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A note on a paper by D.S. Moore on chi-square statistics

by

F.H. Ruymgaart

Summary

In this note we draw attention to an elementary proof of the asymptotic
negligibility of the remainder terms in a paper by D.S. Moore (1971) on
the limiting distribution of chi-square statistics. The asymptotic
negligibility turns out to be an immediate consequence of a modification

of Lemma 1 by Bahadur (1966) in more dimensions.

*)

This paper is not for review; it is meant for publication in a journal.



1. INTRODUCTION

Suppose that we are given a sequence Xl’ X . of mutually indepen-

9o
dent and identically distributed k-dimensional random vectors. All random
vectars are supposed to be defined on a single probability space (f2,A,P)

and their common distribution function (df) F_ depends on an m—dimensional

0
parameter 6 which is restricted to an open subset T of m-dimensional num-—
ber space]fn. Given any positive integer n, we define the empirical df Fn
based on the first n random vectors of the sequence in the usual way.

In the context of testing goodness of fit, as described in a paper by
Moore (1971), IRk is partitioned into a fixed finite number of cells,
where the cell boundaries are allowed to be functions of the estimated
parameter values. Let us proceed along the lines of Moore's paper and

define for i = 1,2,..., k a non-random partition of the X, - axis by func-

tions of 6 ¢ T, satisfying

(1. 1) -2 =8 (0) < g; 4y (0) < ...< g (8) < &1,y (68) == .

i,v.-1 .
i i

The partitions of the axes induce a partition ofﬁmk into v = Hk

. v. cells.
1=1 "1

According to a specific enumeration these cells will be denoted by IG(G),
0 =1,2,..., V. Suppose that for each positive integer n we have an

. A A
estimator en = en (Xl’ X ces Xn) of 8. To I0 (8) there corresponds the

2°°

random cell IG (gn) when 6 is replaced by én in (1.1). The mass assigned to
any Borel set B c:mk by the df Fe will be denoted by Fe{B}, and simi-
larly the mass assigned to B by the empirical df Fn will be denoted by

Fn {B}. The latter, of course, equals the number of {Xl’ XZ""’ Xn}

contained in B, divided by n.



In the search for the asymptotic distribution of chi-square type

statistics
1.2 T = Zv [F {1 (8 )} - By {1_(B )}3°TFp 11_(6 )117!
(1.2) n =1 P AR Qn o' 'n 8 ot n >
one may write n%[Fn{IO(gn)} - FQn {IO(Qn)}] = Aln + A2n + Bln + an, where
1 ,
A= n? [Fn {Ig(eo)} - FGO{IO(GO)}]’
A, =n?[F, {1 (B )} - Fa {1 (B )}]
2n 0 o' ' n §) o' n ?
0 n
1 A : A
B, =n? [FAI (8 ) - T (6} - Feo{lc(en) - 1,61,
4 _ A _ _ A
By = 0 LR T5(00) ~ L)) - T {1,(0g) - 1,8 )T,

and where 90 is the true parameter value. The expression on the left of
Moore's formula (2.2) equals B]n + an, but we have arranged the terms
somewhat differently for purposes that will become clear below.

An essential part of the proof of Theorem 1 by Moore (1971) consists

of showing that

(1.3) Bln + an > p o,

as n > » , Moore derives this result by appealing to rather advanced papers
by Dudley (1966) and Neuhaus (1969). It is the purpose of this note to

draw attention to a more elementary proof of (1.3), by showing that it is
an immediate consequence of a modification of Lemma 1 by Bahadur (1966) in
more dimensions. In this form Bahadur's lemma has been given by W.R. van

Zwet. For completeness we shall formulate the lemma, a proof of which may
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be found in Ruymgaart (1972, 1973) for k = 2. (The proof for k > 2 is
completely similar.) Suppose that for each n = 1,2,... we are given a ran-—
dom sample of size n from an arbitrary fixed k-variate df F (continuous

or not). The corresponding k-variate empirical df will be denoted by Fn'
By an interval I injmk we understand the product set of k intervals on the

real line.

