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Asymptotically optimum rank tests for contiguous location and scale

*)

alternatives

*%)

Yves Lepage

Abstract

The problem of testing identity of distribution against alternatives con-
taining both location and scale parameters is studied. Conditions are given
to obtain contiguous location and scale alternatives and, for those alternat-
ives, an asymptotically most powerful rank test is found. The results are

then specialised to the two-sample case.

1. Introduction

In the paper of Hajek (1962) and the book of Hijek and $idak (1967),
the problem of testing the null hypothesis of randomness versus contiguous
location alternatives or contiguous scale alternatives was treated. In each
case, an asymptotically most powerful rank test is found. In this paper,
the problem of testing the null hypothesis of randomness versus contiguous
location and scale alternatives is considered. The approach adopted follows
that of Hijek and $idak (1967) and many of our proofs are similar to theirs.

- Section 2 contains the basic notations and tools that will be needed.
In section 3, conditions are given to provide contiguous location and scale
alternatives and the asymptotic distribution of linear rank statistics under
such contiguous alternatives is found. In section 4, the notion of asymp-
totic sufficiency is explored to deduce a rank test asymptotically most
powerful among all tests while in section 5 all the results are specialised
to the two-sample case. Sections 6, 7 and 8 contain the proof of the results

of respectively sections 3, 4 and 5.
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2. Notations and conditions

Let Nv(v=l,2,...) be a sequence of positive integers such that Nv >
when v -+ o, For each Vv, consider a sequence of random variables

X

SEEREY Xva and denote by Rvi the rank of Xvi among le,..., X .

vN
v

Suppose that under Hv’ the random variables le,..., XvN are inde-
v

pendently and identically distributed according to a continuous distribution

and that under Kv’ the joint density of (le,...,Xva) is given by

N, _ -
Yi Di
(2.1) q, = ‘H e f(e xi—dvi)
1=1
Nv Nv
with ¢, = (cv],...,chv) eR 7, 4, = (dvl""’dVNv) e R  and a known
density f in the class C of absolutely continuous density functions on R
such that
1, 1 9
(2.2) I(f) = I $"(u,f)du < =, I](f) = J ¢1(u,f)du < @
0 0
and
1 1
(2.3) I ¢(u, £)du = [ ¢1(u,f)du =0

0 0

where if F(x) is the distribution function corresponding to f(x),

£' - £f'(F
(2.4) 0u,6) = - EE_W) g g (u,0) = -1 - F ) HEW)
£(F " (w) £(F "(u)
0<ucx<l,
NV _ Nv 0 _ _
Let ¢, = .2 cyi/Ny» d, = .z d: /N, g = (e e s..0se o —c ) and
i=1 i=1 v
dg = (dvl—av,...,vav-av). We now define some sets of conditions for the

vectors c and dv'



Condition A.

(i) 1lim max (c_.-c )2 = 0.
R V1 Vv
v 1<1<N
—_—v
(i) For v = 1,2,..., ¢y — ¢y # 0 (i=1,...,N).

(iii) There exists a real number K such that
2

. - -1
lim max (evi(cvi_cv) -K)® = 0 where
V> 1<i<N
— ="
e = dvi - dv.exp(-cvi+cv), i=1,..., N, .
It is easily seen that condition A implies 1lim max e2. = 0.
v 1<iSN T
For K € R and f € C, define
! 2
(2°5) I(f’K) = f ¢ (ussz)du
0
where
(2.6) ¢(u, £,K) = Ké(u,f) + ¢,(u,£), 0 < u < 1.
Condition B.
(i) Condition A is satisfied.
o - .2 2 2
(ii) For f e C, 1lim ) (cy;=c,)” - I(£,K) = b where 0 < b” < =.
Vo i=]

N N
Consider a sequence of subsets M) of R° xR °. We will define for the

vectors (cv’dv) € Mﬁ’ an analogue of conditions A and B by the following

statement.

Condition M.
(1) . 1lim sup max (c_.-c )2 = 0.
v (c ,d ) € M  1<i<N viowv
vy v ==

- Ev #0 (i=1,...,N ; v=1,2,...).

