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ASYMPTOTIC NORMALITY OF NONPARAMETRIC 

TESTS FOR INDEPENDENCE 

by 

1 F.H, Ruymgaart, G.R. Shorack and W.R. van Zwet 

Summary. Asymptotic normality of linear rank statistics for 

testing the hypothesis of independence is established under fixed 

alternatives. A generalization of a result of Bhuchongkul [1] is ob­

tained both with respect to the conditions concerning the orders of 

magnitude of the score functions and with respect to the smoothness 

conditions on these functions. 
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1, Introduction, For each n let (X1,Y 1),.,,,(Xn,Yn) be a random 

sample from a continuous bivariate distribution function (df) H(x,y) 

having marginal dfs F(x) and G(y), The bivariate empirical df based 

on this sample is denoted.by H, With respect to then random variables 
n 

(rvs) X.(Y.) corresponding to the first (second) coordinates, the 
i i 

empirical df is denoted by F ( G ) 1 the i-th order statistic by X. (Y. ) n n in in 

and the rank of X.(Y.) by R.(Q.). All samples are defined on a single i i i i 

probability space (n,A,P), 

The rank statistics most commonly used to test the independence 

hypothesis H = F,G, are'of the linear type 

-1 n ) T = n ri. __ 1 a (R. b (Q.) , 
n n i n i 

where a (i), b (i) are real numbers for i = 1 1 ,,,,n (see Hajek and 
n n 

"' Sidak [6]), A suitably standardized version of T will be (see also 
n 

Bhuchongkul [ 1 J) 

( 1 , 1 ) 

here 

( 1.2) 

n 1/2(T -µ) 
n = n 112rff J (F )K ( G )dH -µ] i n n n n n 

Jn(s) = a (i), K (s) = b (i) , n n n 

for (i-1)/n < s !_ i/n and i = 11 ,,,,n, and 
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( 1 • 3) µ=ff J(F) K(G)d.H, 

for some functions J and Kon (0,1) that can be thought of as limits 

of the score functions J and K. n n 

In order to summarize the main results of this paper let us 

introduce the function 

( 1 • 4) r = [I(1-I)J- 1 on ( 0, 1), 

where I is the identity function on the unit interval. Under the hypo­

thesis and under contiguous alternatives, asymptotic normality of (1.1) 

1/2-0 
may be proved for score functions J and K of order r for some 

o > 0 (see Hajek and ~id~ [6]). Jogdeo [7] establishes asymptotic nor­

mality under the hypothesis of a statistic more general than T ; the n 
. . . . 1/4-o growth condition on his score functions in the case of T is r • 

n 

By an approach analogous to that of Chernoff and Savage [3] for the 

two-sample problem, Bhuchongkul [1] proves asymptotic normality under 

fixed alternatives provided the score functions are of the order 

log r(see Section 2). The main purpose of this paper is to relax these 

• . 1 /4-o . 1 1 /2-0 . 1 d H conditions tor in genera and r for a specia class of fs . 

In Theorem 2.1 the asymptotic normality of (1.1) is established for 

rather smooth score functions with orders of magnitude not exceeding 

ra and rb, where the numbers a and b satisfy the relations a= (1/2-o)/p0 and 

. -1 -1 b = (1/2-o)/q0 for some o < o < 1/2 and some p0 , q0 > 1 with p0 +4a = 1. 
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No condition other than continuity is imposed on the df H. The theorem 

is stronger than Theorem 1 of Bhuchongkul [1]. The proof is based on 

Holder's inequality in the form 

( 1.5) 

where~ and~ are functions on (0,1), dI denotes Lebesgue measure res-

. . . . -1 -1 tricted to the unit interval and p, q > 1 satisfy p +q = 1. 

Theorem 2.2 gives asymptotic normality of (1.1) under much weaker 

conditions on the score functions. Here these functions are allowed 

a b to be of order r and r, where a= b = 1/2-o for some O < o < 1/2. 

The price for this is a condition on the df H, keeping it in some 

sense similar to the null hypothesis. This condition is 

( 1.6) dH ~ C[r(F) r(G)J 012 dFdG, 

with fixed constants C ~ 1 and O < o < 1/2. Mathematically, ( 1.6) allows 

a direct factorization of the left-hand integral in (1.5) which is more 

efficient than Holder's inequality. Intuitively, this condition prevents 

the large (small) X's from occurring in the same pair as large (small) 

Y's with too high a probability. Condition (1.6) trivially holds under 

the null hypothesis. More generally it is also satisfied if H can be 

written as a polynomial in its marginals F and G. This class of distribu­

tions was introduced by Lehmann [9] and the special case where 

H = FG[1+a(1-F)(1-G)] for -1 <a< 1 was considered by Gumbel [5]. 
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Finally (1.6) holds for all bivariate normal distributions with a 

sufficiently small correlation coefficient (use Lemma 2 on page 166 

of Feller [4] to see that (1.6) holds for a correlation coefficient 

between -o/(2-o) and o/(2-o)). 

2. Statement of the theorems. Each of the theorems below establishes 

the asymptotic normality 

( 2. 1 ) 

of (1.1); hereµ and cr2 are finite and are given by (1,3) and (3.10) 

respectively. 

