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A criterion for the existence of invariant probability measures in

*)
Markov processes

by

Arie Hordijk and Paul Van Goethem o

Summarz

In this paper we investigate the existence of invariant probability mea-
sures for Markov processes on noncompact state spaces. The introduced
criterion is a generalization of a Foster criterion [Foster (1953),
theorem 2] and of a Liapunov function criterion [Kushner (1971),sec-
tion 8.6.5] . As an illustration of the applicability of our criterion,

we show that it is satisfied for the Lindley model in queueing problems.

This paper is not for review; it is meant for publication in a journal.
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1. PRELIMINARIES

Let (Xn),.n=0,],2,... be a Markov process defined on the probability
space (R,A,P). We assume that the state space E is a separable metric
space with Borel o-algebra F.

For f a measurable function on E we denote

Pf (x) = J P(x,dy)E(y),
E

where P(x,B), x € E and B € F, is the stochastic kernel corresponding to
the Markov process (P(x,E)=1 for all x € E). Further, given any set B and
function f we write IBf for the function which equals f on B and is zero

on B (the complement of set B). We define

)n—l

Pn=(PIc P,nz2l1,

B B
th . .
where the ﬁn-l) power means that the operator PI o is applied (n-1)
B
0

times ((PI c) = I the identical operator).

B
Finally we introduce

T n
G, = 1 P
n=1

When applying one of the above introduced operators on some function
f it is tacitly assumed that the operator acted on the function |f| gives

a function which is everywhere finite (for example when we write Pf then



it is assumed that
J P(x,dy) |£(y)| < « for all x € E).
E

For pu a measure and g a measurable function we denote
ug = [ g(x)u(dx).

2. INVARIANT PROBABILITY MEASURES

A measure p is called invariant for the Markov process (Xn)’ n=0,1,...

with kernel P(x,B), x ¢ E and B ¢ F, if

u=uP = J pu(dx) P(x,.)
E

The following conditions are sufficient for the existence of an invariant

probability measure

S) Stability condition

There exists a compact set A and a finite nowmnegative and measurable

function ¢(x) such that

1+ PI _ ¢(x) < ¢(x) for all x e AS

and A

PI  ¢(x) 18 bounded on A.
AC

c) If £ € C(E) (the.class of real valued, bounded and continuous func-



tions on E), then Pf e C(E) and PIAf e C(E).

We note that the first part of condition C is equivalent to the assump-
tion that the Markov process is.stable [Lo&ve (1960), p. 623]. A suffi-
cient condition for the second part of assumption C is P(x,A\Al) = 0 for

all x € E, with At the interior of the set A.

In the sequel of this section we assume that conditions S and C are

satisfied.

PROPOSITION 1. If £ € C(A) then GAf e C(A) and hence the embedded

Markov process on A is stable.

PROOF. According to a well-known theorem on weak convergence of probabil-
ity measures [Billingsley (1968), P.12] it is sufficient to show that for

any nonnegative lower semicontinuous (l.s.c.) function g it holds that

GAIAg is l.s.c. It follows from condition C that if g is l.s.c. then
PI,g is l.s.c. The compact set A is closed and herce 1 o (the indicator
A
function of Ac) is 1l.s.c. Consequently if g is l.s.c. then PI 8 is 1.s.c.
A

- Combining these arguments we find that X§=0 PZIAg is 1.s.c. for N=1,2,....
Since the limit of a nondecreasing sequence of l.s.c. functions is also
l.s.c., we obtain that GAIAg»is l.s.c. To prove the second part of the
assertion we note that the transition probabilities of the Markov process

on A equal

AP(x,B) = GA lB(x),
E 2

with x € A and ]B the indicator function of the set B c A, B e F.

Interpreting the following terms as the probabilities that the Markov



process does and does not visit the set A before time n+1, shows

n
) X1+ P

k=1 A

In the first part of the proof of proposition 3 we shall show that

GAl (x) < ©» for all x € E. Hence lim PZ 1 o = lg and consequently

E n->o A

1 1. 0O

Cala = Ig
PROPOSITION 2. The embedded Markov process on A has an imvariant proba-

bility measure.