LEMMA (van Zwet). Let I], 12,... be a sequence of intervals in]Rk and let

In = {In* : In* is an interval contained in In}, n=1,2,... Then, as

n—)co,

-1 1
SUpy % _ 1 an{In*} - F{In*}| = 0, (In "~ F{I_}1%),

n n

P

uniformly in all sequences of intervals I Iz,... and all k-variate dfs

],

F (continuous or not).

Let us for the moment restrict attention to regularity conditions on

Fe , although some other conditions will also be needed (see Section 2).
0

Using only continuity of Fe it follows almost immediately from the lemma
0

that Bln + an = OP(I), as n > «», which is Moore's result. In Moore's

paper it is assumed, for other purposes, that Fe has a continuous densi-
0

ty. Under the latter stronger assumption we deduce from the lemma in quite

-1/4

the same way that B._ + B, =0, (n ), as n > « . The above illustrates

In 2n P
once more the usefulness of (this modification of) Bahadur's lemma, which
has also proved essential for handling some of the second order terms
occurring in the proofs of asymptotic normality, under fixed alternatives,

of certain nonparametric test statistics (Sen (1970), Ruymgaart (1972,

1973)).
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2, PROOF OF THE ASYMPTOTIC NEGLIGIBILITY

The first assumption needed for the proof of (1.3) is that the func-

tion
(2.1) aai’j(e) / 891
exists and is continuous for 6 e T and i = 1,2,..., k , j = 1,2,...,
V. = 1, 1=1,2,..., m.
The second assumption is that the sequence of estimators 61, 62,...

satisfies
(2.2) 15 -6 | =0(a %

: n ol T Vp' 7>

as n > ©, where 80 is the true parameter value.

These assumptions guarantee for each € > 0 the existence of a

constant M] = M1 such that the set
€

v.—1
_ k i Ay -1
(2.3) U = Niep Nym {|€i,j(en) gi’j(eo)ls Mn *}
has probability P(an) 21=-¢/2 for all n = 1,2,...
By symmetry we need only consider B, . Let us fix ¢ and introduce

In

for all i = 1,2,..., kand j = 1,..., v, - 1 the intervals

Lo =rE7 xreL (e - M.t £. .(6,) s Mo kKT
n,i,j i,j o 1 > *1,7°70 1 ?
I*, . =1 ..n{I(é\)-I(S)}.
n,1,] n,1,] o n o0
A k \)i—] *
Note that for all w € @, we have {Ic(en) - Ic(eo)} = Ui Uj=1 In,i,j.

If Fe is given to be only continuous it follows that
0
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max. . F {1

. .} =c , where ¢ -+ 0 as n > », The lemma of Section 1
1,7 © n,1,] n n

ensures the existence of a number M, = M such that the set

2 2¢e’

v.-1
(2.4) Q, = nk n.i

1
* T2
on i=1 N {1 }< Mon % 2}

{|F {T1.* .} -F ..
n,1,]

1 n n,i,j §)

0
has probability P(an)z 1 - ¢/2 for all n = 1,2,... Denoting the charac-—

teristic function of the set an n an by x(Qln n an) it follows that

1
(vi—])]Mz cn2 > 0,

(2.5) x(an n o 1

Zn) l B]n I = ?
i

I o~

as n +> «. Because P(Qln n Q >1-¢ for all n=1,2,... and € > 0 is

2n) -

arbitrary we may conclude from (2.5) that B = OP(I).

In

In the case where F, has a continuous density with respect to

6
0 -1
Lebesgue measure we find that max. . F {I_ . .} <M, n ? for some
i,] 60 n,i,j 3
constant M, and all n = 1,2,... The lemma applies in the same way so that

3

for some constant Mé Mée we may use (2.4) and (2.5) with M

, -
by M2 and c by M3 n

2 replaced

_ -1/4
0= OP(n ).

Nl

. Consequently we now have that B1
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