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ABSTRACT

The classical approximations to some discrete distributions are
almost universally used. However, more accurate results can be obtained
without any substantial increase of computational effort. This paper
presents a set of recommendations for improved approximations to cumu-
lative probabilities, confidence bounds and quantiles of three well
known distributions.

Quick evaluation, using a minimum of tables and at most a slide
rule or desk calculator, is often far more desirable than consultation
of a specialized table in a library, or than waiting for access to an
electronic computer. This asks for the choice of an approximation
achieving a maximum of accuracy with a minimum of work.

The present paper is an effort to solve this problem. It intends
to give enough information for people just desiring to use the results.
References will be mentioned for readers interested in a more detailed

discussion to the topic.
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1. INTRODUCTION

The following example is typical for this paper. The probability of
8 or more successes in 20 independent trials with success probability
.2 at each trial, equals .032 according to binomial tables. Without
immediate access to such tables, or to an electronic computer, most
statisticians would evaluate ?he standard normal distribution function
at the argument (8-3-14)/(3.2)%, and find .019, or perhaps they would
obtain .051 from the Poisson distribution with parameter np=lU. However,
without substantial increase of effort they might have found .033 from
the "square root normal" or .035 from the "Bolshev Poisson" approxima-
tion, see (2.2) and (2.5) below, and both values are much closer to the
actual value of .032 than the classical results. After a more time
consuming computation, (2.7) or (2.8) produces a result within .0002
of the true value.

Although the errors depend in a complicated way on the values of
parameters and probability, the general trend of the quoted figures is
found in a large majority of the applications. Our choice of simple
but accurate approximations, partly previously published and partly new,
is based on asymptotic expansions and numerical investigations [5,6,7].

The recommendations in the following Tables are kept as simple as
possible. Obviously we were forced to neglect some excepticnal cases,
and to use some personal judgement in evaluating accuracy apd computa~-
tional labor. Although the recommended formulae are usually rather
superior, there will always remain some surprising parameter values for
which a generally bad approximation is suddenly very accurate.

‘This study intends to give improved methods for hand or desk calcu-
lation, with a minimum of tables. On an electronic computer, exact
evaluation is possible unless the parameter values are extreme, and vhen
a computer programmer uses approximations he would not share our
standards of accuracy and labor.

Tables 1-8 constitute the core of this paper. We comment on these
Tables by means of footnotes, and close the section by an example using

Tables 5 and 6.



TABLE 1 : CUMULATIVE POISSON PROBABILITIES

1)

Wanted: probability of k or less Poisson distributed events when A

are expected, i.e.

o~
(1]
>
[N
~
[

(1.1) P[X<k|A] =

Exact evaluation of (1.1) is satisfactory for small A (say A < .1 or

mey be A < .5) and more generally when k = 0.

Quick work normal approximation 2):
3 3 3)
(1.2) o(2{k+1}° - 2)°%) for tails °’;
1 1
(1.3) o(2{k+i}% - 222) for probabilities between .06 and .9l

(or .05 and .93 for roughly A < 15).

1 1
Never use &((k+3-1)A"2) or &((k-A)A"2), as (1.2) and (1.3) are
essentially better and just as simple (cf, Appendix B). -

2):

Accurate normal approximations

(1.4) s(2(k + (++4)/9}F - 201 + (£-8)/36}}),

where t = (k - A + 1/6)2/A, or

2 , 2022 k+3,,3 ,-32
(1.5) o({k - 1 + 3+ 5551 {1+ g(59)1 277,

with g(z) = (1 - 22 + 2z log z)(1-z)_2 tabled in [91].

EXAMPLE: A = 10, k = 4. Exact value (1.1) P[X<k|A=10] = .029. Substi-
tution of A = 10 and k = 4 in (1.2) gives ¢(2/5-2/10) = ¢(-1.852) = .032,
with a relative error of (.032-.029)/.029 which is 9%. SimilarlX, the
relative error is found to be 40%. for the classical &((k+3-A)A"2), -16%
for (1.3), -.02% for (1.4) and -.04% for (1.5). The latter two can

safely be used even for A as small as .5, whereas (1.2) and (1.3) are

rather rough unless A exceeds 10,

For footnotes consult section 1.
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TABLE 2 : CUMULATIVE BINOMIAL PROBABILITIES

Wanted: probability of k or less ")

with success probability p, i.e.

successes in n independent trials

k . .
(2.1) Px<k|n,pl = § (%) pY "9,  where q = 1-p.
j=0 9 |
Quick work approximation 2):
' . 3 3 )]
(2.2) ¢(2{k+1}%q® - 2{n-k}°p®) for tails ~’;
1 1 11
(2.3) o({bk+3}%q% - {bn-bk-1}%p?) for probabilities between
0.5 and .93.