Let H denote the class of all continuous bivariate dfs H, and let 

Hee denote the subclass that satisfies (1.6) for fixed C > 1 and 

0 < o < 1 /2. 

To prove (2.1) for general Hin H we require a strong boundedness 

condition on the score functions. 

ASSUMPTION 2.1. The functions J and Kare continuous on (0,1); 

each is differentiable except at an at most finite number of points, 

and in the open intervals between these points the derivatives are 

continuous. The functions Jn' Kn' J, K satisfy IJnl ~Dra, IKnl ~Drb 

and 

D a+i 
< r ' D b+i 

< r for 1 = 0,1, 
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where defined on (0,1). He~e Dis a positive constant and a and b 

satisfy 

(2.2) a= (1/2-o)/p0 , b = (1/2-o)/q0 

-1 -1 for some o < o < 1/2 and some p0 , q0 > 1 with p0 +q0 = 1. 

In proving (2,1) for the more restrictive class HCo we only require a 

weak boundedness condition on the score functions. 

ASSUMPTION 2.2. Assumption 2.1 holds with 

(2,3) a= b = 1/2-o 

for some O < o < 1/2. 

(2.4) 

(2,5) 

We also need a condition on the convergence of J , K to J, K. Define n n 

= 112 ff [J (F )K (G) - J(F )K(G )JdH, n ~ n n n n n n n 
n 

= n 112 ff [J (F )K (G) - J(F*)K(G*)]dH, n n n n n n n 

where 
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(2.6) =[X1 ,X )andt,. 2 =[Y 1 ,Y ), 
n nn n n nn 

(2,7) F* = [n/(n+1)]F , G* = [n/(n+1)]G. 
n n n n 

* ASSUMPTION 2,3, Either (a) Bon ➔PO as n ➔ 00 , or (b) Bon ➔P·o as n -, oo, 

This assumption is very general, but may occasionally be difficult to 

verify, However, most examples are special cases of Remarks 2,1 and 

2. 2 below. 

REMARK 2.1. If the scores of (1.2) satisfy a (i) = J(i/(n+1)) 
n 

and b (i) = K(i/(n+1)) for 1 < i < n for some functions J and K, then 
n - -

* Assumption 2. 3 (b) holds uniformly for H in H. ( In this case B0n = 0 

for all n.) 

REMARK 2.2. Suppose that J and Kare increasing and twice diffe­

rentiable on ( 0, 1), and that Iii) I ,:. Dra+i and I K( i) I ,:. Drb+i for 

i = O, 1,~: where D > 0 and a and b satisfy (2.2). Let the scores a (i) 
n 

and b (i) of (1.2) be the expectations of the i-th order statistics 
n 

of samples of size n from populations whose dfs are the inverse 

functiom1 of J and K respectively. Then Assumption 2. 1 holds and 

Assumption 2,3 (a) holds uniformly for all Hin H. (This statement 

generali2,es Theorem 2 of [ 1 J and the proof may be given in the same 

way, It relies mainly on the fact that 

I~=~ lan(:i.)-J(i/n) I = O(na) and rr:~ lbn(i)-K(i/n) I = O(nb)' which 

follows from formulas (7 .14) and (7 .24) of [3] with a = a and a = b 

respectively • ) 
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THEOREM 2.1. If His in Hand if Assumptions 2,1 and 2.3 are 

satisfied, then the asymptotic normality (2.1) holds. Given any 

subclass H' of H such that Assumption 2,3 holds uniformly for Hin H1 

2 2( ) . · H' and such that o = a H is bounded away from O on , the convergence 

in (2.1) is uniform for H in H'. 

Note that (2.2) is satisfied if a= b = 1/4-e for some O < E < 1/4 

(take p = q = 2 and e = 2£), Thus Theorem 2.1 allows a rate of 
0 0 

1/4-E , 5/4-E , growth r for the score functions J and Kand r for their 

1/8-E d derivatives. In Theorem-1 of [1] these rates are r an r respec-

tively; in fact the latter condition reduces the rate for J and K to 

log r. Moreover in [1] the score functions are assumed to be twice 

differentiable throughout the unit interval. 

THEOREM 2.2. Fix C > 1 and O < o < 1/2. If His in Hee and if 

Assumptions 2.2 and 2,3 are satisfied, then the asymptotic normality 

(2.1) holds. Given any subclass Hee of Hc[such that Assumption 2,3 

holds uniformly for H in Hca and such that cr2 = J(H) is bounded away 

from O on HC&' the convergence in (2.1) is uniform for Hin Hee· 
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3, Proof of the theorems: Asymptotic normality of the 

leading terms, Let F-1(s) = inf {x:F(x)~s} and G-1(t) = inf{y:G(y)~t}; 

. . . . F(F-1) ( - 1 ) • these definitions imply = G G = I, The random functions 

are with probability 1 the empirical dfs of 

the sets of independent uniform (0,1) rvs F(X1), ••• ,F(Xn) and 

G(Y 1), ... ,G(Yn) respectively. Define the empirical processes 

U = n112[F (F-1)-I] and V = n112[G (G-1)-I] on [0,1]. With probability n n n n 

these processes satisfy U (F) = n112 (F -F) and V (G) = n112(G -G) on n n n n 

(..co,~). All of the above remarks follow from the fact that 

(3.1) F ,G (G-1(G)) = G for all x,y n n n 

and n}) = 1. 

