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SIMPLE APPROXIMATIONS TO THE POISSON 

BINOMIAL AND HYPERGEOMETRIC DISTRIBUTIONS 

by W. Molenaar 

Mathematisch Centrum, Amsterdam, and 
*) Pennsylvania State University 

ABSTRACT 

The classical approximations to some discrete distributions are 

almost universally used. However, more accurate results can be obtained 

without any substantial increase of computational effort. This paper 

presents a set of recommendations for improved approximations to cumu

lative probabilities, confidence bounds and quantiles of three well 

known distributions. 

Quick evaluation, using a minimum of tables and at most a slide 

rule or desk calculator, is often far more desirable than consultation 

of a specialized table in a library, or than waiting for access to an 

electronic computer. This asks for the choice of an approximation 

achieving a maximum of accuracy with a minimum of work. 

The present paper is an effort to solve this problem. It intends 

to give enough information for people just desiring to use the results. 

References will be mentioned for readers interested in a more detailed 

discussion to the topic. 

*) Now at the Rijksuniversiteit in Groningen (Netherlands) 





1, INTRODUCTION 

The following example is typical for this paper. The probability of 

8 or more successes in 20 independent trials with success probability 

.2 at each trial, equals ,032 according to binomial tables. Without 

immediate access to such tables, or to an electronic computer, most 

statisticians would evaluate the standard normal distribution function 
1 

at the argument (8-~-4)/(3,2)~, and find .019, or perhaps they would 

obtain ,051 from the Poisson distribution with parameter np=4. However, 

without substantial increase of effort they might have found ,033 from 

the "square root normal" or ,035 from the "Bolshev Poisson" approxima

tion, see (2.2) and (2.5) below, and both values are much closer to the 

actual value of ,032 than the classical results. After a more time 

consuming computation, (2,7) or (2.8) produces a result within .0002 

of the true value. 

Although the errors depend in a complicated way on the values of 

parameters and probability, the general trend of the quoted figures is 

found in a large majority of the applications. Our choice of simple 

but accurate approximations, partly previously published and partly new, 

is based on asymptotic expansions and numerical investigations [5,6,7], 

The recommendations in the following Tables are kept as simple as 

possible, Obviously we were forced to neglect some exceptional cases, 

and to use some personal judgement in evaluating accuracy and computa

tional labor. Although the recommended formulae are usually rather 

superior, there will always remain some surpri.sing parameter values for 

which a generally bad approximation is suddenly very accurate. 

This study intends to give improved methods for hand or desk calcu

lation, with a minimum of tables. On an electronic computer, exact 

evaluation is possible unless the parameter values are extreme, and when 

a computer programmer uses approximations he would not share our 

standards of accuracy and labor. 

Tables 1-8 constitute the core of this paper. We comment on these 

Tables by means of footnotes, and close the section by an example using 

Tables 5 and 6. 
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TABLE 1 : CUMULATIVE POISSON PROBABILITIES 

Wanted: p:robabiZity of k or Zess 1) Poisson distributed events when A 

a.re expected, i.e. 

(,. 1) 
k 

P[X<klAJ = ,l e-A Aj/j! 
J=0 

E:r:aat evaZuation of (1,1) is satisfactory for small A (say A< ,1 or 

may be A< .5) and more generally when k = 0, 

Quiok work normai app:r0:dmation 2 ) : 

( 1.2) for tails 3) · , 

1 1 

( 1.3) t(2{k+!}~ - 2A~) for probabilities between .06 and ,94 

(or ,05 and ,93 for roughly A< 15), 

1 1 

Never use t((k+i-4)A-~) or t((k-~)A-~), as (1,2) and (1,3) are 

essentially.better and just as simple (er; Appendix B), · 

Aaau:rate normai approximations 2): 