When p is close to .5, say .25 < p < .75 when n = 3 or .40 < p < .60
when n = 30 or .46 < p < .54 when n = 300, it is better to use (2.3)

for tails 3), and for probabilities between .06 and .94 to use
1 1 11
(2.4) o({bk+23}%q% - {bn-bk-13}%p?).

When cumulative Poigson tables are available and p is small 5), say

p< .4, vhenn=3o0or p< .3 whenn=230o0rp< .2vhen n = 300, use
. koo s |
(2.5) ) e A9/30  with A = (2n-k)p/(2-p).
J=0
Accurate approximations 2): use for p = 3
2
1 1
(2.6) 8({2k+2+b}? - {2n-2k+b}?) where b = \2k+l-n) -10n

12n ’

and for any other p, consulting (1.5) for the function g,

1 1 1
(1) o(lx + % - (aedip} (1 + ag(52D) + pg(BER)) ((meipa) D).

3
When cumulative Poigson tables are available and p is small 5), say
P :_.h when n = 3 or p :_.2& when n = 30 or p < .12 when n = 300, use
(2.8) % —ij/., ith ) = (12n-2np-Tk)np
) 520 ¢ e W 12n-8np-k+k/n *

For footnotes consult section 1.

L)

L)



TABLE 3 : CUMULATIVE HYPERGEOMETRIC PROBABILITIES
1) \J

Wanted: probability of k or.less red balls in n drawings without

replacement from N balls of which r are red, i.e.
X r Ner 6)

(3.1) jZo (j)(n_j)/(g) (essumption: n < r < N/2)

When cumulative binomial tables can be applied, for quick work

(?)pJ(1—p)n_J with p
0

1]

(3.2) (2r-k)/(2N-n+1);

il o~

J
for accurate results even when n/N > .1,
2r-k n(2k+1-2n1:'N—1
-n+
eN-n+1 3(2N-n+1)°

)

k . .
(3.3) I Gpl0-p)" withp

J=0
Without binomial tables, use

}) for tails 3);

=
-

(3.4) @(2{N—1}_%{(k+1)%(N-n-r+k+1) - (n-k)%(r—k)

1 1
(N-n-r+k+3)2? - (n—k—ﬁ)%(r—k—%)z})

LV

(3.5) @(2N'%{(k+%)

for probabilities between .05 and .93.

When cumulative Poisson tables are available but binomial tables are

not, one may use

k .

(3.6) 3 eI/t with A = 3(2n-k)(2r-k)/(2N-n-r+1)
J=0 for n/N < r/N < .13
k..

(3.7) ) e™"A9/3! with A = u + (u-k)(2r-n+10u)/(3N),
j=0

where u = nr/N, otherwise;
a somewhat more accurate but also more cumbersome choice is

. _ (12n-2np~Tk)np _ _2r-k
(3.9) A = T on_Bnp-k+k/n where P = Sy

For footnotes consult section 1.



TABLE 4 : POISSON CONFIDENCE BOUNDS

Wanted: upper bound [ A fgr the Poisson parameter A with (one-sided)
T

confidence coefficient 1-0, when c events have been observed, i.e.

solution of

-

(4.1) e dssn =g,

he~—mo

J=0

or lower bound L) similarly found from

e-LxLAJ/j! = a,

o~ 8

(4.2)

J=c

Exact solution: when ¢ = 0, [A = -log o and LA = 0, when c = 1.
L = ~log(1—a).

Simple normal approximation 2), for £ consult our Table 8:
. 2
(4.3) M=~ ({e+1}2 + 3£)%;
3 2
(L.0) Lr & (c? - 3£)°.
Better normal approximation 2), for £ consult our Table 8:
1
(b.5) M~ {e+1} {1+ €/(3{c+13%) = 1/(9le+11)}3;
1
(4.6) LA % cl1 - £/(3¢2) - 1/(9¢)}°.

