
An application of Pitman-efficiency to acceptance 
sampling procedures * 

by J. WOUTERS** and M. C. A. VAN ZUYLEN*** 

Summary As an exercise the concept of Pitman-efficiency has been applied to the decision prob-
lem whether to use acceptance sampling "by attributes" or "by variables". 

The Pitman-efficiency has been calculated in the two cases that the variance of the underlying normal 
distribution is known and that it is unknown. Rather surprisingly the difference between these two 
cases proves to be considerable, even asymptotically. The asymptotic result is compared with the 
exact values of the relative efficiency in the case that <1 is unknown. The asymptotic approximation 
appears to be rather good. The results derived also help to determine a suitable choice of the null 
hypothesis in order to increase the Pitman-efficiency. 

1. • Introduction 

The basic problem we are dealing with is to inspect a lot using a sampling procedure. 
For this purpose we consider the two well-known methods "by attributes" and "by 
variables". 

Let the continuous random variable ;s describe a functional property of the product 
under consideration, such as length or breaking strength. We assume the random 
variable ;s to be norm.ally distributed with meanµ and variance a2 • To distinguish 
between effective and defective items we introduce the value A of the variable ;s. 

This means, e.g. we judge a certain item to be effective if x> A and defective if 
x ~ A, where x is the value of ;s for the item considered. 

In ·more statistical terms: We have to solve the following testing problem on the 
base of a random sample ;s 1, ••• , ::Sn of size n from a N(µ, a 2) distribution: 

H0 : p~r P(;s ~A)~ Po, 

for given constants A and p0 against 

H1: P > Po· 

In a picture (see Fig. 1) this means that we want to test whether the area p of the 
shaded region is smaller than or equal to a given constant p0 • 

In the "attributive" case we reject the hypothesis H0 , and so the lot, if the number 
of defectives in the sample exceeds a critical number c. 

When inspecting "by variables" we use the actual values of the sample and base 
our solution on the test statistic S- k · ~, 
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Fig. 1. The fraction defectives in the population. 

where 

; g is an estimator of the mean µ, 

~ = J ~ 1 .£ (;f;-g)2; ~ is an estimator of the standard deviation u, 
n ,=1 

and k is a critical factor. 
We reject the lot if 

(1) 

In Appendix III one can find: 

a. an intuitive justification of the choice of the critical region (1), 
b. the proof that A is the only possible boundary for this critical region, 
c. the proof that this critical region agrees with the critical region based on the test 

statistic ✓ng/~ to be constructed in the classical way by the principle of invariance. 

Which of the two methods has to be selected is in fact an economic decision problem. 
To solve this problem we need information about the costs per observation and the 
sample sizes na ("by attributes") and nv ("by variables"), necessary to achieve an 
equal performance of both testing procedures. Because of the fact that we "use more 
information" when inspecting "by variables" we can expect nv to be smaller than na. 

The theory of Pitman-efficiency provides us with a method to approximate the 
ratio: 

2. Application of Pitman-efficiency 

The Pitman-efficiency, or asymptotic relative efficiency (ARE), is an asymptotic 
approximation of the ratio nv/ na of the two testing methods necessary to achieve an 
equal performance in terms of power. For the theory we refer the reader to [5]. 

The results of the application. will be given in this section, while the derivation of 
the formulas is given in Appendix I. 
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When a is unknown we have 

1 e~ +-
2 

ARE(l) = 8 2 
2irpo(l - p0)e 0 

and when a is known 

1 
ARE (2) = 8 2 , 

2irpo(l - p0)e 0 

where 00 is determined by 

When 00 = 0, which means that p0 = <P(O) = -½, we can easily verify that 

ARE (1) = ARE (2) = ~-
it 

(2) 

(3) 

(4) 

(5) 

Indeed this is the well-known Pitman-efficiency of the sign test with respect to Stu
dent's t-test. 

