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On a problem by Ahlswede regarding the capacity region of certain multi
*) way channels 

**) Edward C. van dler Meulen 

Abstract 

A new Fano-type estimate is proved for multi-way channels. It yields 

upper bounds on the numbers of codewords and the products of these numbers 

in a code for a channel withs senders and r receivers in the case all 

senders send messages simultaneously to all receivers. The result is based 

on a new approach, which makes an approximation argument previously used 

by Ahlswede ( 1971b) and Ulrey ( 1973) unnecessary. It also leads to better 

Fano-estimates than the ones obtained by these authors. Our approach is 

canonical for weak converses of coding theorems for multi-way channels and 

applies also in other communication situations. 
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1. Introduction and Summary. 

Ahlswede (1971b) characterized the capacity region of a channel with 

two senders and one receiver, and of a channel with three senders and one 

receiver. In that paper, Ahlswede proposed as a Problem to find a simpler 

proof than the one he gave of the weak converse to the coding theorem for 

the discrete memoryless channel with three senders and one receiver. His 

proof turned out to be surprisingly complicated. It involved an approxima

tion argument, based on a Markov-type inequality, and a careful handling 

of the convex hull of six sets of triples of rates. The approximation ar

gument was not needed in the case of a channel with two senders and one 

receiver. It arose in the case of a channel with three or more senders, 

since it is not possible to expurgate from a code for a two-way channel 

having small average error probability, one which has uniformly small 

error probability and essentially the same code lengths, as was shown by 

Ahlswede ( 1971a). 

Subsequently, Ahlswede ( 1972) found an alternate characterization of 

the capacity region of the discrete memoryless channel with two senders 

and one receiver. The proof of this result is based on a new approach to 

the random coding problem for this channel, which admits non-stationary 

sources. One advantage of the new characterization is that it makes the 

proof of the weak converse much simpler than before. Using the same ap

proach, Ahlswede (1972) characterized also the capacity region of a 

channel with two senders and two receivers for the communication situation 

in which both senders send messages simultaneously to both receivers. 

Recently, Ulrey (1973) has extended the methods and results of Ahls

wede (1972) to a channel withs senders and r receivers, in the case all 

senders send messages simultaneously to all receivers. In particular Ul

rey found a characterization of the capacity region of a channel with 

s ~ 3 senders and one receiver, and of a channel withs~ 2 senders and 

r ~ 2 receivers. His characterization of the capacity region of a channel 

with three senders and one receiver is simpler than the one obtained by 

Ahlswede (1971b). This new characterization makes it possible to deal more 

easily with the convex combinations of rate points as compared with the 
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proof of the converse in Ahlswede (1971b). However, the extra difficulty 

of how to translate a statement about average error into a corresponding 

statement about maximal error, which comes in only in the cases~ 3, re

mains. Ulrey, like Ahlswede, resolved this difficulty by resorting to an 

approximation argument. 

In this note we present a simple'proof of the inequalities which 

bound from above the codelengths and their products in the case of a chan

nel with three or more senders. Our proof does not make use of the approx

imation argument at all, but involves only a careful use of the well-known 

inequalities of information theory. Our proof is not only simpler than the 

one given by Ahlswede (1971b) and Ulrey (1973), but also leads to better 

Fane-estimates of the codelengths. In an earlier paper (van der Meulen, 

1971) we have used an argument similar to the one presented here for the 

derivation of upper bounds on the numbers of codewords in the case of the 

discrete memoryless channel with two senders and one receiver. 



2. The main result. 

We state and prove our result directly for the general case of s 

senders. For simplicity we restrict to the case of one receiver. We ad

here as much as possible to the notation developed by Ulrey (1973). We 

assume familiarity with his paper, in particular his sections 1 and 2 up 

to Lemma 1. We then have the following Lemma, which is an improvement of 

Lemma 1 of Ulrey ( 1973). 

➔ 

Lemma. Given a code - ( n , N , A) for ( P, T 1 ) ; denote it by 
s t t 

{M(i), A(i))li EI} where A(i) c Y(1) for all i EI. Let pk(•) and p (•) 

be as defined in respectively (2.5) and (2.2) of Ulrey ( 1973). Let 

D c {1, •.• ,s}, D f ¢. Then 

(2.6) log ( TI Nk) ~ 
kED 1 - A 

Proof. For ease of notation it is assumed that D = {1 d} f. , ... , or some 
d, 1 ~ d ~ s. First consider the cased~ s-1. Let 

(2.7) Jk an int., 1 ~ Jk ~ Nk, k = 1, ... ,d}. 

For each J EID define 

(2.8) 

Let 

(2.9) 

Then clearly 

I ... = {i E I 
J 

i = (i 1 , ... ,is) where ik = jk fork= 1, ... ,d}. 