Without loss of generality we shall prove Theorems 2,1 and 2,2 

in the case where both J and K fail to have a derivative at just one 

point, say at s 1 and t 1 respectively. For small positive y define the 

sets 

sy1 = [F-1(y), F-1(s 1-y)J -1 ) u [F (s 1+y , F-1(1-y)J, 

(3.2) 

sy2 = -1 ) -1( ) -1( ) -1( ) [G ( y , G t 1 -y ] u [G t 1 +y , G 1-y ] , 

( 3:. 3) n = {w:suplF -Fl < y/2, suplG -GI < y/2} . yn n n 

Let S = S 1xs 2 be the product set in the plane and let X (n ) denote y Y y yn 

the indicator function of n . For win u0 n n the mean value theorem yn yn 

gives 



-9-

n112J(F) = n112J(F) + U (F) J'(~) n n n 

for all x in An 1 n sy 1• In the above formula the function ~n is defined 

by~ = F + 9(F -F), where e = e(w,x,n) is a number between O and 1. 
n n 

Thus with probability 1 (using Assumption 2,3(a)) 

( 3.4) n1/2(T -µ) = ~3 A + ~2 B + ~7 B + B + C 
n ~i=1 in ~i=O in ~i=3 yin 8n n' 

where Bon is defined in (2.4) and where 

A1 = n112 ff J(F)K(G)d(H -H), 
n n 

A2n = ff Un(F)J'(F)K(G)dH, A3n = ff Vn(G)J(F)K'(G)dH, 

B = (Qc) {n112 ff [J(F )-J(F)]K(G)dH - A2n}, y3n X yn 6 n n 
n 

1/2 ff B = x(n )n [J(F )-J(F)JK(G)dH' y4n yn 6 nSc n n 
n y 

B = x(Q ) ff U (F)[J'(~) - J'(F)]K(G)dH, 
y5n yn 6 nS n n n 

n y 

By6n = x(Qyn) ff u (F)J'(F)K(G)d(H -H), 
A nS n · n 
n Y 

B 7 =-x(Q ) ff U (F)J'(F)K(G)dH, y n yn 6c 8c n 
nu Y 

BS = n112 ff J(F)[K(G )-K(G)]dH - A3 , n 6 n n n 
n 

C = n112 ff [J(F )-J(F)J[K(G )-K(G)]dH. n 6 n n n 
n 
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1= yin 

.. -w-

= n1/2 ff A [J(Fn)-J(F)]K(G)dHn - A2n' 
n 

which is symmetric to Ban • For this reason Ban will not be treated 

in the sequel, 

We now proceed to prove the asymptotic normality of the A-terms. 

Let us start with the very useful remark that if a and b satisfy 

(2,2), then for 1 = 1 and 2 we can find n1L~bers p., q. > 1 satisfying 
1 1 

- 1+ -l = 1 and P. q_ 
1 1 

(3.5) (a+1/2+o/2)p1 < 1, bq1 < 1, ap2 < 1, (b+1/2+&/2)q2 < 1. 

As to the first pair of inequalities,we have a+1/2+o/2+b = 1-o/2 and 

consequently a+1/2+o/2 < 1-o/2 (the numbers a and bare strictly 

) -- ( 4 -1 ( -1)-1 positive • Now choose p 1 a+1/2+':A/) and let q1 = 1-p1 . 

Then (a+1/2+o/2)p 1 < and 

bq1 = (1/2-a-o)/(1/2-a-3o/4) < 1. The second pair of inequalities can 

be obtained in the same way. 

The: rv A1n can be written in the form 

( 3,6) 

where A1. = J(F(X.))K(G(Y.)) - µ are independent and identically in 1 1 

distributed (iid) with mean zero. Under Assumption 2.1 application of 

(1,5) with p = p0 and q = q0 shows that the rv A1in has a finite absolute 

moment of order 2 + o0 for some o0 > 0. The same conclusion holds under 



Assumpti<:m 2. 2 for H in H as may be seen by applying ( 1 .6). Moreover Co 
this m0ment will be uniformly bounded above for H within H(HCo ), 

Because 

U (F) 
n 

-1/2 n = n E._1-(cl>x -F), 
l.- • 

where 

( 3, 7) cl>x~ (x) = 
l. 

we have 

(3,8) 

l. 

o if x < xi and cl>x. (x) = 
l. 

-1/2 n 
= n Ei=1 A2in ' 

1 if X > X. t 
- l. 

where the A2. = ff(cl>x -F)J'(F)K(G)dH are iid with mean zero. Under in . 
l. 

Assumptions 2,1 or 2.2 we have 

For some &1 > O the random part of this upper bound possesses an absolute 

moment of order 2 + o1 which is uniformly bounded above for Hin H. 