We remark that the asymptotic results (2) and (3) show a great difference for a 
unknown compared with a known: from (2) and (3) we have 

ARE (1) l 0~ h. l . . . 
ARE (2) = + 2 , w IC 1 IS an mcreasmg (6) 

function of 100 1. 
For instance if 00 = 2, the ratio (6) is equal to 3, so that the Pitman-efficiency in 

the case that a is unknown is three times the Pitman-efficiency in the case that a is 
known! In some other cases, like Student's test in comparison with the normal test 
for a mean, knowledge of the value a has no influence on asymptotic results (n-+ oo ). 

We further note that SCHAAFSMA and WILLEMZE [7], using a result of HAMAKER [2] 
in 1954 already derived formula (2) and (3) on the base of other arguments. 

For the relations between the methods of ScHAAFSMA, WILLEMZE and HAMAKER 
and the Pitman-concept we refer to Appendix II. 

3. Comparison of the ARE with exact relative efficiency 

In practice a usually is unknown and therefore we restrict ourselves to this case in 
comparing the exact relative efficiency (RE) with the ARE. The exact values have 
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been calculated numerically on the Electrologica-X8 of the Mathematical Centre in 
Amsterdam. A part of the results is given in Table 1 to demonstrate the reasonable 
approximation of Pitman-efficiency to exact efficiency, especially considering the 
discrete character of na, given nv. For a more elaborate list of results and the way the 
exact values of the ratio nv/na have been derived, we refer to Appendix V. 

One can see from Table 1 and Appendix V that the approximation deteriorates 
when p0 is small. 

Table I. Exact and asymptotic relative efficiency for a unknown, a = .05 and nv = 8 

power Po na RE (1) RE (2) ARE (1) 

.90 .20 14 .571 .643 .663 

.60 .20 14 .571 .643 .663 

.90 .10 13 .615 .692 .623 

.60 .10 14 .571 .643 .623 

.90 .05 14 .571 .643 .526 

.60 .05 15 .533 .667 .526 

.60 .01 21 .381 .571 .265 

4. Influence of the choice of A 

The value A of the variable ;& - the bound between an effective and defective item -
is in general chosen rather arbitrarily. From (2) and (3) it can be derived that in both 
cases the Pitman-efficiency converges to zero as p0 converges to zero. This means 
that there will often be an opportunity to increase the power of the test "by attributes" 
relative to the test "by variables" by choosing A such that the tolerated fraction 
defectives p0 in the lot is not too small. 

To demonstrate this we have tabulated (Table 2) the Pitman-efficiency for dif
ferent values of p0 • 

Table 2. Pitman-efficiency for different values of Po 

Po ARE (1) ARE (2) 

.01 .265 .072 

.025 .409 .140 

.05 .526 .224 

.10 .623 .342 

Po 

.15 

.20 

.25 

ARE (1) 

.655 

.663 

.661 

ARE (2) 

.426 

.490 

.539 

The table shows for instance that for increasing values of p 0 the ARE (1) of the tests 
increases rather rapidly until p0 ~ .10. 

This effect is weakened somewhat if one considers the exact values of the RE 
(relative efficiency) from Table 1 and Appendix V, but the general trend remains the 
same. 

This means that with increasing p0 the inspection method "by attributes" is 
becoming less bad in relation to the inspection method "by variables" and that in 
using "attributes" we should avoid choosing A such that p0 falls below e.g. 10%. 
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Appendix I Derivation of the formulas for the Pitman-efficiency 

Let ~1, ••• , ~n be n observations from a normal distribution with unknown meanµ 
and unknown variance u2 • 

The testing problem was as follows: 

H 0 : p~ P(~ ~A)~ Po, 

for given constants A and Po against 

Hi: P > Po• 

This two-dimensional problem - p = p(µ, u) - with composite hypothesis can be 
reduced to a one-dimensional one with a simple hypothesis H 0 by introducing a new 
parameter 0: 

0~µ-A_ 
(T 

(7) 

Then 

d r (x-µ A-µ) (x-µ ) pd; P(~ ~A)= P -=-;--- ~ -u- = P -=-;--- ~ -0 = <P(-0), (8) 

where cP is the standard normal distribution function. 
Using (8) we are able to reformulate the hypothesis H 0 that cP(-0) ~Po as follows: 

Ho: -0 ~ <P- 1(Por3,;l-0o. 

