-8_)})

1-{1 - JJ aH® .
A

By (0.5) and HOlder's inequality this last expression is bounded by

1 - {1-C[Jf{r(F)r(G)}1/2dFdG]6[J[ dFdG]T_a}n
JA

_ 2y1-6.n
=1 - {1—01(28n) 7 >0

as n >~ ©, because 2(1-8§) > 1 if 0 < 6§ < 1/2. In these expressions the
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symbol A denotes the region {F(x) + G(y) 3_2(1-Bn)} in 2-dimensional

number space and C, is some constant depending on C and § only. [

1

LEMMA 3.8. P(Yn <n

if Y, = n—a.

v 5_1_yn) +~ 1 as n > «, uniformly for H within HCG’

PROOF. This probability equals 1 - P(O =, < Yh) - P(1 - Y, <, < 1).

Because of the independence of the sample elements and because all

observations have unequal coordinates with probability 1, we have

P(0sn <v_) = nP([n§2 1{F (X, )<F (X )}In{0<G(Y_)<y_})

n
nj...JAHi=1 dH(xi,yi) 3

where the symbol A now denotes the region

n-1 ixn’yn =G (Yn)}

{x1 S Xoseees
in 2n-dimensional number space. First calculate
xn +o xn +o
[_w J dH(x1,y1) = F(xn) and next I_m f‘h F(xn)dH(xE,yz) =F

-00 -0

"After (n-1) steps our original integral, taking into account the factor

n, can be written as

By (0.5) this expression is bounded by



as n > o,

C, and C

1 2
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1 Y
c n[J -1 872 dI][J n 8/2 417
0 0

Y .
<c, nEr(n-a/z)/r(nH_a)J[f n =8/2 41
0

2 2
0 n-1+6/2 n—6+6 /2 _ n-6/2+6 /2 N

< ¢ 0

-2

because -6§/2 + 62/2 < 04if 0 < 8§ < 1., In these expressions

are some constants depending on C and § only. In the same

way it can be shown that P(1—Yn <, < 1) > 0 as n~+ ., All this is

uniform for H in HCG' 0
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4, Uniform negligibility of the Bn terms.

COROLLARY L4.1. B n+p0 as n > ®, uniformly for H within H (H_..).

1

PROOF. This rv is bounded by Z§=1 B, Where

Cs

B,. = n1/2|Jn(1)I(

11n lKn(Gn(y))ldHn(Xnn,y) ,

[y, ,Y
n’ nn
1/2
B =n !J (1)K (1”[ dH(X,Y) L]
12n n n (X .Y )} n
nn’ nn

By = n1/2|Kn(1)|f - lJn(Fn(x))ldHn(x,Ynn) .

n’"nn

Under the assumptions‘Of Theorem 1i1 we have at once that the

- +
1/2 o2 b

sum of these terms is bounded by 3D2 n + 0 as n > ©, uniformly

for H in H. (Note that a+b < 1/2 by (A2) and recall formula (0.2).)
Under the assumptions of Theorem 1.2 consider first B11n. Because the

random element Gn(y) is strictly bounded away from O and 1 on [Y1n’Ynn)

we see that IKn(Gn(y))| §_Drb(Gn(y)) on that interval. Application of
Lemma 3.2 with 6 = 1, o =0, 8= (=o,4@), Kk =7 =0 and T = b gives
that rb(Gn(y)) g_Mrb(G(y)) on @_ 3 with P(nen) > 1-¢ uniformly in n and
. . -1/2 . b _ .
uniformly for H in H. Hence B,,, < DMn |Jn(1)lr (nv) on Q_ , using
Convention 3.2. For brevity, put n_1/2|Jn(1)| = Yn and note that by

) .
(a2') v §_D1 n  for some constant D, > D, independent of H. Let

n
P 1-b -b
)