Under Assumption 2. 1 the non rand0m integral is seen to be uniformly 

bounded above for Hin H by application of (1.5) with p = p1 and q = q1 

as in (3.5). Uniform boundedness of this integral for Hin HCo holds 

under Assumption 2,2 , as may be shown by application of (1.6). 
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Analogously we can write 

( 3.9) 

where A3in = ff(~y_-G)J(F)K'(G)ciH are iid with mean zero. Again for 
1 

& 1 > 0 this rv has a finite absolute moment of order 2 + o 1 which is 

uniformly bounded for Hin H(HCo ). This time use (1.5) with p = p2 and 

q = q2 as in (3.5). 

3 2 Combining (3.6), (3.8) and (3.9) we get Ei=1 Ain +d N(O,cr) as 

n +•.The variance cr2 is given by (see [1]) 

(3, 10) a2 = Var[J(F(x))K(G(Y)) + ff(~x-F)J'(F)K(G)ciH 

+ ff(~y-G)J(F)K'(G}ciH], 

with ~ defined in ( 3. 7). 

Since we have shown that an absolute moment of order larger than 

2 exists and is uniformly bounded on H(HC O ) , and because the variance 

is uniformly bounded away from zero on H' ( H' C 5 ) , the established 

convergence in distribution is uniform for H in H' (H' C O ) by Esseen 's 

theorem (see e.g. [3], Section 4). 
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4. S0me lemmas. We start with a number of lemmas to be used in the 

proofs of both Theorem 2.1 and Theorem 2.~. 

LEMMA 4.1. For any r; ~ 0 the function r~ is symmetric about 1/2, 

decreasing on ( 0, 1 /2] and has the property that for each 8 in ( 0, 1) 

there exists a constant M = Ma such that-r~(Ss) ~M rr;(s) for 

O < s < 1/2 and r~(1-S(1-s)) < M r~(s) for 1/2 < s < 1. - -

A similar argument applies to the interval (1/2,1), D 

LEMMA 4.2. For each w let i = i and~ = ~ be functions on n nw n nw 

6n1 = 6 and~ 2 = ~ 2 respectively (see (2.6)), satisfying n1w n n w 
'\, . '\, 

min(F,F) < ~ < max(F,F) and min(G,G) <, < max(G,G) where defined. n-n- n n-n- n 

Then uniformly for n = 1,2, •.. and Hi H: 

(i) ~ '\, r-~(F) 0 ( 1 ) for each r; > O • sup~ r ( ~ ) = p - , n1 · n 
'\, 

r-n(G) (ii) sup6 rn(, ) = 0 ( 1) for each Tl > 0 • 
n2 n p - , 

(iii) sup( ) Ju (F)j~112-'(F) = o (1) for each , > 0. -~,~ n p 

PROOF. (i) From formula ( 3. 1 ) and e.g. from [ 1 7 J, Lemma 1,. 3 it follows 

that for each e > 0 there exists a constant S = S in (0,1) such that 
€ 

( 4. 1 ) P(n) = P({SF<F <1-S(1-F) on 6 }) > 1-E, 
n - n- n1 
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for all n and uniformly in all continuous F. Because of the definition 
'v 'v 

of i we have SF< i < 1-8(1-F) on A 1• By Lemma 4.1 this implies 
n - n - n 

that for some constant M~E we have r~(ln) ,iM~E r~(F) for x in An 1 on 

the set n • 
n 

(ii) This is analogous to (i), 

(iii) This follows immediately from Lemma 2.2 of Pyke and Shorack [10]. □ 

For each positive integer k we define a function Ikon [0,1] by 

(4.2) Ik(O) = O, Ik(s) = (i-1)/k for (i-1)/k < s ,i i/k, i = 1, ... ,k. 

LEMMA 4,3, As k,n ➔ 00 , sup( ) lu (Ik(F))-U (F)I ➔ O uniformly 
- 00 , 00 n n p 

in all continuous F. 

PROOF. Note that sup lu (Ik(F))-U (F)I = sup0 1 lu (Ik)-U I, -oo<x<00 n n <s< n n 

which is no longer dependent on F. The U -processes converge weakly to 
n 

a tied-down Wiener process u0 (see e.g. Billingsley [2]). In Pyke and 

'v 
Shorack [10]these U - and u0- processes are replaced by U -

n n 
'v 'v 'v 

processes defined on a single new probability space (n,A,P) 

'v 
and U -

0 

and having 

the same finite dimensional distributions as the original processes 
'v 'v 

(see also Skorokhod [12]). These new processes satisfy suplU -u0 1 ➔ 0 
n -a.s. 

'v 'v 

and hence also suplU (Ik)-Uo(Ik)I ➔ 'a.uniformly ink, as n ➔ 00 • Now n -a.s. 
'v ' ' ' 'v ' 'v ' 'v 'v ,'v 'v 'v 

suplun(Ik)-unl ,i supjun-u0 1 + suplu0-u0(rk)I + suplu0 (rk)-un(Ik)I. For 
'v 

almost every w the function u0 is uniformly continuous on [0,1] so that 
'v 'v 

sup I U O -U O ( Ik) I ~a . s . 0 as k ➔ 00 • 

k,n ➔ 00 • This last result implies 

bability of the lemma. D 

the convergence in pro-
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Let v and A be the random indices 1 ~ v(w), \(w) < n such that 