( 1 , 4) t(2{k + (t+4)/9}i - 2{A + (t-8)/36}~), 

where t = (k - A+ 1/6)2/A, or 

(1,5) t({k - A+~+•~;~} {1 + g(k~2)}~ A-~), 

with g(z) = (1 - z2 + 2z log z)(1-z)-2 tabled in [9], 

EXAMPLE: A= 10, k = 4. Exact value (1,1) P[X<4IA=10] = ,029, Substi

tution .of A= 10 and k = 4 in (1,2) gives t(2v5-2/io) = t(-1.852) = ,032, 

with a relative error of (,032-,029)/,029 whi'ch is 9%, Similarly, the , 
relative error is found to be 40% ... for the classical t((k+i-A)A-~), -16% 

for (1,3), -,02% for (1.4) and -.04% for (1.5), The latter two can 

safely be used even for A as small as ,5, whereas (1,2) and (1,3) are 

rather rough unless A exceeds 10. 

For footnotes consult section 1, 
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TABLE 2 : CUMULATIVE BINOMIAL PROBABILITIES 

Wanted: probability of k or less 1) successes inn independent trials 

with success probability p, i.e. 

k 
( 2, 1 ) P[X<kjn,p] = l where q = 1-p. 

j=0 

Quiak work approximation 2). 

(2.2) 

(2,3) 

, , , , 
~(2{k+1} 2q2 - 2{n-k} 2p 2 ) 

. 3) for tails ; 
, , , , 

~({4k+3} 2q2 - {4n-4k-1} 2p 2 ) for probabilities between 
0. 5 and • 93. 

When p is close to . 5, say . 25 .::_ p .::_ • 75 when n = 3 or . 40 .::_ p .::_ • 60 

when n = 30 ,or .46 < p < ,54 when n = 300, it is better to use (2,3) 

for tails 3 ), and for p;obabilities between .06 and .94 to use 

(2.4) 
, , , , 

~({4k+2!} 2q2 - {4n-4k-1!} 2p2 ). 

When aumulative Poisson tables are available and pis small 5 ), say 

p .::_ .4, when n = 3 or p .::_ .3 when n = 30 or p .::_ .2 when n = 300, use 4 ) 

k 
I e-"->}Jj! (2.5) with>..= (2n-k)p/(2-p), 

j=0 

Aaaurate app:r>o::cimations 2 ) : use for p = ! 

(2.6) 
, , 

~({2k+2+b} 2 - {2n-2k+b} 2 ) 
2 

h b (2k+1-n) -10n 
w ere = 12n 

and for any other p, consulting (1,5) for the function g, 

(2.7) 
k , k 1 1 1 1 

2 ( 1) } { (~) + (n- -~)}2 {(n+-6 )pq}-2). ~( {k + 3 - n~ p 1 + qg np pg nq 

When aumulat·ive Poisson tables are available and p is small 5), say 
4) 

p .::_ . 4 when n = 3 or p .::_ . 24 when n = 30 or p .::_ . 12 when n = 300, use 

(2.8) with >.. 

For footnotes consult section 1. 

= ( 12n-2np-7k)np 
12n-8np-k+k/n' 
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~~ABLE 3 : CUMULATIVE HYPERGEOMETRIC · PROBABILITIES 

Wanted: probability of k or 7,,ess 1) red balls in n drawings with.out 

replacemEmt from N balls of which r are red, i.e. 

( 3. 1 ) 
k 

I 
j=O 

(assumption: n .::_ r .::_ N/2) 6 ). 

When aurrn,.ilative binomial tables can be applied, for ~uick work 

(3.2) with p = (2r-k)/(2N-n+1); 

for accurate results even when n/N > .1, 

(3.3) 
k . . 
I (1:)i(1-p)n-J 

j=O J 

. . . 2) 
Without binomial tables, use 

with p = 2r-k 
2N-n+1 

-1 n(2k+1-2nrN ) 
2 3(2N-n+1) 

(3.4) 

