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Asymptotically optimum rank tests for contiguous location and scale 
. *) alternatives 

**) Yves Lepage 

Abstract 

The problem of testing identity of distribution against alternatives con­

taining both location and scale parameters is studied. Conditions are given 

to obtain contiguous location and scale alternatives and, for those alternat­

ives, an asymptotically most powerful rank test is found. The results are 

then specialised to the two-sample case. 

1. Introduction 

In the paper of Hajek (1962) and the book of Hajek and Siaak (1967), 

the problem of testing the null hypothesis of randomness versus contiguous 

location alternatives or contiguous scale alternatives was treated. In each 

case, an asymptotically most powerful rank test is found. In this paper, 

the problem of testing the null hypothesis of randomness versus contiguous 

location and scale alternatives is considered. The approach adopted follows 

that of Hajek and Sidak (1967) and many of our proofs are similar to theirs. 

Section 2 contains the basic notations and tools that will be needed. 

In section 3, conditions are given to provide contiguous location and scale 

alternatives and the asymptotic distribution of linear rank statistics under 

such contiguous alternatives is found. In section 4, the notion of asymp­

totic sufficiency is explored to deduce a rank test asymptotically most 

powerful among all tests while in section 5 all the results are specialised 

to the two-sample case. Sections 6, 7 and 8 contain the proof of the results 

of respectively sections 3, 4 and 5. 

*) 

**) 
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2. Notations and conditions 

Let N (v=l,2, ••• ) be a sequence of positive integers such that N + 00 
V V 

when v + 00 • For each v, consider a sequence of random variables 

xv 1, ••• , XvN and denote by Rvi the rank of Xvi among xv 1, ••• , XvN. 
V V 

Suppose that under Hv' the random variables xv 1, ••• , XvN are inde­
v 

pendently and identically distributed according to a continuous distribution 

and that under Kv' the joint density of (Xv 1, ••• ,x._,'Nv) is given by 

(2. 1) 

with cv = 

density f 

such that 

(2.2) 

and 

(2.3) 

~ = II 
i=l 

N NV 
(cv1, ••• ,cvN) €lR v, dv = (dv1, ••• ,dvN) €lR and a known 

V V 

in the class C of absolutely continuous density functions onll 

I(f) = fl , 2(u,f)du < 00 , 

0 
I 1(f) fl 2 

= , 1 (u,f)du < 00 

0 

fl ,(u,f)du = fl , 1(u,f)du = 0 
0 0 

where if F(x) is the distribution function corresponding to f(x), 

(2.4) 

0 < u < 1. 

-· Let c = 
V 

-1 f ' (F - I ( u) ) 
= - 1 - F (u) ----

f (F-l (u)) ' 

NV 

l c.,1• /N.,, d., = 
i=l V V V 

do (d -d d -d) We now define some sets of conditions for the v = vt- v' 000
' vN - v • 

V 

vectors cv and dv. 



Condition A. 

(i) 
- 2 lim max (c .-c ) = 0. 

1 . N Vl. V 
~ <1.< --v 

(ii) For v = 1,2, .•• , cvi - cv IO (i=l, ••. ,Nv). 

(iii) There exists a real number K such that 

lim max (e .(c .-c )- 1-K) 2 = 0 where 
~ l<i<N Vl. Vl. V 

--v 

ev1.· = d. - d .exp(-c .+c ), i = 1, ... , NV. 
Vl. V Vl. V 

It is easily seen that condition A implies lim max 
v-+a> l<i<N --v 

For KE JR and f EC, define 

(2.5) f 1 2 
I(f,K) = ~ (u,f,K)du 

0 

where 

(2.6) ~(u,f,K) = K~(u,f) + ~l (u,f), 0 < u < 1. 

Condition B. 

(i) Condition A is satisfied. 
N 

2 
e . = O. 

Vl. 

(ii) For f E c, lim 
~ 

V - 2 2 2 
/, (cv·-cv) . I(f,K) = b where O < b < oo. 

i=l 1. 

3 

Consider a 

vectors ( cv, dv) 

statement. 

N NV 
sequence of subsets Mv of JR v x ]R • We will define for the 

E Mv, an analogue of conditions A and B by the following 

Condition M. 

(i) . lim sup max - 2 (c .-c ) 
Vl. V 

= o. 
V-+al (cv,dv) E MV l<i<Nv 

(ii) For each (cv,dv) EM, c. - c IO (i=l, ..• ,N; v=l,2, •.. ). 
V Vl. V V 

(iii) There exists a real number K such that 
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(2. 7) 

lim sup 
v-+-® (c ,d ) 

V V 

(iv) For f E c, 

for all v. 