Note that in fact if an alternative value 01 converges to 00 the line (µ-A)/u = 01 in 
the (µ, u) plane converges to the iine (µ-A)/u = 00 (see Fig. 2). 

Fig. 2. IJ, converging to IJ0 • 
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Solving this testing problem "by attributes" we use as test statistic the random variable 
L, defined by 

n 

T <!.:_f"' 
-n- L, {l; 

i= 1 

where { 1 if~;:( A 
{l; = 0 otherwise. (9) 

From (8) it can be seen that T,, has a binomial distribution with parameters n and 
lf>(-0). 

When we solve the testing problem "by variables" we use as test statistic 5;-k§ or 
equivalently the test statistic 1n defined by 

t ~g ✓ -n- - n. 
§ 

(10) 

The random variable 1n has a non-central t-distribution with (n - 1) degrees of free
dom and non-centrality parameter - 0J n (see e.g. [3]). 

The theorem of PITMAN (see [6], [5]) tells us that - under certain regularity condi
tions which are satisfied in our case - the ARE is equal to the limit as n-+ oo of the 
ratio of the efficacies of the two methods to be compared. So 

where 

and 

I. Effa 
ARE = 1m Eff , 

11 ➔ 00 V 

[ __ci__ E(Tnl0)]2 

Eff = d0 O=Oo 

a a2{L,l0o) 

From (9) we can see that 

E(L,IG) = nlf>( - 0) 

and 

a 2(L,10) = n<P(-0)(1-<P(-0)). 

So 

[ __cl__ E(T,,10)]2 [n · 1 exp ( -½0~)]2 

def d0 O=Oo ✓2n 
Eff =~----- ---- = - -- --- ~~~----. 

a a2(Tnl0o) npo(l - Po) 
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Further, from the non-central !-distribution it is well known that 

(15) 

and 

2 ( jB)=(n-l)(l+n02)_(n-1)2 /3 2 • _02 
(J t,, 3 2 n-1 n n- n-

(16) 

where 

-J-2 . r(~) 
P,-, - n-1 r(n;l)' 

Using (15) and (16), it can now easily be verified that 

( n-1)2 2 -- ·/3,,-1·n 
Eff = n-2 

V 2 ( )2 (n-l)(l+n00)_ n.-1 ·/3;_ 1_110~ 
n-3 n-2 

(17) 

Substituting (14) and (17) into (11) we get (2), as is shown in Appendix IV. 
A question which may arise is the following: What happens if the variance of the 

underlying normal distribution is known? 
From the hypothesis and (8) we can see that the inspection problem reduces to a 

testing problem concerning only the mean µ. 

The hypothesis H0 then becomes: 

Now the solution "by attributes" is again based on the number of defectives in the 
sample I,, but for the computation of the efficacy we now have to take the derivative 
of the expectation of I,, with respect to J-L 

Since I,, has a binomial distribution with parameters 

d ( def (A-µ) 
11 an p µ) = <P -<J- , 

we see that 

p'(µ) = 1 exp(-½0~)-(- I)' 
✓2rr <J 

and 
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------------------------,---~=-,,~ iWWi-' :w&fWt:','TW'.®'WW' 'W@fY 

The efficacy Effa in this case is equal to 

[ d ] 2 n2 
( 02

) 1 -E(T.Iµ) -exp _ _Q ·-

Eff = dµ -n µ=µo = np'(µ0 ) = 2n 2 u2 • 
a 2 

<T (Tnlµo) npo(l- Po) npo(l- Po) 
(18) 

The solution "by variables" can simply be based on the test statistic g or equivalently 
on g-k·u. 

As well-known result for this situation we mention 

n 
Eff. = 2 . 

(1 

Substituting (18) and (19) into (11) we get (3). 