(ii) For each (Cv’dv) € Mv’ c v

vi

(111) There exists a real number K such that



lim sup max (e '(cvi_Ev)_l_K)
Voo (c\)’d\)) € M\) 1<i<N,
N,
. o2 - .2 2
(iv) For £f ¢ C, if 6 = Z (c.:=c. )" . I(£,K), sup f° < M < =
Vo= VPV (c,pd) eM * 7
AVE) v
for all v.
The linear rank statistics considered are of the form
N
v
(2.7) s, = L (v,;7v))a (R.)
i=1
N
Nv _ v ,
with Y, = (le""’Yva) eR , Y, = Z Yvi/Nv and av(]),..., av(Nv) the

i=1
values of a score function av(.). The usual regularity condition on the

vectors of constants Y, is represented by

Condition D. N
v - .2
(1) For v = 1,2,..., iZ] (Yvi‘Yv) > 0.
N
(ii) lim [ Z (¥, :7Y,) 2/ max (,:7Y,) 2] =
v i=] 1<1<N

We will say that a sequence of score functions av(.), v =1,2,..., is
generated by a real valued function ¢(u), 0 < u < 1, if

1

(¢(u)—$)2du > 0 where ¢ = I ¢ (u)du.
0 0

1

Iy
(i) f ¢ (u)du < © and J
0

1
(ii) 1lim f (av(l+[qu])—¢(u))2du = 0 with [qu] denoting the largest
v 70
integer not exceeding uN .

In Hijek and éidék (1967) (p. 158, 164-165), one can find methods for con-

structing score functions that are generated by a given function ¢(u).
g y %

Further, for an ordered sample U(]) from the uniform

dlstrlbutlon on [0,1], we will let

(2.8) a (i,f) = E¢(U§i),f) and a; (i,f) = E¢ (U(l) £),



1=1,..., Nv; then, one can easily show that if f € C and K € R, the

sequence of score functions
(2.9) a\)("f’K) = Ka\)(ogf) + al\)(°’f)’

v=1,2,..., is generated by ¢(u,f,K), 0 < u < 1,

Finally, ®(.) will denote the standardized normal distribution function
and kl—a’ the (1-a)-quantile of the standardized normal distribution. By

. 2 .
convention, for ¢~ = 0, we will let

1 if x > 0,

(2.10) ®(x/0)
0 if x < 0.



................................

Under Hv’ it is well known from Hijek (1962) or Hijek and §idék (1967),
p. 163, that if condition D is satisfied and a, (.)s v=1,2,..., are gene-
rated by a function ¢(u), 0 < u < 1, then, the statistics S given by (2.7)
are asymptotically normal (O, o, ) with

2 -2 ! -2
(3.1) o, = izl Gy 7)) JO (¢ (u)-¢) " du.

For the alternatives Kv defined by (2.1), the following results will

be proved in section 6.

Theorem 3.1. Suppose that a sequence of vectors c, and dv satisfies con-

dition B. Then, Kv are contiguous to Hv'

Theorem 3.2. If av(.), v =1,2,..., are generated by a function ¢(u),

0 <u=<l, if conditions D and A are satisfied and if for v = 1,2,...,
N

2 (Cvi-_v)z < b2(0 < b2 < ) then under K , the statistics Sv given by
i_
(2.7) are asymptotically normal (u 20 ) with
Nv _ ) 1
(3.2) ‘UV = izl (Cvi—cv)(Yvi-YV) . {0 ¢(u)¢(u’sz)du

and ci given by (3.1).

Beran (1970) has found the asymptotic distribution of linear rank
statistics under contiguous alternatives indexed by a q—-dimensional para-
meter. Although his results are more general, the conditions under which
they hold are non comparable with the conditions obtained here for the
special case of the location and scale parameters. For example, if Nv is a

multiple of 4 (v=1,2,...) and we define
0if 1 <1 S_NV/Z

_1
= 2 3 .
(3.3) i q (Nv) if Nv/2 <1 5_3Nv/4

-1
_ 2 . .
(N,) * if 3Nv/4 <i<N
N



and, /
'(N\))—% if1<i<N/2
-1
- ? . .
(3.4) d\)i = ¢ (N\)) if N\)/Z <ix< 3Nv/4
0 if 3N /4 < i <N
v =

N

(v=1,2,...), one can easily verify that condition (3.20) of Beran is satis-—
fied while our condition A is not. On the other hand, the double-exponential
density function belongs to our class C but it fails to satisfy Beran's

condition A.