E M 
V 

if 02 
V 

max (e .(c .-~ )-1-K) 2 = O. 
l<i<N vi vi v 
--V 

Nv 
= l. 

i=l 

The linear rank statistics considered are of the form 

NV 
with y = 

V 

NV 
(yvt'··•,YvN) Ell , 

V 
Yv = l Yvi/Nv and av(l), ••• , av(Nv) the 

i=l 
values of a score function av(.). The usual regularity condition on the 

vectors of constants y is represented by 
V 

Condition D. N 

(i) For v = 1,2, ••• , 
V - 2 I <Yvi-yv> > o. 

i=I 

We will say that a sequence of score functions¾(.), v = 1,2, .•• , is 

generated by a real valued function $(u), 0 < u < 1, if 

(i) J: ,2(u)du < ~ and ( (Hu)-$/du > 0 where 4> = I: Hu)du, 

(ii) ~ f: (av(l+[uNvl)-,(u)) 2du = 0 with [uNv] denoting the largest 

integer not exceeding uNv. 

In Hajek and Sidak (1967) (p. 158, 164-165), one can find methods for con­

structing score functions that are generated by a given function $(u). 
(1) (Nv) 

Further, for an ordered sample U < ••• < U from the uniform 
, V V 

distribution on [0,1], we will let 

(2.8) 



i = I, ..• , Nv; then, one can easily show that if f EC and KE JR, the 

sequence of score functions 

(2.9) 

v = 1,2, •.. , is generated by ~(u,f,K), 0 < u < 1. 

5 

Finally, ~(.) will denote the standardized normal distribution function 

and k 1 , the (1-a)-quantile of the standardized normal distribution. By 
-a 

convention, for cr2 = O, we will let 

(2. 10) = { 1 if 

0 if 

X ~ 0, 

X < 0. 
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3. Asymptotic distributiort·urtder·corttiguous·a1tematives 

Under H , it is well 
\) 

,I 

known from Hajek (1962) or Hajek and Sidak (1967), 

p. 163, that if condition Dis satisfied and a(.), v = 1,2, ..• , are gene-
v 

rated by a function <f>(u), 

are asymptotically normal 

0 < u < 1, then, the statistics S given by (2.7) 
2 \) 

(O,cr) with 

N 
\) 

(3. 1) 
2 

(J = 
\) I 

i=l 
II 2 

0 (<f> (u)-~) du. 

For the: alternatives K defined by (2,1), the following results will 
\} 

be proved in section 6. 

Theorem 3.1. Suppose that a sequence of vectors c and d satisfies con-v \) 
dition B. Then, K are contiguous to H. 

\) \} 

Theorem 3.2. If a(.), v = 1,2, ... , are generated by a function <f>(u), 
\) 

0 < u < I, if conditions D and A are satisfied and if for v = 1,2, ... , 
N 

v - 2 2 2 l (cv1.·-cv) ~ b (0 .::_ b < 00 ) 

i=l 
(2.7) are asymptotically normal 

then under K, 
\) 

2 
(µv,cr) with 

the statistics S given by 
\) 

(3.2) µ = 
\) 

N 
\) 

I 
i=l 

(c .-c )(y .-y ) 
\) l. \) \) l. \) I: O(u)O(u,f,K)du 

2 
and av given by (3.1). 

Beran (1970) has found the asymptotic distribution of linear rank 

statistics under contiguous alternatives indexed by a q-dimensional para­

meter. Although his results are more general, the conditions under which 

they hold are non comparable with the conditions obtained here for the 

special case of the location and scale parameters. For example, if N is a 
\} 

multiple of •~ (v=l, 2, ... ) and we define 

0 if 1 < l. < N /2 - \) 

-1 
(3.3) C = (N ) 2 if N /2 < i < 3N /4 

vi \) \) \) 

-1 
-(N) 2 if 3N /4 < i < N 

\} \) - \} 



and, 

(3.4) cl • = 
\)1 

_I 

-(N) 2 if 1 < i < N /2 
\) - - \) 

-i 
(N )2. if N /2 < i < 3N /4 

\) \) - \) 

0 if 3N /4 < i < N 
\) - \) 

7 

(v=l,2, •.. ), one can easily verify that condition (3.20) of Beran is satis­

fied while our condition A is not. On the other hand, the double-exponential 

density function belongs to our class C but it fails to satisfy Beran's 

condition A. 
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4. Asymptotic sufficiency and·asymptotic optimality 

The definition of asymptotically sufficient for distinguishing between 
,I 

Hv and Kv, given by Hajek and Sidak (1967), p.243-245, can be reformulated 

for the problem considered here in the following way. 