(19) 

Appendix II Comparison of the derivation due to Schaafsma, Willemze and Hamaker 
and the derivation by means of the Pitman-concept 

In [2] HAMAKER introduces for the attributive case a formula (21) that relates the 
sample size n with the relative steepness h0 (see (20)) in the control point Po (the 
fraction defectives in the lot corresponding with a probability of acceptance p that 
is equal to ½). Here the relative steepness in the control-point is defined by: 

( p dP) (dP) ho= - -- = -2po - . 
p dp p=po dp p=po 

(20) 

Applied to the testing procedure "by attributes" HAMAKER in fact derives for the 
relative steepness h~ and p~ the relation 

2 

; h~ ~ np~+0.06. (21) 

ScHAAFSMA and WILLEMZE [7] need this result in combination with similar results for 
the testing procedure "by variables". 

In the case u is known they derived [7, pag. 250] for this case 

(22) 

where z is defined by: 
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When u is unknown SCHAAFSMA and WILLEMZE derived [7, pag. 260]: 

2p" .J;;etz2 
h" - o 

o - -✓-'-----z-2 • 
1+-

2 

(23) 

The next step to arrive at a result concerning the sample sizes of both testing proce
dures was to call two testing procedures equally efficient if for the same value of the 
control-point p0 the two relative steepnesses are equal; in the present case this gives: 

h~ = h~ for f II 

Po= Po= Po• (24) 

This leads to the results (2) and (3). 
In [4] NoETHER explains the way to calculate the ARE by means of the limit 

(25) 

instead of calculating the limit (n➔ co) of the ratio of the efficacies of both testing 
procedures. The value of na in (25) is chosen in such a way that the slopes of the power 
of both testing procedures in the point p 0 (with power oc under H 0 ) are equal. 

Because of the fact that the ARE is not dependent of the actual value of oc, we 
may choose oc = ½-

Moreover, equality of relative slopes (see (24)) is equivalent with equality of 
absolute slopes, because the factor p0/P0 is the same for the two testing procedures. 

This explains why the results due to SCHAAFSMA and WILLEMZE (1954) and 
HAMAKER (1949) are identical with the ARE derived by the Pitman-concept. 

Appendix ill Intuitive approach to the critical region 

The hypothesis to be tested was as follows: 

H O : p = P(~ ~ A) ~ p0 , for given constants A and p0 • (26) 

If H 0 is true, the probability of rejection is not to be larger than a given level of 
significance oc. _. 

We can describe (26) also as follows: 

with e such that P(y ;;;, e) = p0 , where y has a standard normal distribution. 
Because 

and 2 1 In c -)2 s =-- x--x - n-1;=1 _, -

STATISTICA NEERLANDICA 26 (1972) NR. 2 MATHEMATISCHE SECTIE 77 



are the minimal sufficient (and minimum-variance unbiased) estimators ofµ and u2, 

is it reasonable to use as test statistic g-k§, where k is a critical factor to be deter
mined later. The critical region evidently has to be of the following form: 

with k and B such that 

P(g-k•§ < Blµ-eu =A)= 0( 

holds for every pair of values ofµ and u with µ-eu = A. 
When we write for Bin (27): B = µ-11u, then (28) becomes: 

P(g-k§ < µ-11ulµ-eu =A)= ix 
or 

(27) 

(28) 

(29) 

(30) 

The random variable in the left hand side of the inequality has a non-central t
distribution with (n-1) degrees of freedom and non-centrality parameter <> = 11✓n. 

When '7 is known the bound k✓ n - and so k - can be found from the tables of the 
non-central Student distribution. Now µ and a are unknown, but have to satisfy two 
equations: 

{ µ-ea= A 
µ-11a = B, 

(31) 

where A and e are fixed already and B can still be chosen freely. 
When we solve '7 from (31) we find 

A-B 
11=e+--, 

(J 

and from (32) a disappears only if we choose B = A. 

(32) 

Thus only when choosing B = A, 11 will be known because it does not depend on 
the unknown a, and only then k can be found from (30). 

A consequence then is '7 = e and we have as critical region g-k§< A, as was to be 
proved. 

LEHMANN [3] derives the following critical region by means of the principle of 
invariance: 

g-A ✓-n C -- --< 
§ n-1 · 
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Taking 

k=Jn:l·C, 
we again arrive at (33). 