(3,5) 
1 1 1 1 1 

~(2N- 2{(k+a) 2 (N-n-r+k+a) 2 - (n-k-¢) 2 (r-k-¢) 2 }) 

for probabilities between ,05 and ,93, 

When C!UmUZative Poisson tabZes are available but binomial tables are 

not, one may use 

(3,6) 
k 

-AAj /. I I e J. with A = ~(2n-k)(2r-k)/(2N-n-r+1) 
j=O for n/N .::_ r /N .::_ . 1 ; 

(3,7) 
k 

e-A>..j/j! I with A = µ + (µ-k)(2r-n+10µ)/(3N), 
j=O where µ = nr/N, otherwise; 

a somewhat more accurate but also more cumbersome choice is 

(3,9~ A= (12n-2np-7k)np 
12n-8np-k+k/n 

For footnotes consult section 1. 

where p = 2r-k 
2N-n+1 ' 
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TABLE 4 : POISSON CONFIDENCE BOUNDS 

Wanted: upper bound fA for the Poisson parameter A with (one-sided) 

confidence coefficient 7 ) 1-a, when c events have been ebserved, i.e. 

solution of 

C 

(4 .1) I 
j=0 

or iower bound LA similarly found from 

(4.2) 
j=c 

Exact soiution: when c = o, rA = -log a and LA= o, when c = 1. 

LA = -log( 1-a.). 

S • 7 .., • t· 2) r: 8 ~mpve normav approx~ma ~on , for~ consult our Table : 

(4.3) 

(4.4) 

fA ~ ({c+1}~ + ~~) 2 ; 

LA~ (c~ - ~~) 2. 

7 • • 2 ) 8 Better normav approx~rmt~on , for~ consult our Table : 

(4.5) 

(4.6) 

1 

fA ~ {c+1} {1 + ~/(3{c+1}~) - 1/(9{c+1})} 3; 

1 

LA~ c{1 - ~/(3c~) - 1/(9c)}3• 

El'l'or bounds, uniformly for • 005 ~ a ~ • 2. The reiative error in the 

confidence bound value is less than 1%: for (4.3) when c > 11, for 

(4.4) when c ~ 34, for (4,5) for all c ~ 0 and for (4.6) when c ~ 8. 
The absoiute difference between the exact bound and (4,5) or (4.6) 

rarely exceeds .02 and never exceeds .041. 

EXAMPLE: Lower bound for A with ,99 confidence after observing c = 10. 

From (4.4) one finds, inserting c = 10 and ~ = 2.326, 

LA~ (3,162-1,163) 2 = 3.996, but (4.6) leads to 

LA~ 10{1 - .775/3.162 - 1/90}3 = 4.132, whereas the true value, 

solution of (4.2), equals 4.129. 

For footnotes consult section 1. 
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TABLE 5 : BINOMIAL CONFIDENCE BOUNDS 

Wanted: upper bound rp for the binomial parameter p with (one-sided) 
· . . t 7 ) 1 h . . confidence coefficien -a, wen c successes inn trials have been 

observed, or similar Lower bound Lp, i.e. solutions of 

C n 
( 5. 1 ) l l 

j=0 j=c 

Let r>.. and U.. be the Poisson confidence bounds for the same a and c, 

looked up in tables or obtained from our Table 4. 

For quiak work, with Poisson bounds avaiZabZe: 

(5.2) rp l'::j 2r>../(2n+r>..-c) when c/n < • 3; 

(5,3) Lp l'::j 2L>../(2n+L>..-c-1) when c/n < . 5; 

use r p( C) = 1 - Lp(n-c) when c/n > .5 and Lp(c) = 1 - rp(n-c) when 

c/n > • 7' applying (5,2) and (5,3) with c replaced by n-c. 

N 7 • t· 2 ) · 1 r ormav approxi.ma i.on , satisfactory for rough y p and LP between ,3 

and . 7 when n ~ 10, between . 05 and ,95 when n ~ 60: 

, 
(5.4) 

(5,5) 

rp ~ [c + 1jJ + E;{(c+1-w)(n-c-w)/(n+11w-4)}l!J/(n+21jl-1); 

, ~ 

Lp = [c - + $ - E;{(c-w)(n+1-c-w)/(n+11w-4)}l!J/(n+2$-1); 

consult Table 8 for E;, 1jJ and w. 