Definition 4.1. The vectors of ranks Rv = (Rv1, ••• ,RvN) is asymptotically 

sufficient for distinguishing between Hv and v 

(4 .1) K =· {q : (c ,d) € M} 
V V V V V 

N NV 
where q is given by (2.1) and M is a subset of ll v x 'JR , if 

V V 

(i) there are densities Pv = Pv<x1,··o'~ ;~v,dv) € Hv and rank 

. statistics hv = hv(rv1, ••• ,rvNv;cv,d~1 such that for 

(ii) 

(c ,d) EM, the functions 
V V V 

0 
q = p • h 

V V V 

are densities (v=l,2, ••• ). 

II q -q0 II = O where II p-q II 
V V 

€ M 
V 

L1-distance of two probability 

II p-qll = f lp-qldµ 

densities: 

denotes the 

withµ being a a-finite measure with respect to which the 

densities are defined. 

The following results will be proved in section 7. 

Theorem 4.1. If the sequence Mv satisfies condition M, the vector of ranks 

R" is asymptotically sufficient for distinguishing between H and K where 
V V V 

K is given by (4.1). 
V 

Theorem 4.2. 

the sequence 

maximin most 

Consider testing H versus K given by (4.1) and, assume that 
V V 

M satisfies condition M. Denote by B(a,H ,K) the power of the 
V V V 

powerful test, and by B(a,Hv,Kv) the power of the maximinmost 



9 

powerful rank test. Then, 

(4.2) 

From theorem 4.2, the asymptotically maximin most powerful test for 

Hv versus Kv can be found among the tests based on ranks. The theorem, how­

ever, does not specify this test. For the special case where for v = 1,2, ••• , 

the subset M contains a unique pair of vectors (c ,d ), the following --v V V 

theorem 4.3 provides an alternate proof of the result of theorem 4.2 

and specifies the asymptotically most powerful test explicitly. 

Theorem 4.3. Suppose that the sequences of vectors c and d satisfy con-v V 
dition B. Then, the test based on 

N 

(4. 3) so= 
V 

V 

I 
i=l 

(c .-~ )a (R .,f,K) 
VJ. V V VJ. 

with critical region se ~ k1_ab is an asymptotically most powerful test for 

Hv versus qv at level a. Furthermore, the asymptotic power is given by 

1 - «>(k1_a-b). 

CoroZZary 4.1. The results of theorem 4.3 still hold if the score functions 

•v(.,f,K) are replaced by score functions av(.) generated by <l>(u,f,K), O < u < 1. 

CoroZZary 4.2. In theorem 4.3 and corollary 4.1, the densities q can be 
V 

replaced by 

-(c .+w) -(c .+w) 
(4.4) 

VJ. VJ. e f(e x.-d .) 
J. VJ. 

where-w € JR is unknown and, the test based 

uniformly most powerful test for H versus 
V 

0 
on Sv 

{4v,w 

is then an asymptotically 

: w € JR} at level a. 

If we let d. = 0 (i=l, ••• ,N and v=l,2, ••• ) in theorem 4.3, we obtain 
VJ. V 

the solution of Hajek and Sidak (1967), p.250-251, for scale alternatives. 

Their solution for location alternatives can also be obtained by transposing 

the expressions of sections 3 and 4 in terms of (d .-d) instead of 
VJ. V 

(c .-~) and then, setting c. = 0 (i=l, ••• ,N and v=l,2, ••• ). 
VJ. V VJ. V 
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5. Two-sample case 

Let (11\,,nv), v = 1,2, ••• , be a sequence of pairs of positive integers 

such that NV= mv + nv ➔ m when v ➔ m. For each v, define 

J 
I). (m n /N )-l/2 if i = 1 , ••• , mv 1 V V V 

C • = Vl. 

l (5. 1) 0 if i = m +1, ••• , N 
V V 

,, 
I). (m n /N )-l/2 I if i = 1, ••• , mv 

I 
2 V V V 

d . = < Vl. 
I 
I 0 if i = mv +1, ... , Nv 

' 
where I). 