X = X 
v nn and YA = y 

nn 

LEMMA 4.4. As n ➔ 00 , P({a < F(X) < 1-a} n {a < G(Y) < 1-a }) ➔ 1 
n- v - n n- v - n 

uniformly for H in H provided only a = o ( n -l). 
n 

!]_QQ.E.:_ The probability of the complementary event is bounded above 

by 2an + 2[ 1 - ( 1-a )n]➔O as n ➔ 00 , independently of H in 1-1. D 
n n 

We conclude this section with some lemmas needed for Theorem 2.2, 

LEMMA 4.5. As n ➔ 00 , P({Y =Y }) ➔ 0 uniformly for Hin I-IC ,r:. 
v nn u 

PROOF. P({Y =Y }) = P(U~ 1{(X. ,Y.) = (X ,Y )}) = nffHn-ldH. 
-- v nn i= i i nn nn 

Note that for all x, y we have H(x,y) ~ F(x) and H(x,y) ~ G(y). Letting 

n0 = ( n-1) /2 and applying ( 1. 6) we obtain 

1 no no 
nJJHn- (x,y)dH(x,y) ~nffF (x) G (y)dH(x,y) 

0-2 
~ c1 n n0 

= O(n o-1 ) ➔O 

as n ➔ 00 , because O < o < 1/2. Here c1 is a constant depending on C 

and o only; hence the convergence is uniform for Hin HCo • D 
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P({y < G(Y) < 1-y }) -+ 1 uniformly for H 
n- \! - n 

H . -o in C provided y < an for some positive constant a. 
o n -

PROOF. This probability equals 1-P({G(Y )<y }) - P({G(Y )>1-y }) for n 
-- \! n \! n 

larger than (2a) 110 . Because of the independence of the sample 

elements,application of (1.6) gives 

P({G(Y )<y }) = nP([n~- 11{F(X.)<F(X )}] n {G(Y )<y }) 
v n i= i - n n n 

= n J:oo J~1(yn) Fn-l(xn)dH(xn,yn) 

.::_Cn[J~ In-7 r 012 dIJ[J~n r 012 dI] 

-0+02/2 = c1n(f(n-o/2)/r(n+1-o)Jn 

-1+0/2 -0+02/2 -0/2+0~/2-+ 0 < c2n n n = c2n 

2 as n-+ 00 , because -o/2+o /2 < o for O < o < 1/2. Here c1 and c2 are 

constants depending on C,o and a only; hence the convergence is uniform 

for Hin Hee. □ 
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5, Proof of the theorems: Asymptotic negligibility of the remainder 

terms under Assumption 2.3(a). Let us start with a further decomposition 

of C , which can be seen to be the sum of n 

c = x(nc )n 112 JJA. [J(F ,-J(F)][K(G )-K(G)Jd.H, y1n yn u n n n 
n 

C 2 = x(n )n 112 Jf [J(F )-J(F)]K(G )d.H , 
y n yn A nsc n n n 

n Y 

1/2 ff C = -x(n )n [J(F )-J(F)]K(G)d.H, 
Y3n yn A nsc n n 

n Y 

U (F) J'(~ )[K(G )-K(G)]d.H. n n n n 

From this we see that B 4 and C 3 cancel out, The asymptotic negligi-y n y n 

bility of the other B- and C-terms will be given as corollaries to the 

lemmas of the previous section, 

COROLLARY 5,1, As n ➔ ~, B1n ➔p O uniformly for Hin H(HCo, ). 

3 PROOF. The rv B1n is bounded by Ii= 1 B1in where 

Under the assumptions of Theorem 2.1 we have at once that the 

sum of these terms is of order O(n- 112+a+b) = O(n-0) ➔ Oas n ➔ ~, 

uniformly for Hin H. 

/ 

/ 
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Under the assumptions of Theorem 2.2 first consider B11 n. By 

b Assumption 2.2, jK (G (y)) I < Dr (G (y)). Application of Lemma 4.2(ii) 
n n - n 

'\, 

with 'l' = G and 11 = b gives the existence of a constant M such that 
n n 

~1n = {rb(Gn) ,::_Mrb(G) on ~n2} has probability larger than 1-e uniformly 

for n = 1 ,2, ... and all continuous H. Also 

X ( ~ 1 ) B 1 1 < DMn-1 / 21 J ( 1 ) I ? ( G ( y ) ) ' n n- · n v 

where vis defined by (4.3), Set and 

note that by (1.2) and Assumption 2.2 we have y < D1n-o for some 
n-

constant D1 > D. Let ~2 = {y < G(Y _) < 1-y }. Then 
- n n - v - n 

( 2 ) 1-b ( )-b X n . 1 ~ . B 1 1 < DMy 1-y 
1= in n - n n 

( -o(1-b)) = 0 n ➔ 0 

as n ➔ 00 • Applying Lemma 4.6 we see that P(nf=1~in) > 1-2£ for n large 

enough, uniformly for Hin Hee • A symmetric argument can be given for 

B13n' 

For the rv B12n use Lemma 4.5 to see that the set on which this 

rv may assume a non-zero value has probability converging to zero as 

n + oo, uniformly for H in He 8 • □ 

COROLLARY 5. 2. As n + 00 , B2n + p O uniformly for H in H(HCc ) . 