Appendix IV Computation of ARE (1) 

From 

[ c.f. (16)], 

the following inequality can be derived: 

2n-1 2 2n 
2n,;;; Pn-1,;;; 2n+l' for n = 1,2, ... 

Using (34) we have 

. {n -1 (n -1)2 2n - 3} . {n -1 (n -1)2 2 } hm n -- - -- --- :;;; hm n -- - -- Pn-l :;;; 
n ➔ co n-3 n-2 2n-2 n➔ co n-3 n-2 

l. {n-1 (n-1)2 2(n-1)} :;;; 1m n -- - --
n➔ co n-3 n-2 2n-1 ' for n = 2, 3, ... 

Now 

hmn --- -- --- -2 . {n -1 (n -1)2 2n - 3} _ 1 

n➔ co n-3 n-2 2n-2 
and 

l. {n-1 (n-1)2 2(n-1)}- 1 1m n -- - -- -,,---- - 2. 
n➔ 00 n - 3 n - 2 2n - 1 

So from (35), (36) and (37) we can conclude that 

Using (11), (14) and (17) we have 

[ n exp(-½0~)]2 (n-1)(1+0~)-(n-1)2 P;-1·n·0~ 
ARE(l) = lim ✓2n . n-3 n-2 

n ➔ oo npoU-Po) (n-1)2p2. n-1 n n-2 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 
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Using (38) and using the relation lim p;_ 1 = 1, we can easily verify: · 
n➔ oo 

1 + 0~ 
2 

ARE(l) = 9 2 

2npo(l - Po)e o 

(40) 

Appendix V Tables for comparing the exact ratio of the sample sizes with the ARE 
in the case that t1 is unknown 

In this section we show by means of several tables that the Pitman-efficiency is a good 
approximation of the exact ratio of the sample sizes, necessary to achieve an equal 
performance for both tests in the case that <T is unknown. 

(X 

Po 
p 

na 
nv 
In 
ln 

To describe the method by which we computed our tables we denote: 

the level of significance of the tests, 
the parameter which characterises the hypothesis tested, 
the parameter which characterises the alternative hypothesis, 
the sample size for inspection "by attributes", 
the sample size for inspection "by variables", 
the test statistic "by attributes", based on n observations, 
the test statistic "by variables", based on n observations, 

Pa= pa(p; na) the power of the test "by attributes", in the parameterpoint p, based 
on n0 observations, 

Pv = P0(p; n0 ) the power of the test "by variables", in the parameterpoint p, based 
on n0 observations, 

Pmin the minimum power we require for both tests in some alternative 
parameterpoint. 

For given a, Po, Pmin and n0 we calculated the tables in four steps: 

Step 1 

Find the alternative parameterpoint p 1 , for which (see Fig. 3): 

Pv = Pmin, under the condition Pv(po; nv) = (X. 

Po ---p 
Fig. 3. The power of the test by variables. 
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Step2 

Find, for given oc, Po, Pmin and Pi, the minimal integer na, for which (c.f. Fig. 4): 

Step 3 

Pa ;;;:: Pmin• under the condition OCa ~ PlPo; na) ~ oc. 

p 

t 113a) 

l3min ----------

Po ---P 

Fig. 4. The powers fla and flv determined by step 1 and 2. 

Find for given oca, Pa, p 1 from step 1 and 2, and Po the maximal integer n02 and the 
minimal integer n03 for which resp. ( c.f. Fig. 5): 

Pv2 ~ PvCP; nv2) < Pa, under PvCPo; nv2) = OCa 
and 

We remark that n03 = n02 + 1. 

13 

t 
13a - - - - - - - -

I 13v3l 
(13a) 

-----P 

Fig. 5. The power of the tests according to step 3. 

Step 4 

P def d ut n01 = n0 an compute 
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RE (2) ~f nv2 ' 

na 

We calculated the following tabels for a = .05; Po = .20, .10, .05 and /Jmin = .90, .60. 
For p 0 = .01 we only computed the table for /Jmin = .60. 

In general RE(2) appears to be the best approximation of the ARE (1). 