4., Asymptotic sufficiency and asymptotic optimality

The definition of asymptotically sufficient for distinguishing between
Hv and Kv, given by Hijek and §idak (1967), p.243-245, can be reformulated

for the problem considered here in the following way.

Definition 4.1. The vectors of ranks R, = (va"'°’RvN ) is asymptotically
sufficient for distinguishing between H  and v

(4.1) K = {q : (cv’dv) € Mv}

AY

N N
where q, is given by (2.1) and Mv is a subset of R ° xR v’ if
(1) there are densities P, = pv(x],...,xgv;zv,av) € Hv and rank
.statlstlcs hv = hv(rvl""’rvN ;cv’dv) such that for

(cv’dv) € Mv’ the functions

are densities (v=1,2,...).

o

o II'= 0 where || p-q|| denotes the

(ii)  1lim sup Il a,-q
v (c . ,d ) € M
AY) Vv V

Ll—distance of two probability densities:
Io-all = | lp-alan

with p being a o-finite measure with respect to which the

densities are defined.
The following results will be proved in section 7.

Theorem 4.1. 1f the sequence M satisfies condition M, the vector of ranks
R, is asymptotically sufficient for distinguishing between Hv and Kv where

K, is given by (4.1).

Theorem 4.2. Consider testing H  versus Kv given by (4.1) and, assume that
the sequence M satisfies condition M. Denote by B(a’Hv’Kv) the power of the

maximin most powerful test, and by E(a,Hv,KV) the power of the maximin most



powerful rank test. Then,

(4.2) \];_].;2 [B(a9HVsK\)) - B(G’H\):Kv)]

0, 0 <o < 1.

From theorem 4.2, the asymptotically maximin most powerful test for
Hv versus Kv can be found among the tests based on ranks. The theorem, how-
ever, does not specify this test. For the special case where for v = 1,2,...,
the subset M contains a unique pair of vectors (cv’dv)’ the following
theorem 4.3 provides an alternate proof of the result of theorem 4.2

and specifies the asymptotically most powerful test explicitly.

Theorem 4.3. Suppose that the sequences of vectors c, and dv satisfy con-
dition B. Then, the test based on
N

AY
= I (eymca (R ;,£,K)

0
AY . AV VARERVS §
1i=1

(4.3) S
with critical region Sg z_kl_ub is an asymptotically most powerful test for

H, versus q, at level a. Furthermore, the asymptotic power is given by
1 - 0k, _b).

Corollary 4.1. The results of theorem 4.3 still hold if the score functions

a\$.,f,K) are replaced by score functions av(.) generated by ¢(u,f,K), 0 < u <1,

Corollary 4.2. In theorem 4.3 and corollary 4.1, the densities q, can be
replaced by

=2

v =(c_ .+w) -(c .+w)
(4.4) q, ,= T e = fle ' x-d.)

where w € R is unknown and, the test based on Sg is then an asymptotically

uniformly most powerful test for Hv versus'{qv o b Y € R} at level oa.
b

If we let dvi =0 (i=l,...,Nv and v=1,2,...) in theorem 4.3, we obtain
the solution of Hijek and $idak (1967), p.250-251, for scale alternatives.
Their solution for location alternatives can also be obtained by transposing
the expressions of sections 3 and 4 in terms of (dvi—av) instead of

(cvi-cv) and then, setting Cyi = 0 (1=1,...,Nv and v=1,2,...).
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5. Two-sample case

Let (mv,nv), v =1,2,..., be a sequence of pairs of positive integers

such that Nv =m + n + ® when v >+ ©®, For each v, define

v
( -1/2 ... _
Al(mvnv/Nv) ifi=1,..., m
c.. =<
vi
(5.1 [0 if i =m+l,..., N
rd
-1/2 ...
E AZ(mvnv/Nv) ifi=1,..., m,
|
dvi - {
i
L 0if 1 = mv+l,..., Nv

where A = (AI’A2) eZRZ. The density (2.1) can now be rewritten as

m

\Y
(5.2) 4y 5 = izl exP(-A](mvnV/Nv)—]/z)f(exp(—A](mvnv/Nv)_l/z)x
N\)
- Az(mvnv/Nv)—]/z) I £(x,)
i=mv+1

where f is a density function in C. In the following theorem, the asymptotic

distribution, under q, a° of statistics of the form (2.7) is given.
]