2 = (l). 1,1).2) e R. The density (2.1) can now be rewritten as 

(5.2) 

m 
V 

qv I).= IT exp(-1).l(m n /N )-l/2)f(exp(-l). (m n /N )-l/2)x 
, i=l V V V 1 V V V i 

- I). (m n /N )-l/Z) 
2 V V V 

N 
V 

IT f(x.) 
i=m +I 1 

V 

where f is a density function in C. In the following theorem, the asymptotic 

distribution, under q A, of statistics of the form (2.7) is given. v,u 

Theo~em 5.1. Let av(.), v = 1,2, ••• , be a sequence of score functions gener­

ated by a function ~(u), 0 < u < 1, and y . = 1 if i = 1, ••• , m or,= 0 if Vl. V 

i = m +1, ••• , N (v=l,2, ••• ). Then, if l).l ~ 0 and min(m ,n) ➔ m when v ➔ m, 
V V -l/2 V V 

the statistics (m n /N) S where S" is given by (2.7) are, under q A' 
V V V V V v,u 

asymptotically normal with mean 

(5.3) fol ~(u)(l).2~(u,f) + l).l ~1(u,f))du 

and variance 

(5.4) fol (~ (u) - ~/du. 



The asymptotically optimum tests for H\J versus q,\J ,ti are given in the 

following theorems. 

I I 

Theorem 5.2. Suppose that min(m ,n ) + oo when v + co. Then, the test based on 
\) \) 

(5.5) 
~ 

= l a (R .,f,ti 2/ti 1) 
\) \) l. 

i=I 

with critical region 

(5.6) 

is an asymptotically most powerful test for H versus q where ti 1 IO, at 
v v,li 1/2 

level a. Furthermore, the asymptotic power is given by I - ¢(k1_a-1ti 11I (f,ti2/ti 1)). 

Theorem 5.3. Suppose that min(m ,n) + 00 when v + co and let 
\) \) 

(5.7) S' = 
\), D. 

m 
\) 

l 
i=l 

a (R .,f,t). 
\) \)l. 

The test based on S' with critical region 
v,ti 

(5. 8) ( m n /N ) - I/ 2 S' > k I 1 / 2 ( f fl ) 
v v v v,ti - 1-a ' 

is an asymptotically uniformly most powerful a level test for H versus 
\) 

{qv,ti : Iii > O:, !izl Iii = t}. 

The test based on S' A with critical region 
\) ,o 

(5.9) (m n /N )-112s 1 < k r 112(f fl) 
v v v v,ti - a ' 

is an asymptotically uniformly most powerful a level test for H versus 
\) 
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Corollar-y 5.1. In theorems 5.2 and 5.3, the densities q A can be replaced v,u 
by 

(5.10) 

m 
\) 

qv' 11 = IT exp(-11 1 (m n /N )-½)f(exp(-11 1 (m n /N )-½)(x.-112(m n /N )-½)) 
' i=l "" " "" " i "" " 

NV 

n f(x.). 
. 1 i i=m + 

\) 

Corollary 5.2. In theorems 5.2 and 5.3, if the densities q A are replaced by v,u 

(5.11) 

m 
\) 

qv A,.,= IT exp(-11 1(m n /N )-l-w)f(exp(-111(m n /N )-½_w) 
,u,..., i=l "" " "" " 

N 
-i \) -w -w 

x.-112(m n /N) ) IT e f(e x.) 
i v v v i=m +l i 

\) 

where w EJR is unknown,then the test based on S A with critical region \) ,u . 
given by (5.6) is an asymptotically uniformly most powerful a level test 

· for Hv versus {qv,li,w: 11 1 IO, w E lR}, the test based on s~,li with critical 

region given by (5.8) is an asymptotically uniformly most powerful a level 

test for H versus {q A : 11 1 > O, 112;11 1 = i, w ElR.} and the test based \) v,u,w 
on S' A with critical region given by (5.9) is an asymptotically uniformly v,u 
most powerful a level test for H versus {q A : 11 1 < O, 112/11 1 = i, w E lR}. \) v,u,w 

Corollary 5.3. The results of theorems 5.2, 5.3 and corollaries 5.1, 5.2 still 

hold if the score functions a (.,f,i) are replaced by score functions a(.) 
\) 

generated by ~(u,f,i), 0 < u < 1. 



6. Proof of the results of section 3 

( 6. 1) 

Define for i = 1, ..• , N and v = 1,2, ••• the real functions 
V 

exp(-1/2(c .-c ))s(exp(-c .+c )-e .) - s(x-e .) 
() vi v vi v vi vi 

k . X = ------------=---=--::.=...----=-vi 
C . - C vi V 

s(x-e .) - s(x) vi 
1 .(x) = -------vi 

C , - C vi V 

h . (x) = k . (x) + 1 . (x) vi vi vi 

13 

with s(x) = [f(x)J 112 where f(x) is a density function in C. For the proof 

of theorem 3.1, the following lennnas are needed. 