Aaaurate approximation B) based on Poisson bounds: 

(5.6) 

(5,7) 

rp l'::j r>..{1 - (r>..-2)/(4n)}/{n + (r>..-2c-2)/4} 

Lp ~ L>..{1 (LH2)/(3n)}/{n + (L>..-3c-1 )/6} 

for c < ~n-2; 

for c < ~n+2; 

for larger c use rp(c) = 1 - Lp(n-c) and Lp(c) = 1 - rp(n-c), 

evaluating (5.6) or (5,7) with c replaced by n-c with its Poisson 

bounds. As long as rp or Lp lie between .05 and ,95, (5.6) and (5.7) 

remain satisfactory when the Poisson bounds r>.. and L>.. are replaced by 

their approximations given in Table 4. 

For footnotes and an example consult section 1. 
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TABLE 6 : HYPERGEOMETRIC CONFIDENCE BOUNDS 

Wanted: upper bound rr for the hypergeometric parameter r with (one-
. ) . f . . 7) sided confidenc~ coe ficient 1-a, when c red balls have been 

observed in a sample of size 6 ) n ~ ~N, drawn without replacement from 

N balls out of which rare red, i.e. solution of 

C 

( 6. 1 ) I 
j=O 

or similar lOuJer bound Lr, i.e. solution of 

n 
0 (6.2) I 

j=c 

AaaU?'ate approximation based on binomial bounds: 

(6.3) rr ~ ~c + ~(2N-n+1)rp; 

(6.4) Lr~ ~(c-1) + ~(2N-n+1)Lp; 

where rp and Lp are the binomial confidence bounds for the same a, c 

.and n, looked up in tables or obtained from Table 5. 

For given a, N, n and c, an exact integer solution of (6.1) or (6.2) 

will usually not exist. Moreover, (6.3) and (6.4) will produce 

fractional values. We shall not discuss the merits of rounding off to 

the nearest inte~er "on the safe side", or of any other system. 

For footnotes and an example consult section 1. 
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TABLE 7 : POISSON, BINOMIAL AND HYPERGEOMETRIC QUANTILES 

Wanted: the P-quantiie k, i.e. given O < P < 1 and given the parameter(s) 

of the di:stribution, find k such that the probability of k or less 

events equals P. 

Let z;; be the standard normai P-quantile, i.e. ~( z;;) = P. 

1 2 3 1 
k z A+ z;;A 2 + (z;; -4)/6 - (z;; +2z;;)/(72A 2 ) + 

( 7. 1 ) 
+ (3z;;4+7z;;2-16)/(810A) 

in the Poisson case; 

k z np + z;;cr - ; + (q-p)(z;;2-7)/6 + 

(7,2) - {z;; 3(1+2pq) + z;;(2-14pq)}/(72cr) 

1 

in the binomial case, where q = 1-p and cr = (npq) 2 ; 

k z nr/N + z;;, - ; + (m-n)(s-r)(z;;2-1)/(6N2) - (72,N4)-1 x 

(7.3) 
x {z;; 3(N4+2mnN2+2rsN2-26mnrs) + z;;(N4-14mnN2-14rsN2+74mnrs)}, 

3 1 
in the hY]?ergeometric case, where m = N-n, s = N-r and,= (mnrs/N ) 2 , 

The last term of (7,1), (7.2) and (7,3) can be omitted unless Pis 
1 

extremely close to O or 1 and/or A2 , cr or, are small, say less than 2. 

TABLE 8 STANDARD NORMAL AND AUXILIARY VALUES 

a .2 • 1 .05 .025 . 01 ,005 

f: .842 1. 282 1. 645 1. 960 2.326 2,576 

~ ( f:) = 1--a .. 8 ,9 ,95 ,975 ,99 ,995 

1/J=( f:2+~~) /3 .90 1. 21 1.57 1.95 2.47 2.88 
') 

.24 w=(7-t:~·)/18 ,35 ,30 . 18 .09 .02 
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1) For right hand tails, use P[X > h] = 1 - P[X ~ h-1J, entering the 

Table with k = h-1. 