= -" < - o
{y <n, 21 Yn}' Then B < DMy, (1 Y, >0 as n >« on

n n 11n

QEan1n. Applying Lemma 3.8 we see that P(Q1n) +> 1 as n > ® uniformly

for H within HCS' Hence P(Qean ) > 1-2e for n large enough, uniformly

n

for H within HCG' A symmetric argument can be used for B13n' For the rv

B12n use Lemma 3.7 to see that the set on which this rv may have a value

unequal to O has probability converging to 0 as n + «, uniformly for

H within HCG' g
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COROLLARY L4.2. For each y the rv B

n+po as n + *, uniformly for H

Ye
within H (Hcé)'
PROOF. Irrespective of Y this rv is bounded by Z§=1 B2in’ where

2 -1/2 b 2"
By = D00 2 R(e ) () ana By, = 0% R%(e )% )

using Convention 3.2.

Under the assumptions of Theorem 1.1 let

o L . " a+b- L
Q1n = {qn i-gv 5_15an}n{a£ =ng gﬁ]—an},wmth a = n® b 3/2..Note that

no. > 0. Then
n

B <p2al/? a;a—b( y-a-b

21n 1—OLn

- (n o )T-a—b( )—a—b

1 -0 -+ 0
n

as n > ® on Lemma 3.6 gives that P(Q. ) - 1 uniformly for H in H.

n’ 1n

For the rv B22n a symmetric' argument applies.

Under the assumptions of Theorem 1.2 let

_ ) . i -1
2, = 1B, <& §_J-Bn}n{yn <n, 1=y}, with 8 = (n log n)”  and

_ =8 2 -1/2 -a -b, -a -b
Y, =n . Then3B, <D°n B, Y, (J—Bn) (1—Yn) > 0as n > on
the set Q because a = 1/2 = § and b = 1/2 - § by (A2'). By Lemma 3.6

2n°’

and Lemma 3.8 we see that P(an) -~ 1 as n + «», uniformly for H in HCS'

The rv B22n can be treated in a similar way. [
COROLLARY L4.3. The rv BY3ﬁ+po as Y+0 uniformly in all n and H within
H (HCG)'

PROOF. For arbitrary w in Q, take (x,y) in An. The closed line segment

from (F(x),G(y)) to (Fn(x),Gn(y)) has at most two points in common with

and G(y) = t, in the plane. On the closed

the pair of lines F(x) = s :

1
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segment JK is continuous, and on the open sub-segments between these
points it is even continuously differentiable. Hence the mean value
theorem applies step wise. Consequently for almost every w in Q we can
write

(1) o2 k(e ) = n"2rE)R(e) + I3, e U (1)3' (o, (F))K(¥, (G))

+ V(@)K (v, (@)3(e, (PN,

for all (x,y) in A . In (4.1) the functions o, end ¥, are defined
for some 6. similarily to equation (2.2). For each i = 1,2,3 the 8.

are defined for almost all w in Q and for (x,y) in A - Both the 6. and

the c. lie between 0 and 1. This implies that |B__ | < J° . B _. ;
1 Y3n' — £i=1 "y3in
where
_ 3 a' Ly b .
B = e | l0, 1 e )P o0,
A_nS
n Y
=73 . b! a
B 3on = Li=g [[A nSclvn(G)Ir (¥, (@))r" (e, (F))aH,

_ . c c c .
Let R be the real line. Because SYC((SY1XR)U(RXSY2))’ we have (if 2,

is the set arising from application of Lemma 3.2 with 6 = ei for w in

Qn = Q and withk = 1, ¢ =a', T = b) that

B(x(8,)8, ) < 3nszJSc1XRra"”2+ Y r)r®(e)an
Y

a'—1/2+wyh(F)rb(G)dH )