Error bounds, uniformly for .005 < a < .2. The relative error in the
confidence bound value is less than 1%: for (4.3) when ¢ > 11, for
(4.4) when ¢ > 34, for (4.5) for all ¢ > O and for (L4.6) when c > 8.
The absolute difference between the exact bound and (4.5) or (4.6)

rarely exceeds .02 and never exceeds .01,

EXAMPLE: Lower bound for A with .99 confidence after observing c¢ = 10.
From (4.4) one finds, inserting c = 10 and £ = 2.326,

LA & (3.162-1.163)2 = 3.996, but (4.6) leads to

Lx & 10{1 - .775/3.162 - 1/90}3 = 4,132, whereas the true value,
solution of (4.2), equals 4.129.

For footnotes consult section 1.
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TABLE 5 : BINOMIAL CONFIDENCE BOUNDS

Wanted: upper bound [p for the binomial parameter p with (one-sided)

)

confidence coefficient 1-a, when ¢ successes in n trials have been

observed, or similar lower bound lp, i.e. solutions of

(] . . n . .
(5.1) ¥ ()rpd(1-rp)*J =a ana Y (%) Lp?(1-Lp)?™9 = a.
J':O J j=C J

Let A and L) be the Poisson confidence bounds for the same a and c,

looked up in tables or obtained from our Table L.
For quick work, with Poisson bounds available:
(5.2) l[p =~ 2[A/(2n+[A=c) when ¢/n < .3;
(5.3) Lp = 2LA/(2n+LA-c=1) when c¢/n < .5;

use Ip(c) = 1 - Lp(n-c) when ¢/n > .5 and Lp(ec) = 1 - [p(n-c) when
e/n > .T, applying (5.2) and (5.3) with ¢ replaced by n-c.
2)

and .7 when n > 10, between .05 and .95 when n > 60:

Normal approximation ~', satisfactory for roughly [p and |Lp between .3

[c+ vy + E{(C+1—w)(n-c-w)/(n+11w-h)}%]/(n+2w-1);

2

(5.4) Tp

e -1 +9y - E{(c—w)(n+1—c-w)/(n+11w-h)}%]/(n;éw-1);

123

(5.5) Lp

consult Table 8 for £, ¥ and w.
8)

Accurate approximation based on Poisson bounds:

(5.6) Tp =~ Ta{1 - (Mr-2)/(4n)}/{n + ([A-2c-2)/4} for c < 3n-2;
(5.7)  Lp = LA{1 = (LAa+2)/(3n)}/{n + (LA-3c=1)/6} for c < in+2;

for larger c use [p(c) = 1 - Lp(n-c) and Lp(ec) = 1 - Ip(n-c),
evaluating (5.6) or (5.7) with ¢ replaced by n-c with its Poisson
bounds. As long as [p or Lp lie between .05 and .95, (5.6) and (5.7)
remain satisfactory when the Poisson bounds [A and LA are replaced by

their approximations given in Table k4.

For footnotes and an example consult section 1.



TABLE 6 : HYPERGEOMETRIC CONFIDENCE BOUNDS

Wanted: upper bound [r for the hypergeometric parameter r with (one-
T)
1

6)

N balls out of which r are red, i.e. solution of

sided) confidence coefficient -0, when ¢ red balls have been

observed in a sample of size n < 3N, drawn without replacement from

C
6 L (A =

or similar lower bound Lr, i.e. solution of

(Lry¥-Lry, (W,

Jd n-J n

(6.2)

= 0.

)

J=cC

Accurate approximation based on binomial bounds:
(6.3) lr ~ 3c + 3(2N-n+1)[p;
(6.4) Lr = 3(c-1) + 2(2N-n+1)Llp;

_where [p and lLp are the binomial confidence bounds for the same a, c

.and n, looked up in tables or obtained from Table 5.

For given a, N, n and c, an exact integer solution of (6.1) or (6.2)
will usually not exist. Moreover, (6.3) and (6.4) will produce
fractional values. We shall not discuss the merits of rounding off to

the nearest integer "on the safe side", or of any other system.

For footnotes and an example consult section 1.



