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NON-NORMAL BIVARIATE DENSITIES 

WITH NORMAL MARGINALS AND 

LINEAR REGRESSION FUNCTIONS 

by 

F.H. Ruymgaart 

Summary. It is well known that for a bivariate density in order 

to be bivariate normal, the possession of univariate normal marginal 

densities alone is not sufficient. In this paper it will be shown by 

means of some counterexamples that the additional requirement of 

linearity of the regression functions does not supply a sufficient 

condition either. 
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1. Introduction. Throughout this paper attention will be restricted 

to bivariate densities with standard normal marginal densities. As usual 

the univariate standard normal density is denoted by 

t2 

( 1. 1) 
1 2 

<P(t) = /27i' e _oo < t < oo, 

This assumption implies the finiteness of moments of any order. For such 

densities h(x,y) the correlation coefficient p equals 
00 00 

J J xyh(x,y)dxdy, the covariance. For ease of reference the above 
_co -oo 

defined densities will be called densities of type I. 

Suppose a density of type I is given. Let us write 

r(x) = J00 y[h(x,y)/<j>(x)]dy for the regression of yon x and 
-oo 
00 

s(y) = J x[h(x,y)/<j>(y)]dx for the regression of x on y. If these re-
-oo 

gression functions are given to be linear, say 

r(x) =ax+ b, -oo<x<oo, 

( 1. 2) 

s(y) = cy + d, -oo<y<oo, 

where a, b, c, dare given constants, then a necessary condition for 

bivariate normality of the density h of type I is that the above con

stants satisfy the relations 

( 1. 3) a= C = P, b = d = 0. 

We now define a density to be of type II if it is of type I and if, 

moreover, it has linear regression functions as given in (1.2), satis

fying (1.3), 

Some well known non-bivariate normal densities of type I are 

easily seen to be also of type II. This suggests that it would be 

generally known that densities of type II are not necessarily.bivariate 

normal, but an explicit statement of this fact is unknown to the author. 



-2-

2. Densities of type I, that are not of type II. In this section, 

by way of a further introduction, two densities of type I will be given 

that are not of type II, and that consequently are not bivariate normal. 

Let us first introduce a special notation for the bivariate normal den

sity with standard normal marginals and correlation coefficient 

-1 < p < 1. This density will be written 

( 2. 1 ) ,---,y e 
21rV1-p-

2 2 
X -2pxy+y 

2 
-00 < x, y < 00 

Let us start with a simple example communicated by SHORACK [3]. 

Consider the density ~O (see (2.1)). Draw a circle in each of the four 

quadrants of the (x,y)-plane as indicated in Fig. 1. Transfer the mass 

contained in circle 2 to 
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Fig. 1. Construction of non-normal. Fig. 2. The graphs of the regres

bivariate density with normal mar- sion functions corresponding to 

ginals. the density of Fig. 1. 

cirele .1, and transfer the mass contained in circle 4 to circle 3. (By 

this procedure a positive correlation is introduced.) The resulting 
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density h 1(x,y) clearly is a probability density and still has standard 

normal marginal densities. However, it evidently cannot be bivariate 

normal, since e.g. it assigns mass Oto circles 2 and 4. This non-nor

mality follows also from the character of the regression functions r 1(x) 

and s 1(y). It will intuitively be made clear that these functions are 

not linear (see Fig. 2). For instance consider r 1(x). For x-values not 

contained in A1 or A2 (the projections of circles 2, 3 and 1, 4 on the 

x-axis respectively, (see Fig. 1 ) we have h 1(x,y) = ~0 (x,y) for ally, 

which is a function of y symmetric about y = 0. This implies r 1(x) = 0 

for all x not contained in A1 or A2 . For x-values in A1 however, the 

function h 1(x,y) is a function of y which is no longer symmetric about 

y = 0: it assigns more weight to the set of negative y-values. This 

results in a deviation from O of the function r 1(x) in the negative 

direction (see Fig. 2). Similarly the deviation of r 1(x) from O for x

values in A2 is in the positive direction. An analogous reasoning holds 

for the regression function s 1(y). As it were, the extra mass contained 

in circles 1 and 3 "attracts" the regression functions. The conclusion 

is that the density h 1 is of type I but not of type II, by non-linearity 

of the regression lines. Hence, the density is non-normal. 