Lemma 6.1. Suppose that the sequences of vectors c and d satisfy condition 
V V 

A. Then, 

lun max 
v+oo l<i<N 

--v 
foo (h .(x) + ½s(x) + (x+K)s'(x)) 2dx = 0. 

_ 00 vi 

Proof. Observe first that max 
l<i<N 

Joo 2 
h .(x)dx< vi oo' V = 1 , 2, ••• , and 

-oo 

(6.2) I(f,K) = 4 f:
00

(~!~(=) - (x+K)s'(x)) 2dx < 00. 

Also, since s(x) is absolutely continuous, we have for almost all x 

(6.3) 
hl 

lim s(e x+h2) = s(x) 
h +O 
h~+O 

and lim s(y) - s(x) = SI (X) • 
y+x y - X 

From condition A and (6.3), we deduce that for almost all x 

lim max k . (x) = -½s(x) - xs'(x), 
l<i<N vi 

v➔oo 

--v 
(6.4) lim max 1 .(x) = -Ks'(x), 

1 <i<N vi 
v➔oo 

--v 
lim max h . (x) = -½s(x) - (x+K) s' (x) . 

l<i<N vi 
'y-+00 

--v 
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Furthermore, by the Cauchy-Schwarz inequality, we have 

(6.5) 

and, 

(6.6) 

C .-c 3t [--- f Vl. V 1 -it -t - T -t 2 
= cvi-cv O (-2e s(e x-evi)-e xs'(e x-evi))dt] 

2 1 . (x) = 
VJ. 

[ 1 
C .-c 

Vl. V 

e . 
\IL 

< -
- C .-c vi v 

cV:i.-cv _ 3t 

f -h -t 2 -t 2 (-ie s(e x-evi)-e xs'(e x-eVi)) dt 
0 

tvi 
Jo (-s'(x-t))dt] 2 

e . 

f, Vl. 2 

0 
(-s' (x-t)) dt 

so that by Tonelli's theorem 

C .-~ 3 

fco 2 1 f \JL V fco -h -t -tt -t 2 
k . (x)dx ~ . __ · (-ie s (e x-ev. )-e xs' (e x-ev.)) dxdt 

-co V1. cvi cv O -co i i . 

(6. 7) 

and, 

(6.8) 

= fco (-is(x)-(x+e .)s'(x)) 2dx 
VJ. -co 

2 e . 
1 .(x)dx < vi 

Vl. - (c .-c >2 fevi fco 2 
(-s' (x-t)) dxdt 

0 -co 
Vl. V 

2 
evi fco 2 = 2 (-s'(x)) dx. 

(c .-c) -co 
Vl. V 

We can thus conclude from (6.4), (6.7) and (6.8) by means of theorems 
" II.4.2 and V.1.3 of Hajek and Sidak (1967) that 



(6.9) 

and 

(6.10) 

lim max 
v-+oo 1 <i <N --v 

foo (k .(x) + ½s(x) + xs'(x)) 2dx = O 
\) l. 

-oo 

lim max f00

_~(lvi(x) + Ks'(x)) 2dx = O. 
v+oo l<i<N ---v 

Consequently, the result follows. D 

For a density function f EC and a sequence of vectors cv and dv 

satisfying condition A, define for v = 1,2, ••• the statistics 

(6.11) 

(6.12) 

and 

(6.13) 

where for i 

(6.14) 

N 
\) 

T = - I 
v i=l 

-c 
\) -

(c .-c )[1 + (e X .-d +K) 
\)l. \) \)l. \) 

-c . -c . 

-cv -
f' (e X . -d ) 

\)l. \) J 
-c , 

f(e vx .-d) 
\)l. \) 

N 
\) 

I 
v1.f(e v1.x .-d .) 

Vl. Vl. ) ½ - 1]' 
e 

[( -c -c 

¼ 

= 

i=l 

N 
\) 

= TI L . 
i=l VI. 

1 ' ••• ' N 
\) 

e vf(e vx .-d) 
\)l. \) 

-c . -c . 
e v1 f(e v1.X .-d .) 