, Ju 2 2) ~( u) = ( ~~TI )-~
00 

exp(-h ) dt denotes the standard normal distri-

bution function, and~ denotes the upper a standard normal quantile 

defined by ~( ~) = 1-a. Tables of ~ are almost universally available. 

Values of~ for some customary choices of a are found in Table 8. 

3) In most statistical applications, accurate approximation to proba

bilities between .005 and ,05 or between .95 and .995 will be essen

tial. In such cases one should use the lines marked "for tails" 

throughout. The influence of terms of higher order, discussed in 

Appendix B, causes a slight asymmetry in -the boundary-between tail 

region and middle one. 

4) In cases where pis only just "small" enough in the sense of the 

Table, it may be useful to know that the Poisson approximations tend 

to be somewhat less accurate for right hand tails (distribution 

function near 1 ) . 

5) When 1--p is "small'', the Poisson approximations can be used after 

interchanging the roles of successes and failures: 

P[k or less successes]= 1 - P[n-k-1 or less failures]. 

6) It is assumed in Table 3 that the hypergeometric parameters satisfy 

n ~ r ~ ~N, and in Table 6 that n ~ ~N. This is no restriction, as 

one can use P[A ~ aJ = P[B ~ n-aJ = P[C ~ r-aJ = P[D ,'.:.N-n-r+aJ 

in the 2x2 table A 

C 

B 

D 

r N-r=s 

n 

N-n=m 

N 

7) When a (1-a) two-sided confidence interval is desired, combine the 

two (1-~a) one-sided bounds, i.e. enter the•~able with a replaced 
1 by 2 a. 

8) For (5.6) and (5.7), the maximum difference between actual and nominal 

error probability is less than .001 for n.:. 12 and less than .0005 

for n .:. 20. 
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Example:, illustrating the use of Tables 5 and 6. In a sample of 

size n = 210 from a population of size N = 200, c = 10 defectives were 

found. Wha.t is the lower bound Lr, with 99% confidence, for the number 

of defectives in the population? 

The answer is Lr= 50, as this produces a hypergeometric probability 

( 6. 1 ) of . 0098. Without hypergeometr:ic tables one should use approxi

mation (6.4), for which we need the binomial confidence beund p for 

a= .01, n = 20, c = 10. 

Let us first use (5.5) to find Lp. Consulting Table 8 we obtain 

[9 + 2.47 - 2.326{9,91x10.91/16.99}~]/23,94 = ,234, As (5,5) might not 

be accurate enough for n = 20 and Lp = ,234, one could also try (5.7). 
Inserting there LA= 4.129 (exact) or LA= 4.132 from (4.6), cf. example 

t 
given in T'able 4, we find in both c~ses Lp = .239, which is also the 

exact value for ( 5. 1). 

Now (6.4) leads to 49.1 and 50,0 when one inserts Lp = ,234 and 

Lp = ,239 respectively, Thus ene obtains 49 from (5,5) and (6.4), and 

the correct answer 50 from any better Lp inserted into (6.4). 

APPENDIX A: REFERENCES 

A fairly complete survey of published approximations to the three 

distribution functions is given in [6]. Confidence bounds are discussed 

in [1], Poisson quantiles and bounds in [7]. Normal and Poisson approx

imations to the binomial distribution function are studied with a 

special error criterion in [4] and [10], whereas normal approximations 

to a whole class of distribution functions are discussed in [9]. 