2 
PROO:[. The rv B2n is bounded by Ei= 1 B2in where 



-19-

with v and A defined by (4,3), 

Under the assumptions of Theorem 2.1 consider 

Q1n = {a < F(X) < 1-a} n {a < G(Y) < 1-a }, with a n- v - n n- v - n n 
a+b-3/2 = n I 

Note that na + 0, Then 
n 

( ) 2 -1 / 2 -a-b ( . )-a-b X Q 1 B21 < D n a 1-a n n - n n 

2 ( ) 1-a-b ( ) -a-b = D na 1-a + 0 
n n 

as n + 00 , Lemma 4.4 gives that P(Q1n) + 1 as n + 00 ,uniformly for Hin 

H. The same argument applies for the rv B22n. 

Under the assumptions of Theorem 2,2 consider 

Q2n = {S < F(X) < 1-S} n {y < G(Y ) < 1-y }, with S = (n logn)- 1 
n- ·v - n n- v - n n 

and y = :n-6 . Then by (2,3) 
n 

2 -1/2 -a -b( )-a( )-b < D n S y 1-S 1-y + 0 n n n n 

asn+ 00 • Bf· Lemmas 4.4 and 4.6 we see that P(Q2n) + 1 as n + 00 , 

uniformly for Hin Hee. The rv B22n can be treated in the same way. D 

.£Q!ill.;LLARY 5,3, For fixed y, B 3 + 0 and C + 0 as n + 00 , y n p y1n p 

uniformly for Hin H. 
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PROOF. P(Qc ) ➔ 0 uniformly for Hin H by the Glivenko-Cantelli 
-- yn 

theorem and because the distribution of suplF -Fl does not depend on 
n 

H in H. □ 

COROLLARY 5, 4. For fixed y , B 5 ➔ 0 and C 4 ➔ 0 as n ➔ 00 , 
y n p y n p 

uniformly for Hin H. 

PROOF. According to Lemma 4.2(iiiT"'with, = 1/2, for given e: > 0 

there exists a constant M such that Q = {sup IU (F)I <M} has probability 
n n -

larger thian 1-e: for all n and H in H. Also 

x(n )IB 5 I <-M supl:i nS IJ'(~n)-J'(F)jsup8 IK(G)I. 
n Y n n 1 y1 y2 

The function K(G) is bounded on sy2 and the bound does not depend on 

Hin H. The function J' is uniformly continuous on 

[y/2,s 1-y/2] u [s 1+y/2,1-y/2]. Since l~n-FI .::_ IFn-FI where ~n is 

defined, the Glivenko-Cantelli theorem yields supl:i 8 IJ'(~ )-J'(F)I ➔ 0 
n1n y1 n P 

uniformly for Hin H. A similar argument may be used for C 4 . D 
y n 

in H. 

COROLLARY 5,5, For fixed y, B 6 ➔ 0 as n ➔ 00 , uniformly for H 
y n p 

~'..:. For arbitrary k we have (see (4.2)) 

I I 3 
By6n ~ r,i=1 By6ikn , where 
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Let us first consider By61 kn and By63kn' which are both bounded by 

the supremum of the integrand over the set S • Let an arbitrary E > 0 y 

be given, Applicatien of Lemma 4,3 gives the existence of constants 

nk +Oas k,n + 00 , such that Qk = {suplu (F)-U (Ik(F))I < nk· } has n n n n - n 

probability larger than 1-E for all k ,n and all H in H. Note that on 

([y,s 1-yJ u [s 1+y,1-y]) x ([y,t 1-y] u [t 1+y,1-y]) the function J'(s)K(t) 

is bounded, say by a constant M , and uniformly continuous. By y 

Lemma 4,2(iii) with,= 1/2, there exists a constant M such that 

Q = {suplU (F)I < M} has probability larger than 1-E, Let us finally write 
n n -

r;ky = max8 IJ'(F)K(G)-J'(Ik(F))K(Ik(G)) I , which tends to zero 
y . 

ask+ 00 , uniformly for Hin H. Hence for i = 1,3 

X ( Qk n Q ) B • .t: • k < nk M + Mr;k + 0 n n yvl n - n y y 

as k,n + 00 for fixed y, Because P(QknnQn) > 1-2E uniformly for H ·in H 

we may conclude that By61 kn +p O and By63kn +p O uniformly for Hin H, 

as k ,n + CX), 

Let us next con~ider BY62kn for a fixed value k. For each w 

in Qn the integrand in the expression for this rv is a simple step 

function assuming a value a .. k (w) on th'e rectangle 
J.J n 
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for i = 1 , ••• ,k and j 

we have 

= 1 , • , • ,k. Because I a. 'k I < M(M +r;k ) on ~ , 
J.J n - y y n 

x(nn)By62kn = lt:=l l':1=1 aijkn f!R. 'k d(Hn-H) I 
J.J n 

< 4k2M(M +r;k ) suplH -HI+ 0 
- Y Y n P 

as n +~,uniformly for Hin H, Here Theorem 1-m of Kiefer [BJ is used~ 

The conclusion of the corollary follows by straightforward combination 

of these results. D 

COROLLARY 5,6, As y + 0 and n + ~, B + 0 and C + O, 
y7n p y2n p 

uniformly for Hin H(HCo ). 