Theorem 56.1. Let av(.), v =1,2,..., be a sequence of score functions gener-
ated by a function ¢(u), 0 < u < 1, and Yoi = 1if i =1,..., m, or, = 0 if
is= mv+1,..., Nv (v=1,2,...). Then, if Al # 0 and min(mv,nv) + © when vV + ®,

-1/2

the statistics (mvnv/Nv) Sv where Sv is given by (2.7) are, under dy,a°

asymptotically normal with mean
1

(5.3) f 0 (u) (B (u,£) + 4, ¢, (u,£))du
0

and variance

! -2
(5.4) f (6(u) - §)°du.
0
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The asymptotically optimum tests for HQ versus g are given in the
?

following theorems.

Theorem 5.2. Suppose that min(mv,nv) + o when v » ». Then, the test based on

m,
(5.5) Sy.0 = iz_] a, (R, ;5 £,0,/8 )
with critical region ’
-1/2 1/2
(5.6) (myny, /N) 05 /18 D8, 2k TN(EA )
is an asymptotically most powerful test for Hv versus q where A1 # 0, at
> 1/2

level o. Furthermore, the asymptotic power is given by 1 - @(k]_a-]AIII (£,0,/8))).

Theorem 5.3. Suppose that min(mv,nv) + o when v > » and let

m
v
v =
(5.7) 55,4 izl a (R ;,£,2).
The test based on S; A with critical region
3
-]/2 U 1/2
(5.8) (mn /N ) Sv,A >k TUT(ER)

is an asymptotically uniformly most powerful a level test for Hv versus
{q\),A : A] > 0, AZ/AI =2},

The test based on Sé A with critical region
3

/2, /

(5.9) (mn /M) 21 <k 1 (g0

is an asymptotically uniformly most powerful o level test for Hv versus
{qV’A : A] <0, AZ/A1 =L},
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Corollary 5.1. In theorems 5.2 and 5.3, the densities q, p can be replaced
H]
by v

m
%

: -1 =1 -
(5.10) qs A IIl exp(—Al(mvnv/Nv) 2)f(exp(-Al(mvnv/Nv) ;)(xi_Az(mvnv/Nv) %))
. > i=

N
v

il f(x.).
. i
1=m_+1

v

Corollary 5.2. In theorems 5.2 and 5.3, if the densities q, p are replaced by
9

m
\Y

I exp(-Al(mvnv/Nv)_%-w)f(exp(—Al(mvnv/Nv)—
i=1

Nl

(5.11) q

v,h,0 B ~®)

N
. v
_ -3 -W =W
X Az(mvnv/Nv) ) -H e f(e Xi)
1=mv+l

where w € IR is unknown,then the test hased on S with critical region

v,A
given by (5.6) is an asymptotically uniformly most powerful o level test

“for Hv versus {q : Al # 0, w € R}, the test based on S' with critical

v,A,w v,A
region given by (5.8) is an asymptotically uniformly most powerful o level

test for H  versus {qv,A,w : A1 >0, A2/A1 = 2, w €eIR} and the test based

on SG A with critical region given by (5.9) is an asymptotically uniformly
b

most powerful o level test for H versus {qv,A,w : Al <0, AZ/AI =2, w e R}
Corollary 5.3. The results of theorems 5.2, 5.3 and corollaries 5.1, 5.2 still
hold if the score functions a (.,£,2) are replaced by score functions av(.)

generated by ¢(u,f,2), 0 < u < 1.
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6. Proof of the results of section 3

Define for 1 = 1,..., NQ and v = 1,2,... the real functions

eXP(—l/Z(Cvi_zv))S(eXp(—cvi+Ev)—evi) - s(x—evi)

k\)i(X)= — ’
c.-c¢
vi v
s(x-e .) - s(x)
(6.1) 1) = ——,
c.-c
vi v
hvi(x) = kvi(x) + 1vi(x)

/2

with s(x) =‘[f(x)]] where f£(x) is a density function in C. For the proof

of theorem 3.1, the following lemmas are needed.