B(j) = U A(i). 
iEI...-

J 
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(2.10) B(j):) A(i) 

d s 
for each j EID, whenever 1 E r .... 

J 
Let ~ N = II Nk, 

k=1 
N = II N 

k=d+1 k 

Also let 

(2.11) 

and 

(2.12) 

d 
X = II X(k), and X = 

k=1 

s 
II X(k). 

k=d+1 
Furthermore define 

ift = {Ml M is an n x d matrix where ~ E ~ 

for all t = 1, •.• ,n and k = 1, •.• ,d} 

m_ = {Ml M is an n x ( s-d) matrix where ~ E ~ 

for all t = 1, ••• ,n and k = d+1, ••• ,s}. 

We recall that we are given a fixed code, consisting of a collection 

{u.J/ ik) I J 

1 < • < N 
- 1 k - k 

(2.13) 

< . - J.k ~ Nk, k = 1, ..• ,s} where 1\_(ik) € ~ for all 

and k 

µ(M) = 

µ{.) ~ = 1, ... ,s. Next define a p.d. on 11{ 

~ if for each k, 1 s k s d, ~ = 1\_(ik) for 
N 

0 otherwise. 

by 

Also define a p.d. ii(•) on ?it_ by 



r 1 . - (· ) N if for each k, d+1 ~ k ~ s,~ = ~ ik for 

j f . 1 <. <N or some ik, _ ik - k 

{2.14) µ(M) = 

0 otherwise. 

~ Further for all t = 1, ••. ,n, "'t we define a p.d. µ ( •) on X by 

(2.15) 
"'t ~ . 
µ (x) = I µ(M) 

~1~ ~ {M M =x} 

~ . . µ-t(.) for all x € X. Similarly, for all t =1, •.. ,n, we define a p.d. 

on X by 

(2.16) iit(x) = I ii(M) 

{-1-t -} MM =x 

for all x € X. Next we define 

(2. 17) P(y IM)= l P(y IM,M)µ(M) 
n - - n 
. ME~ 

5 

n 
for all yn =(y1, .•• ,yn) E IT Y = Y and ME 111.. Here (M,M) = M € '?ll and 

s=1 n 

(2.18) P(y IM,M) 
n 

Similarly we define 

(2.19) 

n 
= IT 

t=1 
ti t w(y M ) • 

for all y = (y1 , ••. ,yn) E y 
n n and M E ~ • For each 

... 
J € ID we let 
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M(J) = (u1(j 1), ..• ,ud(jd)). We then have the following crucial relations: 

(2.20) l l l P(B(J)IM(i)) N... ... 
J € ID · i € IJ 

~ l l P(A(i)IM(i)) 
N 'T' -

J. E I 

~ 1 - A. 

Therefore the system 

(2.21) {(;,B(J))I~ = (u1(j1), •.. ,ud(jd)) 

for all J = (j 1, ..• ,jd) € ID} 

is a code (1, N, A) for the one-way channel whose channel probability 

function is given by (2.17). Consequently Fano's Lemma yields 

(2.22) ~ < R(µ(·),P(•I·)) + 1 log N - 1 _ A 

where R(µ(•),P(•I·)) is as defi~ed in (2.1) of Ulrey (1973). Now 

(2.23) R ( ~ ( • ) ,P ( • I • ) ) 

= I I l µ(M)µ(M)P(y IM,M) 
P(y IM) 

log n 

~ ~ M€j Yn 
€ y n I P(y IM)µ(M) M € 11t. n n ~ ~ 

M € ?1t. 

l µ{M)µ(M)P(y IM,M) 
P(y IM,M) 

I I - log n 

~ gE?ft Yn € y n I P(ynlM,M)µ(M) M € '>Ii n ~ ~ M€"'11. 

Next consider for fixed M € i_ the expression 

. 



(2.24) 
P(y IM,M) l l ;(M)P(y IM,i) log ____ n __ _ 

~ ~ y e y n f P(ynlM,M)µ(M) 
Me1J'L n n l 

ME 'i 

By a standard theorem of information theory ( see p. 75 of Gallager, 1968) 

expression (2.24) is less than or equal to 

n 
(2.25) I I 

t=1 ~ E 

By definition expression (2.25) is equal to 

(2.26) 
n 
l R(~,w(•l•,Mt)). 

t=1 

- -1 :-.n) In the above M = (M , ••• ,M was fixed. We now take the expectation of 

(2.24) with respect to ii(·). We obtain, using (2.25) and (2.26), that 

(2.27) R(µ(•),P(•i·)) 

t( t) ~t(~)-t(-t) ( t) . . . ( ) Here p M = µ M µ ·· M · , and ~ p is as defined in 2.3 of Ulrey 

(1973). Now comparing (2.27) with (2.22) we obtain (2.6) for the case 

1 ~ d ~ s-1. The case d = s is immediate. Hence the Lemma is proved. 

7 
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