PROOF. Let e > 0 be given and let us first consider B 7 • By 
Y n 

Lemma 4.2(iii), taking L = o/4, there exists a constant M1 such that 

n1n = {jun(F) I ~M1r-112+o/4(F)} has probability larger than 1 - e for 

all n and H in H, From Assumption 2, 1 (Assumption 2.~) it may be seen 

that 

( ) ( ) I I < ·D2M ff ra+1 /2+o/4(F) rb(G)d.H, 5.1 xn1 B 7 1 n y n - 8cu8c 
n Y 
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Next consider C 2 • By Assumpti0n 2.1 (Assumption 2.2) we have Y n 

IK(G )I < Drb(G) en 6 and application of Lemma 4.2(ii) with 
n - n n2 

f\, 

~ = G and n = b gives the existence of a c0nstant M2 such that n n 

n2n = {rb(Gn) .::_M2 rb(G) on 6n2} has probability larger than 1-e for 

all n and Hin H. Take an arbitrary win n and let us first consider 

those values of x in 6n 1 e f0r which the epen random interval between 

the points F(x) and F (x) does not contain s 1• Then by continuity of . n 

Jon the closed and differentiability on the open interval, the mean 

value theorem can be applied; it follows from Assumption 2.1 

(Assumption 2.2) that n112 1J(F )-J(F)I = lu (F)J'(~O )I < DIU (F)lra+1(~O ). n n n - n n 

For those values 0f x in 6n1 for which the 0pen random interval between 

the points F(x) and Fn(x) does contain s 1 i;, the mean value theorem can be 

applied stepwise, since J is continuous en the closed interval and 

differentiable on the two epen intervals between F(x), Fn(x) and s 1• 

We thus get the estimate 

n112 1J(F )-J(F)I < lu (F)l>:~_1 jJ'(~. )I < Dlu (F)j>:~ 1 ra+ 1(~. ) by n - n 1- in - n 1= 1n 

Assumption 2,1 (Assumption 2.2). Where defined on 6n1, both ~On and 

~1n' ~2n lie between F and Fn. By Lemma 4.2(i), ta.king,= a+1, there 

exists a constant M3 such that 

a+1 a+1 
n3n = {maxi=0, 1, 2r (~in) .::_M3r (F) where defined on 6n1} has 

probability larger than 1-e for all n and Hin H. Combining these 

results we have 

(5.2) E( (n~ n. )le I)< 2D2M MM ff ra+1/ 2+o/4(F) rb(G)dH, 
X 1=1 in y2n - 1 2 3 c s y 



-24-

From (5,1) and (5,2) it is clear that the corollary is proved if 

we show that the integral on the right in (5,1) converges to zero 

as y + O and n + 00 , uniformly for H in'ff(HCo ), For this 

purpose we start with the integral 

( 5, 3) 

and note that S~ c (s~ 1 x (-00 , 00 )) u ( (-00 , 00 ) x s~2 ). Under Assumption 2.·\, 

by application of (1,5) with p = p1 and q = q1 as in (3,5), we find 

that (5,3) is bounded uniformly for Hin H by 

(a+1/2+0/4)p1 1/p1 bq1 1/q1 [ f ) ( ) r dI] [fr dI] · ( 0 , y ) u ( s 1-y , s 1 +y u 1-y , 1 · 

( 5. 4) 

Since by (3,5) both exponents of the function rare smaller than 1, the 

dominated convergence theorem implies convergence of (5,4) to zero as 

y + 0, Under Assumption 2.2 and for H in HCo' by an application of ( 1.6) we see 

that (5,3) is bounded uniformly for Hin HC01 by 

( 5, 5) 

f 1-0/4 f 1/2-S/2 
+ C [ r dI J [ ( 0 'y) u ( t 1-y 't 1 +y) u ( 1-y ' 1 ) r dI J ' 
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which by the dominated convergence theorem converges to zero as y ~ 0. 
I\, 

Hence under the assumptions of Theorem 2.1 (Theorem 2.2) a value y of 

y can be chosen such that (5,3) is smaller than E for all Hin H(HCo 

• I\, .I\, •• I\, I\, 
provided y,::. y. For this y there exists an index n = n~ 

P({~ ~ S }) > 1-E uniformly for n '\, 
y 

H . H • ,J in , provided n ~n. 

such that 

It follows 

that under the assumptions of Theorem 2,1 (Theorem 2,2) the integral 

on the right in (5.1) is smaller than E with probability larger than 
I\, I\, 

1-E uniformly for H in H(HC~ ) for all y .::_ y and all n > n. D 

In order to show how the results of these corollaries can be com­

bined to complete the proof of Theorems 2,1 and 2,2, let an arbitrary 

E > 0 be given, First use Corollary 5,6 to choose a fixed y and an 

index n1 to ensure P({IB 7 I, le 2 I < E}) > 1-E for all n > n1• Next 
y n y n -

use Assumption 2,J(a) and Corollaries 5,1-5~5 to choose for the above fixed 

y an index n = n > n1 such that P({IB. I, IB . I, le k I < E for 2 2y in YJn y n 

i = 0,1 ,2; J = 3,5,6; k = 1,4}) > 1-E, This implies that the probability, 

that the sum of all these second order terms does not exceed 10E, is 

larger than 1-2E uniformly for Hin H(HCo ), as n > n2 • 
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6. Replacing Assumption 2. 3( a) by Assumption 2, 3(b). We shall now 