Lemma 6.1, Supposé that the sequences of vectors <, and dv satisfy condition

A. Then,

lim max J (h .(x) + is(x) + (x+K)S'(x))2dx =0,
V>0 lf.iiNV - vi

Proof. Observe first that max [ hzi(x)dx < oy, y=1,2,..,., and
l.iiiN\) -0 v

(6.2) I(£,K) = 4 J (-is(x) - (x+K)s'(x))2dx < o,

-=00

Also, since s(x) is absolutely continuous, we have for almost all x

B s(y) - s(x)
(6.3) lim s(e x+h2) = s(x) and 1im XL 7 33X - g1(x),
‘ y - x
h1+0 yx
h2+0

From condition A and (6.3), we deduce that for almost all x

-is(x) - xs'(x),

lim max k i(x)
Voo liifyv

(6.4) 1lim max 1 i(x)
V) lgjiﬂv v

-Ks'(x),

lim max h .(x) -1s(x) - (x+K)s'(x).

. vi
Vo lf}fyv
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Furthermore, by th

k%i(X)
(6.5)
and,

12, ()
(6.6)

so that by Tonelli

e Cauchy-Schwarz inequality, we have

c .-C 3t
vi v - 2=
= [c 1_- f (-ie its(e tx—evi)-e
vi "v 0
c...—C 3t
vi Vv -
< 1 I _1."Et_ -t _
__Cvi_Ev . (-1e %"s(e x evi) e
e .
1 vi 2
= —L f (~s'(x-t))dt]
vi v ‘0
e .
e . vi )
< ft I (-s"(x-t))"dt
vi v ‘0

's theorem

el C\)i—-\) © —..3_t
2 1 -it -t
k. (x)dx < ——cz I f (-ie *"s(e x—e
f-w Vi €vi~% Jo -
(6.7)
- f_m<—5s<x)—(x+evi>s'(x))zdx
and,
o e ®vi e
J 13i(x)dx < f J (-s' (x-t))2dxdt
- (Cvi_cv) 0 -
(6.8)
2
e i o) 2
= —VEI (-s'(x))“dx.
(c._.-c ) -
vi vV

We
I1.4.2 and V.1.3 o

f Hijek and Sidak (1967) that

xs'(e—tx-evi))dt]

2 xs'(e~tx—evi))2dt

-t 2
vi)-e 2 xs'(e x—e,.)) dxdt

can thus conclude from (6.4), (6.7) and (6.8) by means of theorems

2
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(6.9) lim max f (kvi(x) + is(x) + xs'(x))zdx =0
V-0 lfing -

and

(6.10) lim max I (1,; () + Ks'(x))%ax = o.

Ve 1<i<N
— =
Consequently, the result follows. []

For a density function f € C and a sequence of vectors c, and d

satisfying condition A, define for v = 1,2,... the statistics

N, -5, £' (e 'vxvi—&v)
(6.11) T, = - izl (e ;7COL1 + (e X ;-d +K) =y 1,
f(e X .-d)
vi v
-c.. ~—C._.
Nv Vlf( V1X -d_.)
vi vi’ i
(6.12) 3, =2 ) lm=—ms )2 - 11,
i=1 v v
e f(e Xvi dv)
and
N
v
(6.13) L, = T Lvi
1=1
where for i = 1,..., Nv
Ci., TS
e f(e X .=d .)
(6.14) L, = — -~ L 1
vi -t, ¢, _
e f(e X.-d)
vi v

Lemma 6.2. Suppose that the sequences of vectors c, and dv satisfy condition

B. Then, we have

2 .
1 = =1 -— =
lim E(Jv) ib and lim Var(Jv Tv) 0

V>0 V>
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under §v where P_ is the probability measure corresponding to the density

v
Yo, =
— _ \) _—
(6.15) P, = 151 e f(e x; dv)'
Proof. Obviously
. N
v -2 (® .2
(6.16) EQ) = - 1 (¢;-¢,) I by (x)dx
i=1 .
and,
2
(6.17) Var(J,-T ) < E(J,-T,)

N

VvV © )

