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INTRODUCTION

This report deals with a class of models generalizing two- and
more-dimensional frequency tables. Given such a model the concept of
'interaction' is defined. If certain quantities, comparable to marginal
totals as well as the interaction terms are given, a uniquely defined
probability vector exists satisfying the marginal conditions and having
the prescribed interaction.

The aim of this report ié to show how this probability vector can
be found. An iterative procedure is described and it is shown that this
procedure converges to the desired solution.

The solution vector p may satisfy parametric constraints, ob-
servational constraints or a mixture of these. The procedure is in-
dependent of these differences. This allows of a uniform treatment of

situations, statistically different but computationally equivalent.



1. MULTINOMIAL DISTRIBUTIONS SUBJECT TO LINEAR RESTRICTIONS

In the statistical literature two- and more-dimensional frequency
tables are usually treated as multinomial distributions subject to
restrictions imposed on rows, columns, layers, row-column pairs and
the like. The restrictions may be imposed by fixing marginal totals or
by conditioning on them, or by fixing marginal probabilities.

It is essential, however, that a number of subsets of the k cells
in the table play a special role. In particular a statement on the
total number of observations will always be made.

For the present purpose it is irrelevant from what source the
restrictions have arisen. The important thing is what subsets of cells
are involved in the restrictions.

We identify the cells by labels, e.g. 1,2,...,k, and the set of
all labels is indicated by L = {1,2,...,k}. Probabilities p; are attached
to the labels, summarized in a probability vector p = (p1,p2,...,pk)'.
The prime denotes transposition. Subsets V of L will be used as labels
as well. For instance, Py = _z p; and pL = .g pi = 1. The multinomial

1€V 1=1
distribution with parameter vector p gives rise to the stochastic vector

n = (21’2 se el )' of possible outcomes on the probability space de-

k k
fined by L, p and np = 'z n.. By Dy we mean _Z n..
1=1 1eV

The restrictions may now be written in the form by = 0y Or n, =n

v V v?

where o is a fixed number, n. a fixed non-negative integer. In the

' v
latter case we switch over to gv/nL = BV = nV/nL and we do not stress
the difference any more.

The probability vectors p (and the set L) are chosen such that
p; > 0 for all i € L. By P we indicate {p: p, >0 for iel, p = 1}.

It is natural to summarize the sets Vj (j=1,2,...,3), the Py, or

ng /nL of which are fixed, in a matrix, the configuration matrix J
J
H = (hij)’ of the following form:
h.. =1 ifie V.,
1J J
(1.1)
h.. =0 if i ¢ V..
ij j



Obviously, several configuration matrices belong to the same
problem, since the order of the columns of H may be altered, columns
may be repeated, and restrictions may be derived from others which leads
to still other columns in H.

Two configuration matrices H and B are said to be equivalent if
the columns of H and those of H* span the same vector space S. The
collection of all equivalent configuration matrices to a given problem
will be indicated by H.

In the sequel we take configuration matrices of the following

form:
He H is a (kxs)-matrix. The s columns of H may be divided up
into 1 groups, consisting of S139S55+ 4458 columns, s, > 1 for
w=1,2,...,1 and having the following property:
(1.2) A _ 7 .
Let to = 0, ta = Z sw, then the o-th group consists of the
=1 tOL
ce ; now h.. =1
columns ta-1+1’t _1+2, ’tu’ j=tz o i must
-1
hold. *
v

(1.2) implies that the subsets Vj of L, characterized by the columns

+
ta—T 1’toc--1

clear that H can always be chosen according to (1.2), for instance by

+2""’tu are disjoint and have L as their union. It is

taking the even-numbered columns to be the complement of the preceding
odd-numbered column.

The restrictions now have the form

(1.3) H'p = ¢

A1l classical situations can be described in terms of H-matrices,

but moreover an essential generalization is obtained.



2. INTERACTION

Let H be a configuration matrix of the form (1.2), V ,V_,...,V

1272 1

the subset of L characterized by the columns of H.

DEFINITION 1: p(o) and p € P are said to have the same interaction with

(1) (2) (s)

respect to H iff k-dimensional vectors p o) sesesP exist,
pga) =x: >0 for i € V,
1 J J
) (i=1,2,...,k)
J) _ :
ps 1 for 1 4 Vj
such that
_ (o) ()
PR .H Py
J=1

Let Tj = log Aj’ j=1,2,...,8. The vectors p(o) and p € P have
the same interaction with respect to H iff
- p(O)eHT

(2.1) for some s-vector T.

(0)

5 exp(

= 1,2,...,k. J

p(o)eH-r here indicates the column-vector, given by p h.:T.),
i

1 1J J

Il ~>nm

It is clear from (2.1) that the property of having the same inter-
action defines an equivalence relation on P x P,

The meaning of definition 1 will now be illustrated for a special

case. Let Hj be the matrix consisting of the columns ta 1+1’ta 1+2""’ta
of H (1<a<l). Vectors p(o"”,p(a) ¢ P, satisfying

_1) H 1'%
p(a) = p(a 1)e ¢ for some sa-vector T(a) have the same interaction.