suppose that Assumption 2. 3(b) holds. Again the theorems will be 

considered only in the case where J and K fail to have a derivative 

at one point,s 1 and t 1 respectively. The proof is based on an analogue 

of (3,4), We shall need both the empirical processes and the processes 

u*(F) = n 1/ 2(F*-F), v*(G) = n112(G*-G). Instead of the set Q we shall 
n n n n yn 

use Q* = {w: suplF*-FI < y/2, suplG*-GI < y/2}. The role of~ will yn n n n 

be taken over by its closure X = X 1 x X 2 = [X1 ,X J x [Y 1 ,Y J. n n n n nn n nn 

Because integration over X with respect to dH is the same as integration 
n n 

over the entire plane, we now have the simpler decomposition 

( 6. 1) n1/2(T -µ) 
n 

* with prob.ability 1. Here B0n is defined in (2.5), the A-terms are as 

given in Section 3 and 

B* = X(Q*c){n 112 ff[J(F*)-J(F)]K(G)dH -A2 }, 
y1n yn n n n 

B~2n = x(Q~n)n112 Jf8c[J(F=)-J(F)]K(G)dHn' 

y 

B* = x(Q*) ffs u*(F)[J'(~*)-J'(F)]K(G)d.H ' y3n yn n n n y 

x(Q* ) ff 
yn -

~ nS 

* U (F)J'(F)K(G)d(H -H), 
n n 

n Y 

= x(Q* ) {ff_ 
yn ~ nS 

* U (F)J'(F)K(G)dH-A2 }, 
n n 

n y 

* B 6n = n 112 ff J(F)[K(G*)-K(G)]dH. - A , 
n n 3n 

* C n = n112 JJ[J(F*)-J(F)][K(G*)-K(G)]dH , 
n n n 
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The function~: a~ises from application of the mean value theorem and 

lies strictly between F and F: where defined, The analogues of B1n and 

B2n are missing in this decompositi(c>n; this essentially simplifies the 

proof of the theorems, However, if one tries to prove the validity of 

Assumption 2.3(b) when Assumption·2,3(a) is given to hold, problems similar 

to those connected with B1 and B recur. 
n 2n 

Only the second order terms differ from those in (3,4), For their 

asymptotic negligibility we need the following modifications of Lemma 4,2, 

'\;* ~U:J.. For each w let~ n be functions 

on X 1 = /::i 1 and !::. 2 = ti 2 respectively, satisfying n n w n n w 

. ( *) '\;* ( *) . ( *) '\;* ( *) min F,F < ~ < max F,F and min G,G < ~ < max G,G 
n - n- n n - n- n 

where defined. Then, uniformly for n = 1 ,2,, , , and H E H: 

( i) sup_ 
/J.· 

:n 1 

(ii) sup_ 

!::.n2 

for each r; .::._ 0; 

for each n > 0, 

~[. It suffices to prove (i). Let us first show that for each 

e: > 0 there exists a S = S in (o, 1) such that P( {SF < F* _< 1-S( 1-F) 
e: - n 

on '"En 1}) > 1-e:, 

for all n and uniformly in all continuous F, By (4,1) and because 

1/2 .::_ n/(n+1) .::_ ·1, we only have to prove that 

P({n/(n+1) < 1-S[1-F(X )]}) > 1-e: for S small enough, Because the 
- nn 

F(X.) are independent uniform (0,1) rvs, this probability 
i 

equals 1 •- {1-1/[S(n+1)]}n > 1-e: for all n and uniformly in all con-

tinuous F, provided S = S is chosen sufficiently small. The proof can e: 

be conclud.ed in the same wa:y as that of Lemma 4,2. D 
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(ii) 

-2~-. 

LEMMA 6.2. Uniformly in all continuous F we have: 

sup lu*(F)-U (F) lr112;..p(F) +P o1 as n -+ 00 , for each p > O; 
6 n n . 

n1 

sup_ lu:(F)lr112-T(F) = 
b.n 1 

0 (1), uniformly for n = p ¢ 

each ,: > 0. 

1,2, ••• , for 

PROOF. (i) Note that lu*(F)-U (F)lr112-P(F) < n- 112r 112-P(F) 
n n 

and that for any fixed S € (0,1) we have r 112-P(S/n) = r 112-P(1-S/n) = 

= O(n112-P). Because the F(Xi) 8.I:'e independent uniform rvs, given an 

arbitrary e: > O we can choose a S = S in (0, 1) such that e: 

P( { S/n ~ F(X1n) ~ F(Xnn) ~ 1- S/n}) > 1-e: for all n and uniformly for 

all continuous F. Part (i) follows from a combination of these results. 

(ii) Follows from (i) and Lemma 4.2(iii). O 

* * The proof that the sum of the B - and C -terms converges in pro-

bability to zero can be given by a method quite similar to that of 

Section 5, by using Lemmas 6.1, 6.2 instead of Lemma 4,2. 
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