The sim.ple square root approximations ( 3. 4) and ( 3. 5) are believed 

to be new. For any skew case (3.5) is asymptotically twice as accurate 

(cf. Appendix B) as the classical x2 and normal approximations, and 

(3,4) is nearly always still better for tails. Obvious limit operations 

transform (3,4) into (2.2) and (1;2), published in [3,8], and (3,5) 

into (2.3) and (1,3). 
From the general and accurate results of [9] we took (2,7), and (1,5) 

after a small modification. The general idea of choosing the parameter 

of the approximating distribution dependent on the argument k of the 
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unknown distribution function, e.g. (2n-k)p/(2-p) instead of np as a 

Poisson para.meter, goes back to Wise and Bolshev: [2] gives (2.5), and 

[11] gives (3.2) and a complicated formula from which we derived (3.3), 

see [6] for details. 

Solving .X from (1.2) one gets (4.3) and (4.4); the Wilson-Hilferty 

x2 approximation similarly [6] leads to (4.5) and (4.6). The bounds 

(5.2) and (5.3) come from (2.5). Avoiding the use of a special table 

of corrections depending on a and c, we adapted (5.6) and (5.7) from 

[1] at the price of a very slight loss of accuracy. (6.3) and (6.4) 

use (3.2). The quantile expansions (7.1) and,:f't,2) are well known. 

The remaining recommended formulae are believed to be new. 

We have given a few numerical examples and error bounds, but it is 

virtually impossible to give complete condensed information on errors 

when so many para.meters are involved. We challenge the reader to check 

a few cases for himself, in order to illustrate the general superiority 

of the recommended formulae compared to the classical approximations. 

APPENDIX B: ASYMPTOTIC EXPANSIONS 

The asymptotic theory leading~o the recommendations is fully dis

cussed in [5,6,7], A simple case will be presented here in order to 

illustrate the train of thought. 

For each positive .X and each non-negative integer k there is one 

fixed value P of the Poisson distribution function, and therefore one 

unique "exact normal deviate" I; = i;(k,.X) such that t(i;) = P, i.e. 

f I; (2~)-i fl; exp(-it2 )dt 
k 

-.x.x j r, ( 1 ) t( I;) = ~(t)dt = = p = l e J. 

-00 _co j=O 

From this transcendental equation_an explicit solution for I; in 

terms of k and.Xis not possible. However, from a Cornish-Fisher type 

expansion one finds, for .X ~ 00 and P bounded away from O and 1, that: 
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-1 Let A be large eno~gh to make the term of order A small compared to 

the term of order A-i. Then (2) and (4) achieve a very small error for 

the special case ~2 = 4, i.e. P = t(:!:, 2) = .977 or .023, and the error 

of (3) and (5) becomes very small for ~2 = 1, i.e. P = ~(:!:, 1) = .84 or 
' 

.16. Moreover, for any other values of P the error of (2) is minus 

twice the error of (4), and similarly for (3) and (5), provided that 

the term O(A-1) is negligibly small. This would lead us to prefer (4) 

for tails, and (5) for the middle part of the distribution, to the 

classi~al (2) and (3). 

It remains to show that the actual errors of the approximations for 

moderate and large values of A follow this asymptotic pattern. The 

following table of relative errors as percentage of the true value 

may serve to illustrate that for A= 30 the terms of higher order have 

indeed a modest influence, and dominate only when~ is close to+ 1 or 

+ 2. 

Poisson probability (2) (4) (3) (5) 

P(X~17) = .0073 +21 -7 +55 -21 

P(X~19) = .0219 +2 +2 +26 -11 

P(X~21) = .0544 -8 +6 +11 -5 

P(X<23) = .1146 -12 +8 +3 -1 

P(X<25) = .2084 -13 +8 -1 +1 

P(X<27) = .3329 -12 +7 -3 +1 

P(X~29) = .4757 · -10 +5 -3 +1 

Neither the 1: (-2) ratio nor the optimum at P = .023 and .16 are com

pletely realized, but the agreement is close enough to justify our 

preference for (4) and (5). 
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This idea of numerical verification of conclusions derived from 

asymptotic expansions was also applied to the other approxima.tfons 

mentioned in this paper. Generally speaking the agreement was good, 

but some exceptions were found,_notably for the hypergeometric distri

bution. 
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