+ 3D2MJI e ¥
RXSY2
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Under the assumptions of Theorem 1.1 apply (0.4) to each of the terms
in the bound for this expectation. Then the first of these terms is

seen to be bounded by

(a'-1/2468)p, - 1/p b 1/
3D2M[jf r' L 2(F)dH] 2EJJ : r q2(G)dH] 2
s¢ xR ' s€ xR

X
y1 Y1
| (a'=1/2+8)p 1/p. ¢ ba 1/q
5_3D2M[J.c r 2(F)ar] ?[Jr 2(¢)ag]  °
s
1
Y

which is less thah 62 for 0 < y < Yoo uniformly for H within H by the

(a'=1/2+48)

summability of r P2, The same is similarily true for the second

term in the bound for E(x(2 )

en BY31n)° Moreover the set Qen has probability

larger than 1-e¢, uniformly in n and H within H. Hence

P(x(Q_ )

o, _ .
en BY31n > €) <2¢“/e = 2e for all n, all H in H and all 0 < y < Y,

by Markov's inequality. Thus BY +pO as y¥0 uniformly in n and H in H.

31n

Finally the entire argument can be repeated for BY

32n°
Under the assumptions of Theorem 1.2 apply (0.5) to each of the terms
in the bound for this expectation. Then the first of these terms is at
once seen to be bounded by
- i -8
3D2MC[f o a/h(F)dF][Jr1/2 /2(6)ag] + 0

S

1
as y¥0 uniformly in n and H within HCG' The same holds for the second

term in the bound for E(x(__)

en By31n)' Recalling that P(Qen):>1_€

uniformly in n and H within H and repeating the same argument for

By32n’ the corollary is proved. [
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COROLLARY L4.L. For each Y the rv BYhn+p0 as n > ©, uniformly  for H

within H.

PROOF. For a fixed Y, by the Glivenko-Cantelli lemma the factor
X(an) = 0 on a set whose probability approaches 1 as n - «, uniformly

in the marginals F and G for H in H. (Note that

|F -F| < n~1/2 O
M

SUP e oo supoisi1 lUnI.)

COROLLARY 4.5. Uniformly in y the rv By5n+po as n > », uniformly for
).

H within H(HCG
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. X -8 . . ..
PROOF. First remark that 1Un(F)|r1/2 /h(F)'lS bounded in probability
by a constant M, uniformly in n and the marginal F of H in H (see [10],

c c c . ..
Lemma 2.2). Because Anc(([x1n,xnn) XR)U(RXEY1n,Ynn) )), with probability

near one we have

2 a'-1/2+8/L b
I%%IiDdhx r (F)r°(G)aH

+ Dzm[f &' =1/248/% 5y Doyan |
rx[Y. ,vy )€

n’ nn

Under the assumptions of Theorem 1.1 apply (0.4) to each of the terms of

this bound with p = p, and q@ = q,. Then the first of these terms is

2 2°

seen to be bounded by

(a'-1/2+8)p ‘ ‘ a
5 2 1/p bag . 1/q
P M[j[x X )cr (F)ar] ‘2[Jr “(eae] - a.s.”
1n’"nn

as n > ©; all this being uniform for H in H. The corollary is proved
under the assumptions of Theorem 1.1 because a similar argument holds
for the second term in this bound.

Under the assumptions of Theorem 1.2 apply (0.5) to each of the terms
of this bound. Then the first of these terms in turn is seen to be

bounded by

DEMC[I r1_6/h(F)dF][fr1/2_6/2(G)dG]+a o

c -
I:X1n’Xnn)

as n > «®; all this being uniform for H within HCG' The corollary is
proved, because a similar argument holds also in this case for the

second term in the bound. [

COROLLARY 4.6. The rv BY6ﬁ+PO as y+0 uniformly in all n and H within

H(Hcs)‘
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PROOF'. For reasons similar to those in the proof of Corollary 4.3 we
have

IBY6nI :-DeM[J ] ra'-1/2+6/u(F)rb(G)dH

X
SY1 R

. DeMJI ] ra'-1/2+6/h(F)rb(G)dH
RS,

2

on the set Qen arising from application of Lemma 3.2 with 6 defined by
formula (2.2) for w in‘Qn = QYn and (x,y) in AnnSY and with k = 1,

gz =a', T =nho.