TABLE 7 : POISSON, BINOMIAL AND HYPERGEOMETRIC QUANTILES

Wanted: the P-quantile k, i.e. given 0 < P < 1 and given the parameter(s)
of the distribution, find k such that the probability of k or less

events equals P.
Let ¢ be the standard normal P-quantile, i.e. ®(z) = P,

o 3 2 3 3
kR X+ 7% + (27=L)/6 - (g +2z)/(722°) +

(7.1) ) L

+ (3¢ +722-16)/(8102)

in the Poisson case;
~ 1 2
k ®np + %o - 3 + (q-p)(z°-1)/6 +

(1.2) - {;3(1+2pq) + g(2-1bpq)}/(T20)

;
in the binomial case, where q = 1-p and o = (npq)?;

K% nr/N + 2t - 3+ (men)(s-r)(22=1)/(68°) - (12o0)~" x

(1.3) )

X {CB(Nu+2mnN +2rsN2-26mnrs) + ;(Nh-1hmnN2—1hrsN2+7hmnrs)}

;
in the hypergeometric case, where m = N-n, s = N-r and 1 = (mnrs/N3)E.
The last term of (7.1), (7.2) and 27.3) can be omitted unless P is

extremely close to 0 or 1 and/or Az, 0 or T are small, say less than 2.

TABLE 8 : STANDARD NORMAL AND AUXILIARY VALUES

a .2 1 .05 .025 .01 .005
£ 842 1,282 1.645 1,960 2.326 2.576
o(&g)=1-a -.8 .9 .95 975 .99 .995

v=(£2+2)/3 .90 1.21  1.5T  1.95 2.47  2.88
w=(7—£2)/18 .35 .30 .24 .18 .09 .02



L)

7)

9

For right hand tails, use P[X > h]l = 1 - P[X < h-1], entering the
Table with k = h-1.

; fu
¢(u) = (2m)72 f exp(-3t?) at denotes the standard normel distri-
bution functign, and £ denotes the upper o standard normal gquantile
defined by ®(£) = 1-a. Tables of ¢ are almost universally available.

Values of £ for some customary choices of o are found in Table 8.

In most statistical applications, accurate approximation to proba-
bilities between .005 and .Q5 or between .95 and .995 will be essen-
tial. In such cases one should use the lines marked "for tails"
throughout. The influence of terms of higher order, discussed in
Appendix B, causes a slight asymmetry in the boundary-between tail

region and middle one.

In cases where p is only just "small" enough in the sense of the
Table, it may be useful to know that the Poisson approximations tend
to be somewhat less accurate for right hand tails (distribution

function near 1).

When 1-p is "small", the Poisson approximations can be used after
interchanging the roles of successes and failures:

Plk or less successes] = 1 - Pln-k-1 or less failuresl].

It is assumed in Table 3 that the hypergeometric parameters satisfy

n<r 5_%N, and in Table 6 that n < 3N. This is no restriction, as

one can use P[A < al = P[B > n-al = P[C > r-al] = P[D < N-n-r+al

in the 2%2 table A B
C D
r N-r=s l N .

n

N-n=m

When a (1-@) two-sided confidence interval is desired, combine the
two (1-3%) one-sided bounds, i.e. enter thesfable with ¢ replaced

by 30.

For (5.6) and (5.7), the maximum difference between actual and nominal

error probability is less than .001 for n 2 12 and less than .0005

for n 2 20.
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Example, illustrating the use of Tables 5 and 6. In a sample of
size n = 20 from a population of size N = 200, ¢ = 10 defectives were
found. What is the lower bound Lr, with 99% confidence, for the number
of defectives in the population?

The answer is Lr = 50, as this produces a hypergeometric probability
(6.1) of .0098. Without hypergeometric tables one should use approxi-
metion (6.4), for which we need the binomial confidence bound p for
a = .01, n =20, c =10,

Let us first use (5.5) to find Lp. Consulting Table 8 we obtain
[9 + 2,47 - 2.326{9.91x1o.91/16.99}53/23.9h = ,234., As (5.5) might not
be accurate enough for n = 20 and lp = .234, one could alse try (5.7).
Insefting there LA = 4,129 (exact) or LA = 4.132 from (4.6), cf. example
.239, which is also the

given in Table L, we find in both céses Lp
exact value for (5.1).

Now (6.4) leads to 49.1 and 50.0 when one inserts Lp = .234 and
Lp = .239 respectively. Thus one obtains 49 from (5.5) and (6.4), and

the correct answer 50 from any better Lp inserted into (6.4).

APPENDIX A : REFERENCES

A fairly complete survey of published approximations to the three
distribution functions is given in [6]. Confidence bounds are discussed
in [1], Poisson quantiles and bounds in [7]. Normal and Poisson approx-
imations to the binomial distribution function are studied with a
special error criterion in [L4L] and [10], whereas normal approximations
to a whole class of distribution functions are discussed in [9].