The reader may object that this example is rather artificial, 

because the density involved is discontinuous on the boundaries of the 

circles. To meet this objection from now on only completely continuous 

bivariate densities will be considered. If a density of type I has at 

least one continuous but not linear regression function, it is not of 

type II and it cannot be normal. Whether the density is of type I or 

type II, by the assumption of continuity it is bivariate normal only if 

h(x,y) = ~ (x,y) for all - 00 < x, y < 00 • Here p is the correlation coef-
P 

ficient of h. A geometrical argument for rejecting the normality of a 

continuous bivariate density his found by observing that it is neces

sary for normality that the intersection of the surface z = h(x,y) in 

3-dimensional space with any plane, perpendicular to the (x,y)-plane, 

is a symmetric and unimodal curve. In both arguments the assumption 

that his continuous everywhere is essential. 

The second example is a special case of an example given in 
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FELLER [1], page 99, which is due to E. NELSON. Let us introduce the 

function 

u(t) = sin t for -21r < t .::_ 21r , 

(2.2) 

u(t) = 0 fort< -21T or t > 21r. 

The function u(t) is continuous on the real line and so is the function 

u(x) . u(y) on the plane. Hence the function 

(2.3) h2 (x,y) = ~0(x,y) + A u(x) u(y) 

is continuous too. Here A is a constant satisfying 

0 <A< min 2 2 ~0 (x,y) = ~0 (21r,21r) to prevent h2 from assuming 
- 1r<x,y~ 1T 

negative values. Since 1:00 u(t)dt = 0 it follows that 
00 00 00 ~ 00 

!_00 !_00 h2 (x,y)dxdy = 1, f-oo h2 (x,y)dy =o/ (x) and !_00 h2 (x,y)dx = ~(y) 

(see (1.1)). Hence h2 is a continuous density of type I. By observing 

that 1:00 tu(t)dt = -41r we obtain for the regression function r2 (x): 

00 

= !_00 y[h2 (x,y)/~(x)]dy 

= 1:00 y[~0(x,y)/~(x)Jdy + A[u(x)/~(x)J 1:00 yu(y)dy 

= -A41r[u(x)/~(x)J. 

This function is continuous but not linear, hence the density is not of 

type II and consequently it is not normal. 

Geometrically it can be seen that h2 is not normal by plotting the 

graph of h2 (x,1r/2) = ~0 (x,1r/2) + Au(x) as a function of x. From Fig. 3 

it may be seen that this function is not symmetric, and hence a neces

sary condition for normality is not fulfilled. 

In the next section it will be shown that a slight modification of 

this example gives a non-normal density of type II. 
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Fig. 3. The graph of the function h2(x,n/2), defined in (2.3). 

3. Two non-normal densities of type II. Instead of u(t) let us 

consider u( ltl) (see (2.2)) and define 

( 3. 1) 

Here A is the same constant as in (2.3). This function is continuous 

and from 1:00 u(ltl )dt = 0 it follows that 1:00 1:00 h3(x,y)dxdy = 1, 

1:00 h3(x,y)dy = ♦ (x) and 1:00 h3(x,y)dx = ~(y). Hence h3 is a continuous 

density of type I. For the regression function we now have 

00 

r 3(x) = !_00 y[h3(x,y)/~(x)]dy 

= 1:00 y[~0(x,y)/~(x)]dy + A[u(lxl )/~(x)J 1:00 yu(jyj )dy 

= o, 

and analogously 
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00 

because !_00 tu(ltl )dt: = 0. For the same reason we find p3 = 0. Thus the 

regressions are linear (they satisfy (1.2)) and (1,3) holds. 