=4 T (e’ f (hy; () + §s(x) + (x+K)s' () ax.
i=1 o

Thus, by lemma 6.1 and part (ii) of condition B, the lemma is established. [

Lemma 6.3. Suppose that the sequences of vectors c, and dv satisfy condition

A. Then, for arbitrary € > 0,
lim max P (IL .-ll >€) =0
weo 1<ian, V0Vt

where ﬁv is given by (6.15).
Proof. We have by part (i) of condition A and lemma 6.1 that under §v’

(6.18) lim max E(YL .-1)2 = 0.
. vi
Vo lf}ng

Thus, by the Markov inequality and corollary 5.1.2 of Billingsley (1968),

the lemma is established. [

Proof of theorem 3.1. From lemma 6.2 and since that under ?V

(6.19) E(Tv) =0 and lim Var(Tv) = bz,

Voo
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it follows that under §v

(6.20) lim E(Jv—Tv+%b2)2 = 0.

V>0
By theorem V.1.2 of Hiajek and $idik (1967) we have T, asymptotically normal
(O,bz) under ﬁv and by (6.20) we have then that Jv are asymptotically normal
(-%bz,bz) under ﬁv‘ This entails with lemma 6.3 and Le Cam's second lemma

(see Hijek and $iddk (1967), p.205) that

. = _ 2
(6.21) lim PV(|1n L -J +ib | >e) =0
V- ’

2,b2) under ﬁv'

for arbitrary € > 0 and, 1n L, asymptotically normal (-ib
Consequently, since ﬁv € Hv’ the corollary of Le Cam's first lemma (see

Hajek and §idak (1967), p.204) completes the proof. [J

For i = 1,..., Nv and v = 1,2,..., we introduce the random variables

(6.22) Uvi = F(e X, .-d))

where F is the distribution function of a density f € C. Under ﬁv’ the

random variables le,..., U are independently uniformly distributed on

VN
v
[0,1]. The next two lemmas are needed in the proof of theorem 3.2.

Lemma 6.4. Let av(.), v=1,2,..., be a sequence of score functions generated
by a function ¢(u), 0 < u < 1, and assume that the sequence of vectors Y,
satisfies condition D. Then, for Sv given by (2.7) and

N
\Y
¢_ —_
(6.23) Ty = 121 (1,; 7Y )¢ U ),

we have for arbitrary € > 0
lim B (|5 -1%| > &) = 0
Voo

where fv is given by (6.15).
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The proof of this lemma is similar to the arguments of Hijek and $idak
(1967), p.160-161 and 164-165.

Lemma 6.5. Let av(.), v =1,2,..., be a sequence of score functions generated
by a function ¢(u), 0 < u < 1, and suppose that the sequences of vectors c,
and d, satisfy condition B. Assume also that the sequence of vectors Yy
satisfies condition D -and,

N

Vv
(6.24) lim ) (c

€ ), T) =b .
Voo i=1 1 Vv vi 'V 12

\Y

Then, for ﬁv’ Tg and T, given respectively by (6.15), (6.23) and (6.11), we

have that under ﬁv’ (Tg,Tv) are asymptotically jointly normal with mean

2
c- o
vector (0,0) and covariance matrix ( ;2 ) where
o, ,b
12
2 [1 — 2
(6.25) o = (¢ (w)-9)“du
‘0
and,
1
(6.26) O1p = b]2 J ¢(u)¢$(u,f,K)du.

0

Proof. Since from (6.11) and (6.22), we can write
N
v
(6.27) T, = igl (cy;=E )¢, E,K),
the proof of this lemma is obtained by arguments similar to Hiajek and

$idik (1967), p.217-218, [

Proof of theorem 3.2. Without loss of generality one can suppose that
N

v -2
(6.28) oGty =l v = 12,
i=1

Then, from condition D, it follows that
. -2
(6.29) lim max (Yvi_Yv) = 0.
V>0 IE}SNV

It is sufficient to prove the theorem under the additional assumptions:
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N\)
(6.30) lim ) (oy;7q,)(r,,,) = b,
Vo j=]
and,
a 2 2 .
(6.31) lim ] (cy;=8,)-I(£,K) = b with 0 < b
Voo i=]

Indeed, if the theorem were false, there would exists a subsequence of {v}
with the property that for all its subsequences the theorem would fail to
hold. However, every subsequence has a further subsequence such that (6.30)
and (6.31) hold. That the theorem is true under the assumptions (6.28),
(6.29), (6.30) and (6.31) can be seen as follows.