. . . -1 NP
It 1s seen that p(a) 1s obtained from p(a ) by dividing up the com-

(0=1) (a=1) (a=1)
i such that pi and Py

and h € Vi for some j, (tu_1<jjpa), and for each group multiplying the

ponents p are in the same group iff i

components in that group by the same constant. As a result, interaction

is independent of selection procedures, affecting the Py (ta_1<jjpa)

only, or of prior distributions on the p., . An application of this
P V.
J



property is given by Joel H. Levine and described in Mosteller (1968),
p.8 and 9.

If p and p have the same interaction with respect to H ¢ H,

(0)
H _(0) . * . . *
P~D for short, and if H € H, where H is a (kxs)-matrix and H a

. . . *
(kxt)-matrix, a (txs)-matrix A exists such that H A = H. According to

- *
(2.1), = p(o)eHT = p(o)eH At for some s-vector T, and consequently
o]

b

_ (o) B* . .
p=p ‘e for a t-vector o.. Therefore, (2.1) holds irrespective of
the choice of H e H.

The relation (2.1) may be rewritten as

(2.2) log p = log p(o) + Hrt.

Let r be the rank of H, that is, the dimension of S is r, then the

linear space S , the orthogonal complement of S has dimension k-r. Let

1?2 .
b(1),b(2),...,b(k—r) be a base for SL' The matrix B having the b(J),

(1<j<k-r) as columns is a kx(k-r)-matrix of rank k-r, satisfying

(2.3) B'H = O.

B is called a S -matrix. From (2.2) and (2.3) we have that p,p(o) e P

o) i p(o) satisfy

H

(2.4) B' log p = B' log p(o).

(0)

If, on the other hand, (2.4) holds, then log p - log p € S, that is

log p - log p(o) is of the form Ht for some s-vector T, and (2.2) holds.

Summarizing we have:

E P(O) — p = p(o)eHT +«~— B! log p = B! lOg -p(O).

This allows of the following definition:

DEFINITION 2: Given a configuration matrix H and a Sl—matrix B, pelP
has interaction Yp if B' log p = Yg* The components of Vg will be called

interaction terms.



3. THE "ITERATIVE PROPORTIONAL FITTING PROCEDURE"

To given matrices H of the form (1.2) and B we have a transformation

H'p
(3.1) v(p) =
B' log p
(1)
£(2)

(1) (2)

Let £ = ( )s E = H'p, & = B' log p.

Y has a uniquely defined inverse on Y = {y(p): p € P}. (See van Nooten
(1971)).

We shall try to find p given ¥(p). To this end a method known as
the "iterative proportional fitting procedure" (IPFP) is generalized.
The procedure has been introduced by Deming and Stephan (1940), Fienberg
(1970) gives a review of the literature. Ireland and Kullback (1968)
give a proof of the convergence of the IPFP for a number of special

cases. The main line of their method of proof is followed here.

(3.2) The IPFP is defined as follows:

(0,0) (0,0) (2)
b .

1. Take € P for which B' log p = £

2. A sequence p(n,a) e P (a=1,2,...,1; n=0,1,2,...) is defined by

.

J(2,1) | (2+1,0)
p(n,a) - p(n,a-1)e a

(n,0) (n,a) _

= log A

Remarks:

ad 1: B' log u = £(2) does have solutions u for any g(g) € Rk_r.

* * ., -
Let © be a solution, then p 1is a probability vector, apart from a

k
* =1
constant factor, z uz = c. Let p(0,0) =pc . Then B' log p(0,0)
i=1
= B' log W oo B log C (where log C = (log ¢, logc, ..., logc)').



But since the vector (1,1,...,1)', as the sum of columns t, 11 to £

of His in S, B' log C = 0. Therefore B' log P(O,O) = 5(2).

ad 2: for fixed n and o the transition of P(n,a—1) to p(n,a) consists

of fitting the marginals £§1), ta_1 <j i-ta without altering the inter-

action. Generally, the marginals already fitted are disturbed at each
(n,a)

step. Therefore it must be shown that the sequence p converges and

that the limit satisfies (3.1). If so, this limit is the desired p

owing to the uniqueness of the inverse of V.