\)l. \)l. Lvi = --_-c ____ c ____ _ 
e vf(e vx .-d) 

\)l. \) 

15 

Lemma 6.2. Suppose that the sequences of vectors cv and dv satisfy condition 

B. Then, we have 

lim E(J ) = -!b2 
\) 

"\)+00 

and lim Var(J -T) = 0 
\)+CO \) \) 
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under P" where P" is the probability measure corresponding to the density 

Nv -~- -c 
" " -Pv = n e f (e xi-¾). 

i=l 
(6.15) 

Proof. Obviously 

(6.16) 

and, 

(6.17) 

= -

2 
Var(Jv -Tv) ~ E (Jv -Tv) 

= 4 rv (°'1.-i\,) 2 f00 
(1',,(x) + ½s(x) + (x+K)s'(x)) 2dx. 

i=l 1 -1:JO 1 

Thus, by letmna 6.1 and part (ii) of condition B, the lemma is established. D 

Lemma 6.3. Suppose that the sequences of vectors c and d satisfy condition 
" " A. Then, for arbitrary e > O, 

lim max P (IL .-ti > E) = 0 
\)-+-co l<i<N " " 1 

- - " 
where P" is given by (6.15). 

Proof. We have by part (i) of condition A and lemma 6.1 that under P", 

(6. 18) lim max 
\)-+-co l<i<N --v 

E(li:" .-1) 2 = O. 
\11 

Thus, by the Markov inequality and corollary 5.1.2 of Billingsley (1968), 

the lemma is established. D 

Proof of theorem 3.1. From lennna 6.2 and since that under P 
" 

(6.19) E(T) = 0 

" 
and 

2 
lim Var(T) = b , 

" 



it follows that under P 
V 

(6.20) lim E(J -T +1b2) 2 = 0 V V 4 • 
v+oo 

17 

By theorem V.1.2 of Hajek and Sidak (1967) we have Tv asymptotically normal 
2 -(O,b) under Pv and by (6.20) we have then that Jv are asymptotically normal 

(-¼b2 ,b2) under P. This entails with lemma 6.3 and Le Cam's second leIIDD.a 
V 

✓ 

(see Hajek and Sidak (1967), p.205) that 

(6.21) lim P (jln L -J +½b2 j > e) = 0 
\)-ND V V V 

2 2 -for arbitrary e > 0 and, ln Lv asymptotically normal (-½b ,b) under Pv. 

Consequently, since P EH, the corollary of Le Cam's first lemma (see 
V V 

✓ 

Hajek and Sidak (1967), p.204) completes the proof. D 

For i - 1, •.• , N and v = 1,2, ••• , we introduce the random variables 
V 

(6. 22) u . vi 

where Fis the distribution function of a density f EC. Under Pv, the 

random variables uv 1, ••• , UVN are independently uniformly distributed on 
V 

[0,1]. The next two lennnas are needed in the proof of theorem 3.2. 

Lemma 6.4. Let a(.), v = 1,2, ••• , be a sequence of score functions generated 
V 

by a function cj>(u), O < u < 1, and assume that the sequence of vectors Yv 

satisfies condition D. Then, for S given by (2. 7) and 
V 

(6.23) Tcj> = 
V 

N 
V 

I 
i=l 

we have for arbitrary e > 0 

lim P (\s -T~I > e) = O 
V V V 

\)'+00 

where P is given by (6.15). 
V 
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The proof of this lemma is similar to the arguments of Hajek and Sidak 

(196 7) , p. l 60- l 61 and l 64-165 • 

Lemma 6.5. L1at av(.), v = 1,2, ••• , be a sequence of score functions generated 

by a function cji ( u) , 0 < u < 1 , and suppose that the sequences of vectors ~ 

and dv satisfy condition B. Assume also that the sequence of vectors Yv 

satisfies condition D and, 

(6.24) 

NV 

lim l ( CV ccv )(y v er v) = b 12 ' 
,)-+<X> i= 1 

Then, for respectively by (6.15), (6.23) and (6.11), we 

have that are asymptotically jointly 
2 

(J 

vector (0,0) and covariance matrix ( 

(6.25) 
2 ( l 2 

o = J
O 

(cji (u)-;j;°) du 

and, 

(6.26) a 12 •b12 1: t(u)t(u,f,K)du. 

Proof. Since from (6.11) and (6.22), we can write 

N 

(6.27) T = 
V 

V 

I (cvi-cv)t(Uvi'f,K), 
i=l 

normal with mean 

the proof of this lemma is obtained by arguments similar to Hajek and 
J 

Sidak (1967), p.217-218. □ 

Proof of theorem 3.2. Without loss of generality one can suppose that 

(6.28) 

N 
V 

I 
i=l 

Then, from condition D, it follows that 

(6.29) lim max 
v+oo l<i<N --v 

- 2 
(y~-y) =O. 