Suppose first b% > 0. From (6.20), (6.21) and lemma 6.4, we have that
under ﬁv’ (Sv’ 1n Lv) has the same asymptotic distribution as (Tt,TV—ib%).
Thus, from lemma 6.5, it follows that under Py, (8,,1n L,) is asymptotically

o2 c
jointly normal with meam vector (0,0) and covariance matrix ( 2 )

2 . . 12 ?
where 0° and g,, are respectively given by (6.25) and (6.26). By Le Cam’s
third lemma (see Hajek and éldak (1967), p.208), we conclude that S are
asymptotically normal (o 122 ) under K .

The case b2 0 follows from the remarks of Hijek and Sldak (1967),

P-210 and 219. This completes the proof. U
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7. Proof of the results of section 4

Before presenting the proof of Theorem 4.1, it is usefull to give the

next two lemmas.

Lemma 7.1. 1f the sequence M, satisfies condition M, then, for Ev and Sg

given by respectively (6.15) and (4.3), we have

(7.1) lim sup fv(lqv/Ev—exp(Sg—%ei)l >eg) =0
Vo (cv’dv)eMv

for arbitrary € > O.

Proof. We shall first show that (7.1) is implied by

(7.2) lim  sup Ev(lln(q\"/gv)—sg+%e\2)| >e) =0
V>0 (cv’dv)EMv

for arbitrary € > O.
Since E(qv/Ev) < 1, the Markov inequality gives us that for every

n > 0, there exist § = §(n) > 0 such that
(7.3) p,(q,/p, 2 §) <.
Let o = 1n(1+e/8(n)) with € > 0. From
B, ({|1n(q,/5,)-80+462] < a} n {q,/p, < 8D
79 S.Pv(lqv/ﬁv-exp(sg-%ei)l <€)

we may conclude that for every € > 0 and n > O,

iv(|1n(qv/5v)—sg+§931 < a)

(7.5)

<% (|q /5. -exp(s0-16%)| <€) +n

= 5 U /Py v 2y — :
Then, by taking lim sup on each side of (7.5) and noting (7.2), we get
(7.1). Ve (Cv’dv)EMv
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Now, (7.1) may be proved by reasoning similar to Hajek and éidék
(1967), p.246, i.e. by assuming that (7.1) is false thus, that (7.2) is
false and then drawing a contradictory subsequence by making use of (6.20),
(6.21) and the fact that Tv - Sg -+ 0 in Ev—probability as v > @, wyhich can
be proved as in Hajek and $idak (1967), p.161. O

Lemma 7.2. Suppose that the sequence Mo, v=1,2,..., satisfies condition
M and let'{vk} be a strictly increasing subsequence of {v}. Then, for the
sequence C  define by C,, = k if Vi £V < v s We have

% 2.5 0
1 - f exp(x-46_)dP (S, < x)

-
%

lim sup =0

V> (cv’dv)eMﬁ

where ﬁﬁ and Sg are respectively given by (6.15) and (4.3).

Proof. From part (iv) of condition M, we may deduce

C
\Y
lim  sup [ exp(x—gef)dcb(x/ev) - 1|
Ve (e,>d))eM, |)-C
(7.6)
< lim sup  [@((C,-M)/6,)-2((-C -M)/6 ) - 1| = 0.
N
0<6 2<

Assume now the existence of an €y> 0 and a subsequence'{vj} C'{vk} such

that

- : 2
(7.7) exp(x-to. )aP (S0 < %) - exp(x-tg_ Ydo(x/o_ )| > <
-C Vi Vi Vs -C. Vi Vi

< O

But, since the sequence M, , j=1,2,..., satisfies condition M, the sequence

{v,} contains a subsequence'{vz} such that

i

(7.8) lim 6> =%, 0< b’ < .
g L

And, from Hajek and §idak (1967), p.163, we have that under §v the statistics
L
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S0 are asymptotically normal (0,92 ). Let
vy v,

( 2
| exp(x-407 ) if x| < ¢ ,
L 2
(7.9) B (x) = ¢
2

0 if |x| > C
ot bl > c,

and denote by E the set of x such that hgz(xi) > exp(x-%bz)»for some
sequence X, approaching x. Since the complement of E is empty and the random
variables hg (SSZ> are uniformly integrable, we conclude from Billingsley
(1968), p.32-34, that