The simple square root approximations (3.4) and (3.5) are believed
to be new. For any skew case (3.5) is asymptotically twice as accurate
(cf. Appendix B) as the classical x2 and normal approximations, and
(3.4) is nearly always still better for tails. Obvious limit operations
transform (3.4) into (2.2) and (1.2), published in [3,8], and (3.5)
inte (2.3) and (1.3).

From the general and accurate results of [9] we took (2.7), and (1.5)
after a small modification. The general idea of choosing the parameter

of the approximating distribution dependent on the argument k of the
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unknown distribution function, e.g. (2n-k)p/(2-p) instead of np as a
Poisson parameter, goes back to Wise and Bolshev: [2] gives (2.5), and
[11] gives (3.2) and a complicated formula from which we derived (3.3),
see [6] for details.

Solving A from (1.2) one gets (4.3) and (4.4); the Wilson-Hilferty
x2 approximation similarly [6] leads to (4.5) and (4.6). The bounds
(5.2) and (5.3) come from (2.5). Avoiding the use of a special table
of corrections depending on a and c, we adapted (5.6) and (5.7) from
[1] at the price of & very slight loss of accuracy. (6.3) and (6.4)
use (3.2). The quantile expansions (7.1) and (7.2) are well known.

The remaining recommended formulae are believed to be new.

We have given a few numerical examples and error bounds, but it is
virtually impossible to give complete condensed information on errors
when so many parameters are involved. We challenge the reader to check
a few cases for himself, in order to illustrate the general superiority

of the recommended formulae compared to the classical approximations.

APPENDIX B : ASYMPTOTIC EXPANSIONS

The asymptotic theory leading to the recommendations is fully dis-
cussed in [5,6,7]. A simple case will be presented here in order to
illustrate the train of thought.

For each positive A and each non-negative integer k there is one

fixed value P of the Poisson distribution function, and therefore one

unique "exact normal deviate" r = z(k,\) such that ¢(z) = P, i.e.

1

4 1t )
(1) elr) = j s(t)at = (o)™ j exp(-3t2)at

-—C0 -n 00

e /50
0

P =
J

Il %

From this transcendental equation an explicit selution for ¢ in
terms of k and A\ is not possible. However, from a Cornish-Fisher type
expansion one finds, for A + « and P bounded away from O and 1, that:

1

@) el(k=A"PT = a(g) + 2" 2(2)(P=b)/6 + 0(x71),
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(3)  el(e+d-anTH) = 8(2) + A"Fe(2) (22176 + 017,
W) ela(+n)? - 2221 = o(z) + A7Re(c)(b=c2)/12 + 0171,
(5)  el2(k+d)? - 2271 = 0(z) + A"20(2)(1=c2)/12 + o(x” ).

Let A be large enoug? to meke the term of order A_1 small compared to
the term of order A~ 2, Then (2) and (4) achieve a very small error for
the special case C2 =4, i,e. P = &(+ 2) = .9T7 or .023, and the error
of (3) and (5) becomes very small for C2 =1, i.e. P = @(i 1) = .84 or
.16. Moreover, for any other values of P the error of (2) is minus
twice the error of (4), and similarly for (3) and (5), provided that
the term 0(1-1) is negligibly small. This would lead us to prefer (L)
for tails, and (5) for the middle part of the distribution, to the
classical (2) and (3).

It remains to show that the actual errors of the approximations for
moderate and large values of ) follow this asymptotic pattern. The
following table of relative errors as percentage of the true value
may serve to illustrate that for A = 30 the terms of higher order have
indeed a modest influence, and dominate only when ¢ is close to + 1 or

+ 2,

Poisson probability (2) (L) (3) (5)
P(X<17) = .0073 +21 =7 +55° =21
P(X<19) = .0219 +2 +2 ., 426 -11
P(X<21) = .05khk -8 +6 +11 -5
P(X<23) = .1146 -12 +8 +3 -1
P(X<25) = .208k -13 +8 -1 +1
P(X<2T) = .3329 -12 +7 -3 +1
P(X<29) = .L757 =10 +5 -3 +1

Neither the 1: (-2) ratio nor the optimum at P = .023 and .16 are com-
pletely realized, but the agreement is close enough to justify our

preference for (4) and (5).
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This idea of numerical verification of conclusions derived from
asymptotic expansions was also applied to the other approximations
mentioned in this paper. Generally speaking the agreement was good,
but some exceptions were found, notably for the hypergeometric distri-

bution.
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