V-'- V 

It is sufficient to prove the theorem under the additional assumptions: 



(6.30) 

and, 

(6.31) 

Nv 

lim l (S>i-~)(Yvf""Yv) = b12 
~-00 i= 1 

Nv 

lim l (cvccv) .I(f,K) = bi with O .::_bi< 00 

\H= i=l 
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Indeed, if the theorem were false, there would exists a subsequence of {v} 

with the property that for all its subsequences the theorem would fail to 

hold. However, every subsequence has a further subsequence such that (6.30) 

and (6.31) hold. That the theorem is true under the assumptions (6.28), 

(6.29), (6.30) and (6.31) can be seen as follows. 

Suppose first bi> O. From (6.20), (6.21) and lennna 6.4, we have that 

under Pv, (Sv, ln Lv) has the same asymptotic distribution as (Tt,Tv-!bf). 

Thus, from lennna 6.5, it follows that under Pv, (Sv,ln Lv) is asymptotically 

cr2 cr 
jointly normal with mean vector (0,0) and covariance matrix ( !2) 

cr 12 b 1 

where cr 2 and cr 12 are respectively given by (6.25) and (6.26). By Le Cam's 

third lemma (see Hajek and hdak (1967), p.208), we conclude that Sv are 

asymptotically normal (cr 12 ,cr2) under Kv. 
2 ~ 

The case b 1 = O follows from the remarks of Hajek and Sidak (1967), 

p.210 and 219. This completes the proof. D 
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7. Proof of the results of section 4 

Before presenting the proof of Theorem 4.1, it is usefull to give the 

next two lemmas. 

Lemma 7.1. If the sequence Mv satisfies condition M, then, for p and s0 
V V 

given by respectively (6.15) and (4.3), we have 

(7 .1) lim sup P (lq /p -exp(s0-½e2)1 > £) = O 
\)-+00 (c ,d )EM V V V V V 

V V V 

for arbitrary£> 0. 

PPoof. We shall first show that (7.1) is implied by 

(7.2) lim sup P (lln(q /p )-s0+}e2 1 > e) = O 
\)-+00 ( C d ) EM V V V V V 

v' V V 

for arbitrary£> 0. 

Since E(q /p-) < 1, the Markov inequality gives us that for every 
V V -

n > 0, there exist o = o(n) > 0 such that 

Let a.= ln(1+£/o(n)) with£> O. From 

:P ({ I 1n(q /p )-s0+½e 2 1 < a.} n {qv/pv ~ o(n.)}) 
· V V V V V 

(7 .4) 

we may conclude that for every£> 0 and n > O, 

(7. 5) 

Then, by taking lim sup on each side of (7.5) and noting (7.2), we get 
\)-+00 (c ,d )EM 

(7.1). V V V 
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Now, (7. I) may be proved by reasoning similar to Hajek and Sidak 

(1967), p.246, i.e. by assuming that (7.1) is false thus, that (7.2) is 

false and th1en drawing a contradictory subsequence by making use of (6. 20), 

(6.21) and the fact that Tv - S~ + 0 in Pv-probability as v + 00 , which can 

be proved as in Hajek and Sidak (1967), p.161. D 

Lemma ?.2. Suppose that the sequence M, v = 1,2, ••• , satisfies condition 
\) ' 

Mand let {vk} be a strictly increasing subsequence of {v}. Then, for the 

sequence C v define by Cv = k if vk .::_ v < vk+ 1 , we have 

I - C lim sup 
·v~ (cv ,dv)EMv V 

2 - 0 exp(x-½0 )dP (S < x) 
V V V -

where P and s0 are respectively given by (6.15) and (4.3). 
V V 

Proof. From part (iv) of condition M, we may deduce 

(7. 6) 

lim 
v-+«> 

2 exp(x-½0 )d~(x/0 ) - 1 
V V 

= 0 

.::_ lim sup 

v-+«> ()< 0 2 < M 
-v-

cl> ( (C -M) /0 )-4 ( (-C -M) /0 ) - 1 
V V V V 

= o. 

Assume now the existence of an EO > 0 and a subsequence {v / c {vk} such 

that 

[\ 2 (SO f"i 2 
(7. 7) exp(x-½e }dP < x) - exp(x-½ 0 )dcI>(x/e ) 

-C V• v· V• -c V • V• 
J J J J J 

V• 
J 

V • 
J 

> EO, 

But, since the sequence Mv , J = 1,2, •.• , satisfies condition M, the sequence 
j 

{vj} contains a subsequence {vi} such that 

(7. 8) < 00. 