4. CONVERGENCE OF THE IPFP
Let a and b be two vectors of dimension t, where ai,bi >0
(1<i<t). We define

!
a; log T
1

Il o~

(k.1) dt(a,b) =

i=1

The right hand side will be denoted by a' log % .

k k
If a and b are probability vectors, i.e. if Z a. = Z b. =1,
then dt(a,b) satisfies = =

(1) a,(a,p) 20

(2) dt(a,b) =0 iff a = b,

(3) dt(a,b) is a convex function both in

t
a € Pt = {x: X, > 0 (1<i<t), z xi=1} for fixed b and in
i=1

b e Pt for fixed a.

a.
(k) Writing oy = Ei we have

i
. 1
(ci log ci) b., and min ¢, log z; = - <.

d, (a,b) =
1 Czie(osw)

t

Il o~

i

For (1) and (2) see Kullback (1968), (3) and (4) are easily verified.
(1)

t
a

Let p be the solution of Y(p) = &, & € Y. We write & o

(1) ey,

t +1°° "
a-1 o

We then may state:

abbreviate (§

1
(h.2) dk(p’P(n+1’0)) - dk(p’p(n,O)) ) aZ1 dsa(EQT)aﬁép(n’u'1)).
Proof:
o (pp' ™) - a(p2 ™) = 1208 hoy - 206 T

(n+1,0)
'lo
P € " (n,0)



1
p(n+1,0) - p(n,l) - p(n,O) exp( Har(n’a))= according to (3.2).
a=1
(n+1,0) 1 (n.a)
Therfore, log ELT“"“ = 2 Ht 7*", and
n,0) £ Ta
P o=1
(1)
(n+1,0) 1 ( 1 £
n,o) (1) a
p' log = Z p'H 17 z £ log
P n,O) a=1 a a=1 o H&P(n,u_1)
1
= ) 4 (621),H&p(n’a_1)), and (L4.2) follows immediately.
a=1 Sa
to k
Now z €§1) = (1,1"..’1) H&p = z pi = 1 and
J=t _,*1 J i=1
t k
, (n,oa=1) (n,o-1)
. Z Ha - .z Py =1
J—ta_1+1 1=1
-1
By (1), therefore, dg (5(1),H& (n,a )) > 0 for all a.

This, together with (4.2) leads to:

(n+1,0) (n,O))

(h-3) dk(p’P ).i dk(Pap

In (4.3) the equality sign holds for some n iff for a = 1,2,...,k:

1) o plmant) ¢

in a finite number of steps. p(

property (2)). If this is the case, the process ends
n,0)

is the result and we have both

B' log p(n,O) _ 5(2) and H.p(n,O) = (1) gince p(n,O) ¢ P, p(n,O) must
be the (uniquely defined) p.
Now suppose that for all n
+1,0 0
(b.1) g, (20 ™) < a (p,p 0.

Then ¢ = lim 4 (p,p(n’o))

. > 0 does exist (according to property (1) of

n->co

dt)' Consequently
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(4.5) lim d_ (Eé1),H&p(n’u-1)) =0 for a = 1,2,...,1.
n—>o o
_ %
Let P, = {a: a; > 0 (1<ict), z a,=11.

i=1

(n)

(n=0,1,2,...) € Pt and if 4 (a,b(n)) converges to

t
(n) has limitpoints b € Pt’

LEMMA: If a and b
B < o for n > «, then the sequence b

all satisfying dt(a,b)A= B and no limitpoints in ﬁt\Pt'

Proof: dt(a,x) is continuous for x € Pt' If therefore b € Pt is a limit-

(n) (n)

point of Db . dt(a,b) = B. Now suppose b € ﬁt\Pt is a limitpoint of b 7.
Then for at least one 1i: bi = 0. Let b "h , h=1,2,... be a subsequence
of b(n) converging to b, then
(n,) (n ) a.
d, (a,b h ) = Z (z. log z.) b. b, a. log >
t 5. J J J 1 (n, ) —
J#i h
b.
i
(n, ) a. a.
> - = z b. by a. log Lo, 1y a. log —_
G i (nh) - e i (nh)
J b. b.
i i
(n,)
Here a. is fixed, positive and lim b. = 0.
i hoe 1
(n, )
. h'y _ . . (n)y _
Therefore, lim 4, (a,b ) = « contradicting lim dt(a,b ) = B < o,
h—>o t h—>o

In particular we have from (4.5) and property (2) that

(n,0-1) exists and equals €§1 , for o = 1,2,...,1.

(n,O)) _

lim H'p
n->o

From lim dk(p,p c < ®» it follows that the limitpoints p

n--w
of the sequence p(n,O) all belong to P and satisfy dk(p,p ) = c.
(n _,0)
Let p* be such a limitpoint and let p h (h=1,2,...) be a sub-

(n,0) converging to it. We then have:

sequence of p
- \ * _ i (rp0) (2)
(1) B' log p = lim B' log p = 1lim £

h>e ho>o

_ (@



(n, ,0)
(ii) Hp* = limH'p B =gl

h>

By uniqueness of the solution of Y(p) = & for £ € ¥, p* = p and
(n,0)

consequently the sequence p has p as a limit.
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