Cv

% 2 .= .0

(7.10) lim { exp(x—%ev )de (s, <x) -1/ =0.
2> -Cv L % L

Thus, by combining (7.10) with (7.6) we contradict (7.7). The proof is
finished. [

Proof of theorem 4.1. Let p, = Bv where Ev is given by (6.15) and, define

0 .24 0
B, exp(S -46)) if |sv| <G,

(7.11) h =
v 0 if ISSI > €
where
% 2 0 -1
(7.12) B, = [ exp(x-46,)dp, (S, < x)] ,
-C
AY]

SS is given by (4.3), Pv is the probability measure corresponding to P,
and Cv’ v =1,2,..., is a sequence of reals such that Cv > 0 and Cv - « when
v + », This sequence will be specified later.

Obviously, P, € H, and h is a rank statistics depending on the vectors
ce and de only since S,) as the same property. Furthermore, the functions
qg = pv'hv provide densities for (cv,dv)ve Mﬁ (v=1,2,...). Consequently, it

remains to show that

(7.13) lim sup ||qv—q8|l= 0.
V-0 (C ;d )EM
V>V
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Since || p—q]| = 2 I ~ (1-q/p)dP, we have
{q<p}
(7.14) | a,-all =2 f (h —exp (S0-46))dP
{q /p <h } VoY

2
+ 2 f (exp(S -36")-q /p )dP .
‘ v v v vt v
{qv/pv<hv}
For each (cv’dv) € M§’ the absolute value of the first of the last two
integrals is bounded by Il—B;ll and, the second integral is bounded by

o exp(Cv) + £, where €, (v=1,2,...) is a sequence of positive real numbers

and
(7.15) o =P (exP(So-lez)-q /p. > e ).
v v v 297 W Ry v
Consequently,
(7.16) Il -qoll < 2 sup |1—B-]| + 2eCV sup a + 2
* LN L LS v v v'
(c sd )GM (C ,d )€M
v>viTTy viviTy

Let € > 0 be given., From lemma 7.1, for every integer k, there exists Vi

such that for v > Vi

(7.17) & sup Pv(exp<s8—§ef)—q /p > 1/k) < 1/k.
(c,»d deM vy

We can assume that the sequence Vi k=1,2,..., is strictly increasing and

then, define

(7.18) Cv =k forv, <v < Vi

k +1°

From lemma 7.2, there exists vl(e) such that for v > vl(g)

(7.19) sip | 1-8"| < e/,
(c ,d )eM
AY) Vv v

For e, = 1/k if v, <v <V P (7.17) becomes

k k+
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v . B
(7.20) e « sup a, < 1/C, for VLSV,
cv’dv)eMb

Thus, there exists V2(€) such that for v > V2(€)

k=1,2,...

C
(7.21) e v sup o < €/6 and €, < e/6.

(ey»d, )<,

From (7.19) and (7.21), (7.13) is deduce and the proof is complete. []

Proof of theorem 4.2, Using theorem 4.1, the result follows from Hijek and
Lo o . - = 0,0
Sidak (1967), p.243-244, with a = (Cv’dv) and b = (c,,d,). O

Proof of theorem 4.3. In view of theorems 3.1 and 3.2, the proof is similar
to Hajek and $idak (1967), p.251. 0

Proof of corollary 4.1. From theorem 3.2, the asymptotic power of the
test is 1 - &(k,_ -b) and thus, the result follows. g

Proof of corollary 4.2. Let csi =cy; W, i=1,.0.., N . The sequence of

vectors c! and d,, satisfies condition B with the same K. Thus, since

c..=-¢ =c'. - c', the result is immediate. U
vi v vi v
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Proof of theorem 5.1. It may be shown, by easy algebraic transformations,
that the sequence of vectors ¢, and d,, defined by (5.1), satisfies condition

B with
(8.1) K =8 /0 and b° = 02 1(£,8,/8),

Also, from Hajek and $idak (1967), p.162, condition D is verified. Conse-

quently, the result is deduced from theorem 3.2.[]

Proof of theorem 5.2. The direct application of (8.1) in theorem 4.3 permits

us to conclude the result.[]

The other results are deduced from theorem 5.2.
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