PROOF. The assertion follows immediately from the well-known fact that a
stable process on a compact state space has an invariant probability mea-
sure (see for example [Rosenblatt (1971), p.99]1). To be complete we give

an elementary proof of this result. Define for fixed x € A,

=

1
m(B) =5 I ,PU(x,B),  N=1,2,....

N n=1
It‘follows from a well-known theorem of Prohorov (cf.[Billingsley (1968),
p. 371) that (HN) , N=1,2,... , has a weakly convergent subsequence.
Hence for some subsequence N , k=1,2,.., , and some probability measure

II on A we have that

(2.1) lim I g = Tig
koo N

It is easily seen that also

for all g € C(A).

(2.2) lim II Pg = Ig for all g € C(4).
ko Nk A



If g € C(A) then according to proposition 1 also APg € C(A) and hence

from (2.1)

(2.3) lim I Pg =1

koo Nk A

Combining (2.2) and (2.3) we find that

APg.

g = HAPg for all g € C(A).

Consequently, II is an invariant probability measure (cf. [Billingsley

(1968), theorem 1.3 on p. 91). [
PROPOSITION 3. The Markov process has an imvariant probability measure.

PROOF. We first show that G

A lE(x) is bounded on A. From the first part

of the condition S we have that

1. +PI ¢ < ¢ on AS.
E c
A
Iterating this inequality N times we obtain
N n N+1 c
Z(PIC) g + (BT ) 6 < ¢ onA .
n=0 A A
Heﬁce
c
GA 1E < ¢ on A,

From the second part of condition S it follows that



is bounded on A.

Let HA be an invariant probability measure for the embedded Markov prdcess

on A. Then we define a measure II on E by

Since N GA g is finite we have that II is a finite measure.

Now we proceed along the same lines as in [Harris (1956).] to prove that

II is an invariant measure. Indeed, since HA GA 1A = HA we have for B e F

nepi_=10 P1, +1I, G, I c P11 =

B A B A A A B
= HA [P lB + GA I c P lB] =
A
= HA GA lB =1 lB.

1

Finally (H]E)— I(.) is an invariant probability measure. [

3. QUEUEING PROCESSES

Following [Lindley (1952)] (see also [Feller (1966), p. 194]) we de-
fine recursively a sequence of random variables WO’wl"" by Wb =0

and

Wn+] = max [Wn + Un+],0], n=0,1,... ,

where Un denotes the difference of the (n—l)th service time and the nth

interarrival time. In [Lindley (1952)] it is assumed that the random

variables Un are i.1.d. Here we allow that Un+1 depends on Wn, for example



. . th . .. .
the service time of the n~ customer depends on his waiting time.

ASSUMPTIONS. The conditional distribution of L given W o=w does not
depend on n (let FW(.) denote the regular version of U given wn=w).

For £ ¢ C([0,»)) 2t holds that
. yx
(3.1) J f(x+z) dFX(z) + £(0) Fx(—x)
=X
18 cbntinubus in x for y sufficiently large and for y = . And, moreover,

(3.2) limsup J z dFX(Z) =-a<0.

X > o
X

The stochastic kernel corresponding to the Markov process Wh, n=0,1,...,

satisfies
P(X’[Osy]) = FX(Y‘X) .

Let y be such that for x 2 y

| — 8

dFX(z) + J z de(z) < x - §/2

J (x+z) dFX(z) < x
- X

and, moreover, (3.1) be satisfied, then it is straightforward to verify
that conditions S and C of section 2 hold with A = [0,y], ¢(x) = 2x/a.
It is well-known that the Doeblin condition implies the existence of an
invariant probability measure. However, as pointed out in [Runnenburg
(1960), p. 331, very few queueing processes satisfy the condition of

Doeblin. If for some indecomposable Markov process the Doeblin condition



holds then condition S is satisfied for a bounded function ¢ (cf.

[Orey (197117).
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