And, from Hajek and Sidak (1967), p.163, we have that under P the statistics 
\)i 
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are asymptotically normal (o,e 2 ). Let 
V.t 

(7.9) h~ (x) = 
R, 

exp(x-½8~) if lxl ~ C , 
R, VR, 

0 if I xi > Cv 
R, 

' 0 2 and denote by Ethe set of x such that ¾R,(~) + exp(x-½b) for some 

sequence xR. approaching x. Since the complement of Eis empty and the random 

variables h~ (S~) are uniformly integrable, we conclude from Billingsley 
R, R, 

(1968), p.32-34, that 

f CVR, 

2 - 0 (7.10) lim exp(x-½8v )dP (Sv ~ x) - 1 = O. 
R,-+oo -C R, VR, R, 

VR, 

Thus, by combining (7.10) with (7.6) we contradict (7.7). The proof is 

finished. D 

Proof of theorem 4.1. Let p = p where Pv is given by (6.15) and, define 
V V 

(7.11) 
exp(S~-½0~) if I s~I ~ O.v' 

if I s~I > cv 
where 

(7. 12) I\, = 

s0 is given by (4.3), P is the probability measure corresponding top 
V V V 

and C, v = 1,2, ••• , is a sequence of reals such that C > 0 and C +~when 
V V V 

v +~.This sequence will be specified later. 

Obviously, p € Rv and hv is a rank statistics depending on the vectors 
0 0 V Q 

Cv and dv only since 8v as the same property. Furthermore, the functions 

aO = p .h provide densities for (c ,d) € M~, (v=l,2, ••• ). Consequently, it 
"V vv vv "· 
remains to show that 

(7. 13) 



Since 

(7 .14) 

II p-qll = 2 f . (1-q/p)dP, we have 
{ q<p} 

II q -q0 11 = 2 f (h -exp(s0-le2))dP 
v v . { q /p <h } " " v v 

" " " 
+ 2 f (exp(S -le2)-q /p )dP • 

. { q /p <h } " v v v v 

" " " 
For each (c ,d) e: M, the absolute value of the first of the last two 

" " " integrals is bounded by ll-B- 11 and, the second integral is bounded by 
" 
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a exp(C) + e where€ (v=l,2, ••• ) is a sequence of positive real numbers 
" " " " and 

(7. 15) 

Consequently, 

(7.16) < 2 
C 

sup I 1-B-11 + 2e " sup 
(c ,d )e:M " (c ,d )e:M 

V V V V V V 

a + 2e. 
" " 

Let e > 0 be given. From lennna 7.1, for every integer k, there exists "k 

such that for v > "k 

ek sup P (exp(s0-10 2)-Q /p > 1/k) < 1/k. 
(c ,d )e:M V V V "\> V 

V V V 

(7.17) 

We can assume that the·sequence "k' k = 1,2, ••• , is strictly increasing and 

then, define 

(7. 18) 

From lemma 7.2, there exists v 1(e) such that for v > v 1(e) 

(7. 19) sup 
(c ,d )e:M 

V V V 

I 1-B-11 < e/6. 
" 

Fore" = 1/k if "k ~ v < "k+l' (7 .17) becomes 
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(7. 20) 
CV 

e sup a" < 1 / C" for v k i. v < "k~ 1 , k = · 1 ; 2, ••• 
(c" ,'\} )€~ 

Thus, there exists v 2 (e:) such that for " > " 2 (e:) 

c" 
e sup a" < e: /6 and e:" < e: /6. 

(~ ,¾)E:Mv 
(7. 2 I) 

From (7.19) and (7.21), (7.13) is deduce and the proof is complete. D 

Prioof of theoxaem 4.2. Using theorem 4.1, the result follows from Hajek and 
" - - 0 0 Sidal<. (1967), p.243-244, with a= (cv,¾) and b = (¾,¾)• D 

Proof of theorem 4.3. In view of theorems 3.1 and 3.2, the proof is similar 

to Hajek and Sidak (1967), p.251. □ 

Proof.of aoroZZary 4.1. From theorem 3.2, the asymptotic power of the 

test is 1 - w(k 1 -b) and thus, the result follows. D -a 

Proof of aoroZZary 4.2. Let c~i = cvi + w, i = 1, ••• , N". The sequence of 

vectors c~ and¾ satisfies condition B with the same K. Thus, since 

C. - C = c'. - c', the result is immediate. □ 
V1 V V1 V 
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a. Prcof of the results·ot·section 5 

Proof of theorem 5.1. It may be shown, by easy algebraic transformations, 

that the sequence of vectors~ and'\), defined by (5.1), satisfies condition 

B with 

(8.1) 

Also, from Hajek and Sidak (1967), p.162, condition Dis verified. Conse­

quently, the result is deduced from theorem 3.2.D 

Proof of theorem 5.2. The direct application of (8.1) in theorem 4.3 permits 

us to conclude the result. □ 

The other results are deduced from theorem 5.2. 
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