Consequently h3 is a continuous density of type II. 

Since A> O, it follows that h3(TI/2,TI/2) = ~0(TI/2,TI/2) + A is un

equal to ~0 (TI/2,TI/2). Hence h3 cannot be normal (see Section 2). 

A geometrical argument disproving the normality is found by plot

ting the graph of the function h3(x,TI/2) = ~0 (x,TI/2) + Au(lxl ). 

z 

A-----, 
z 

-2TI 

I X 
I 

I 

2TI X -2n 0 · 2tt X 

Fig. 4. The graph of the function h3(x,TI/2), defined in (3.1). 

From Fig. 4 it follows that this function is not unimodal as is required 

for normality. 

One may still object that these examples are rather artificial. A 

more natural example is a special case of FELLER [1], page 99. Let us 

consider the mixture 

(3.2) h4(x,y) = [~ ,(x,y) + ~1 (x,y)]/2. 
-2 2 

In [1] this density is presented only as an example of a non-normal 

density of type I. It is easy to see that h4 is a continuous density of 

type I. Since~ has regression lines px and py we have 
p 
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r 4(x) 
00 

y[h4(x,y)/~(x)]dy = f 
-co 

00 

y[~ 1(x,y)/~(x)]dy + 
00 

y[~1(x,y)/~(x)]dy]/2 = [f f 
-00 -2 _co 2 

= C-x/2 + x/2]/2 

= o, 

and analogously 

Moreover, p4 = (-~ + ~)/2 = 0 and hence the regressions satisfy both 

(1.2) and (1.3). This proves that h4 is a continuous density of type II. 

This density is not normal because h4(o,o) = 1/~/3which is unequal 

to ~0 (o,o) = 1/2n (see Section 2). 

Geometrically it can also be seen that this density is not normal. 

Let us take an arbitrary n > 0 and let us consider the graph of the 

function h4(x,n) as a function of x. This function may be written (see 

(2.1)) 

(3.3) ( 
_ (x+n/2) 2 

1 1 2 - --e 
2& 

_ (x-n/2)2 ) 
1 2 

+ -- e 
~ 

The expression within the brackets is a mixture of two univariate normal 

densities having expectations -n/2 and n/2 respectively and unit varian

ces. From WESSEIS [4], Section 4, it follows that for n sufficiently 

large this mixture, and hence h4(x,n)., is bimodal (see Fig. 5), Accord

ing to Section 2 unimodality is necessary for normality. 
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-n/2 0 X 

z 

0 n/2 X 0 X 

Fig. 5, The graph of the function h4 (x,n), defined in (3.3). 

So far all bivariate densities considered in this section have 

correlation coefficient zero. This restriction is inessential. Espe~ 

cially the last example, which is the most appealing one, can straight

forwardly be extended. It can be shown that 

(3.4) * h (x,y) = :>.qi (x,y) + ( 1-"-) <P~(x,y), 
p p 

,., 
where O <A< 1 and -1 < p, p < 1 with p ~ p, is a continuous non-normal 

density of type I (see [1]). It is easily seen that the regression func

tions are 

r*(x) = :>.px + (1-:>.)px, 

(3.5) 
s*(y) = :>.py + (1-:>.)py. 

* Moreover p = :>.p + (1-:>.)p, so that the regression functions again 

and (1.3). Consequently the class satisfy ( 1.2) 
~ p~p} is a class of continuous non-* * ~ {h = h ~: 0<:>.<1, -1<p, p<1, :>.,p,p 

normal densities of type II. For most values of:>., p, p the correspon-
. * . ding p is unequal to zero. 
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4. Some literature. Apart from the references given above it may 

be useful to refer to the recent book of MARDIA [2] on bivariate dis

tributions. Possibly with help of some general techniques reviewed in 

this book, a less heuristic approach to the problem can be found. 
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