Table 3. Exact and asymptotic relative effi- Table 4. Exact and asymptotic relative effi-
ciency for a unknown, a = .05, Po = ciency for a unknown, a = .05, p 0 = 
.20 and fJmin = .90 .20 and fJmin = .60 

ARE (1) = .663 ARE (I) = .663 

nv RE (1) RE (2) RE (3) nv RE (1) RE (2) RE (3) 

4 .571 .571 .714 4 .444 .667 .778 
7 .538 .615 .692 7 .500 .643 .714 

10 .588 .647 .706 10 .500 .650 .700 
14 .583 .625 .667 14 .560 .640 .680 
18 .621 .655 .690 18 .621 .621 .655 
22 .611 .639 .667 22 .550 .650 .675 
26 .591 .659 .682 26 .591 .636 .659 
30 .625 .646 .667 30 .577 .635 .654 
40 .656 .656 .672 40 .615 .646 .662 
50 .617 .654 .667 50 .588 .647 .659 
70 .631 .658 .667 70 .609 .652 .661 

100 .645 .658 .665 100 .625 .656 .663 
120 .645 .661 .667 120 .628 .654 .660 

Table 5. Exact and asymptotic relative effi- Table 6. Exact and asymptotic relative effi-
ciency for a unknown, a = .05, Po = ciency for a unknown, a = .05, Po = 
.10 and /Jmin = .90 .10 and /Jmin = .60 

ARE (1) = .623 ARE (I) = .623 

nv RE (1) RE (2) RE (3) nv RE (I) RE (2) RE (3) 

4 .571 .571 .714 4 .500 .625 .750 
7 .583 .667 .750 7 .538 .615 .692 

10 .556 .667 .722 10 .526 .632 .684 
14 .560 .680 .720 14 .538 .654 .692 
18 .667 .667 .704 18 .562 .656 .687 
22 .647 .676 .706 22 .564 .641 .667 
26 .634 .659 .683 26 .634 .634 .659 
30 .625 .667 .687 30 .625 .646 .667 
40 .635 .667 .683 40 .580 .638 .652 
50 .641 .654 .667 50 .633 .646 .658 
70 .636 .655 .664 70 .598 .641 .650 

100 .629 .648 .654 100 .625 .637 .644 
120 .625 .646 .651 120 .619 .634 .639 
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Table 7. Exact and asymptotic relative effi- Table 8. Exact and asymptotic relative effi-
ciency for a unknown, a = .05, Po = ciency for a unknown, a = .05, Po = 
.05 and Pmin = .90 .05 and Pmin = .60 

ARE (1) = .526 ARE (1) = .526 

n,, RE (1) RE (2) RE (3) n,, RE (1) RE (2) RE (3) 

4 .667 .667 .833 4 .571 .714 .857 
7 .538 .692 .769 7 .500 .643 .714 

10 .625 .687 .750 10 .625 .625 .687 
14 .583 .667 .708 14 .538 .615 .654 
18 .643 .643 .679 18 .500 .611 .639 
22 .595 .649 .676 22 .564 .615 .641 
26 .553 .638 .660 26 .520 .600 .620 
30 .588 .627 .647 30 .577 .596 .615 
40 .606 .621 .636 40 .597 .597 .612 
50 .617 .617 .630 50 .538 .591 .602 
70 .574 .607 .615 70 .565 .581 .589 

JOO .585 .596 .602 100 .541 .573 .578 
120 .558 .591 .595 120 .550 .569 .573 

Table 9. Exact and asymptotic relative effi-
ciency for a unknown, a = .05, Po = 
.01 and Pmin = .60 

ARE (1) = .265 

n., RE (1) RE (2) RE (3) 

4 .800 .800 1.000 
7 .368 .579 .632 

10 .400 .520 .560 
14 .452 .516 .548 
18 .321 .464 .482 
22 .344 .453 .469 
26 .366 .437 .451 
30 .390 .429 .442 
40 .333 .400 .408 
50 .373 .388 .396 
70 .359 .369 .374 

100 .317 .349 .352 
120 .312 .344 .346 
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