Under the assumptions of Theorem 1.1 we get the desired result in the
same way as in the corresponding part of the proof of Corollary L4.3;
only it is easier since dH replaces dHn.

Under thé assumptions of Theorem 1.2 we similarily copy Corollary 4.3,
replacing dHn~by dHf g

COROLLARY L4.7. For each Yy the rv B_, > 0 as n > @, uniformly for H

YTn p

within H.
PROOF. Consider the set Qen arising from application of Lemma 3.2 with
6 defined by formula (2.2) for w in 2, =@, and (x;y) in A NS, 5 but

this time with k = 1, ¢ = T = 0, Then

|B <M supAnnsY|J'(@n(F))K(‘I’n(G))—J'(F)K(G)l

Y"(nl

onQ_ . Since J'(F)K(G) is uniformly continuous on an open set containing
SY/Q’ application of Lemma 3.3 gives that this bound +p0 as n +> », On the
other hand we have P(an) > 1-¢ as n > o, All of this is uniform for H

within H. 0O
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COROLLARY 4.8. For each Yy the rv BY8n+po as n > @, uniformly for H
within H.

3 .
L] < - . H .
PROOF. We have IBstI < 21=1 By81kn’ where (see notation above Lemma 3.5)

B g1kn - ”s |, (F)TE(PIR(G) = U ()3 (F)K, (6)|aH,
Y

B gon = (”s U, ()3 (FIK (@)a(E )]

B, 83Kn = ”s |u_(F)3' (F)X(G) - Un’k(F)JI'{(F)Kk(G)]dH i

Both B and B are bounded by the supremum of the integrand;

vY83kn

which is in turn bounded by

Y81kn

h (U ) maxv;_;s»,ts _y 13Gs x()|
*+ supg IUn,k(s)l WXy o teioy |3 (s)K(t) - Ji(s)Kk(t)I

Since J'K is:uniformly continuous on the square vy < s,t < 1-y, the
first term converges in probability to O as k,n > ©® by Lemma 3.5. The

second term also converges in probability to 0 as k - «, even uniformly

1

in n, because supo<s<1]Un’k(s)l j_supo<s<1|Un(s)| is bounded in probability

- 0 as k,n > =,

. : .2 of [10].
uniformly in n by Lemma 2.2 of [10].Hence BY81kn + BY83kn D

All this moreover is uniform for H within H. By the same Lemma 2.2 of [10]
it is seen that the values of the step function restricted to SY,'in

BYBEkn’ are bounded in probability (uniformly in n and H in H) by a

constant M. Let a..

be the value on the rectangle
1Jkn
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Ry = (F (((=1)/k,8/k1) % &7 (((3-1)/k,3/1))n8, -

Hence with probability near one

_ vk vk
BY82nk - [zi=1 j=1 %ijkn [JR d(Hn"H)]
ijk

< Mik? sup [Hn—H|+PO

for each k as n > «, uniformly for H within H. This convergence to 0 is

seen by Lemma 3.4. These results combined prove the corollary. [

COROLLARY 4.9. For each y the rv BY9n+pO as n > ©, uniformly for H
within H.

PROOF. See the proof of Corollary L.k, [

We will now show how the results of these corollaries can be combined
to complete the proof of the theorems. Let therefore an arbitrary

€ > 0 be given. First use corollaries 4.3 and 4.6 to choose a fixed y
such that P(IBYin| < €/10) > 1-¢/10 uniformly in n for i = 3,6. Next
use (A1) or (A1') and Corollaries 4.1, 4.2, 4.4, 4.5, 4.7 - 4.9 to
choose for the above value of y an index nEY such that

P(|gin| < g/10) > 1-€/10 for n > n, and i=0-1,2,4,5,7-9. This' -

9 <g)>1-g foralln>n . [
eY

implies that P(Z:.L=0 BYin <
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