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A Bayes process t) 

K.M. van Hee*) and A. Hordijk 

Summary 

It is well-known that the posterior probabilities in sequential sampling 

constitute a Markov-process. This process which may be called a Bayes 

process is an important tool in applying the theory of optimal stopping 

to sequential decision problems. For the case of a simple nullhypothesis 

against a simple alternative we investigate the corresponding Bayes pro­

cess. Several properties of this process are proved. It is shown that the 

class of continuous harmonic functions for this Bayes process is exactly 

the class of linear functions. 

This paper is not for review; it is meant for publication in a journal. 

*) Centraal Rekeninsituut, Rijksuniversiteit te Leiden. From December 1973: 

Technische Hogeschool Eindhoven. 





1 • Introduetion 

In the sequential testing of a simple nullhypothesis against a sim­

ple alternative the statistician has the freedom to look at a sequence of 

observations one at a time and to decide after each observation whether 

to stop sampling and to reject or accept the nullhypothesis on the base 

of the observations, or to continue sampling. 

Suppose the hypotheses are e = 0 and e = 1 and the statistician may 

observe the sequence x 1,x2 , ••• of independent, identically distributed 

random variables with known probability densities f 0 (x) and f 1(x), with 

respect to the measureµ, under e = 0 and e = 1 respectively. In the 

Bayesian approach of this problem it is assumed that the parameter e is a 

random variable t which takes on the value O with probability yO for some 

0 ~ y0 ~ 1 and the value 1 with probability 1 - y0 , and that x 1,x2 , ••• 

are, conditionally given!_= O, independent and identically distributed 

with density f 9 (x). In this paper we study the posterior probabilities of 

!_ given x 1 ,x2 , ••• ,~ 

n= I, 2,. . . . 

We shall prove that the sequence {Ii,,, n=l,2, ••• } forms a Markov process. 

We call this process the Bayes process. 

Using a Bayes process the well-known theory of optimal stopping of 

Markov processes can be applied to sequential decision problems. In an­

other publication we proceed in this way. The authors could not find a 

place in the literature where the Bayes process was treated explicitly. 

This was the main motivation for this paper. In section 3 several proper­

ties of the Bayes process are derived. Although several of these results 

seem to be known we could not find an appropriate reference. As far as we 

know the characterization of continuous harmonic functions is a new result. 

It is well-known that this Bayes process is also a martingale which also 

may be derived from the fact that all lineair functions for this Bayes 

process are harmonic. 
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2. Definition of the Bayes process 

The assumptions underlying this process are 

Let (n,F,P) be a probability space and let x, n=l,2, ... be a sequence of -n 
random variables defined on (n,F,P) with sample space (X,B) where Xis a 

Borel subset ofJR.1 and Bis the corresponding Borel a-algebra. 

Moreover, t is a random variable on (n,F,P) with 

P[t=O] = 1 - P[!_=l] = Yo for some O ~Yo~ I, 

The r. v. 's x are, corilitiomUy given _!=p (p=O, 1), iniependent and iden­
-n 

tically dist~ibuted, i.e. 

n 

f I - (x1,···,x) =iul fp(xi)' x 1, ••• ,x t-p n 
- -n -

n=J,2, ... , 

where f _ ( • ) denotes the conditional density of (~1, ••• ,~) 
x 1, ••• ,x lt-p 
- --n - n 

with respect to the product measure ill! µ(xi), with 11 a fixed measure 

on (X,B). 

As an immediate consequence of these assumptions we have that 

x 1, ••• ,x are identically distributed with density fx. (x) with respect 
- -n -i 

to µ(x). Indeed with v(p) the counting measure on {0,1} and ft(p) the 

density oft with respect to v(p) we have that 

(I) 

and the joint density of x 1, ••• ,x is 
- -n 

(2) f (x 1, ••• , x ) = J 
~1,···•~ n 

f I (x 1, ••• ,x ) ft(p) dv(p) = 
x 1, ••• ,~!=p n 



Hence, under the condition that µ(xif 0 (x) I f 1 (x)) > O, ~ 1, .•. ,~ are 

only independent if y0 = 0 or I. 

We define the sequence of posterior probabilities {y , n=O, I, ..• } by 
----n 

1 ) 

2) 

a. s. 

Y = P[.!_=0 j~1, · ·, ,~), 
~]. u 

We denote y (x , ... ,x) = P[t=Ojx1=x 1, .•• ,x =x ], nl n - - -nn 

To avoid unessential complications we suppose from now on that (2) 

is positive. 

Lemma 1. The functions y satisfy 
n 

(3) y (x1, ••• , x ) = 
n n n 

Yo i!Jl 

Proof. By Bayes' rule we have 

n 
Yo .r1i 1= fo(xi) 

n 
fo(xi) + (I-yo) i!Jl 

y (x1, ... ,x) = P[t=Ojx 1=x1, ... ,x =x] = 
n n - - -nn 

, n=O, 1 , ••• 

f 1 (xi) 

f lt-O(x1,···,x) f (0) 
~Ip .• •~ _- n .!:_ 

=~-------------------= I f I (x 1, ..• ,x) f (p) dv(p) 
~l , • • • •!.a t=p n t 

n 
Yo iIJi fo(xi) 

=-----------------n n 
Yo iD1 fo(xi) + (I-yo) iD1 fl(xi) 

from which the statement follows. D 

I.tis straightforward to verify that (3) implies 

3 
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where we write y for y (x1, ••• ,x ). n n n 

Lemma 2. 

a) = P[x 1 E Alx 1=x 1,.:.,x =x J = 
-n+ - -n n 

for' aU A E B. 

= y -~1 I fo(x .) dµ(x .) + (I-y ).~) I f (x .) dµ(x .) n i= A. n+i n+i n i= A. 1 n+i n+i 
l. l. 

for A. EB, 1 ~ i ~ k. 
l. 

c) The aondi tiona. 7, density of ~+ 1 given 1o_ =y n is 

Proof. 

P[x 1EA 1, ••• ,x kEA_ lx1=x 1, ••• ,x =x] = 
-n+ -n+ -1< - -n n 

If . It- (x1, ..• ,x +k) f (p) dv(p) 
= I ~1 , •• ~ '~+k - =p n !. 

-------------------- dµ(xn+1'···,xn+k) = 
A1x ••• xA. Jf It= (x1, ... ,x) ft(p) dv(p) -~ x 1, ••• ,x p n 

- -n - -



= J n+k 
y . TT +lf0 (x.) n 1.=n 1. 

A1x ••• x~ 

fo(x.) dµ(x.) + (1-y) -~1 I 
I. l. n i= 

A. 
l. 

5 

using (3) 
= 

f 1(x.) dµ(x.). 
l. l. 

Since y is a function of x 1, ••• ,x this proves the assertions a,b and c.D 
-=-n - -n 

Theorem 1. The sequence {Yn_, n=0,1,2, ••• } is a stationa:I'y Markov process. 

Proof. 

(4) 

= f P[L.+J E Bly 1=y 1, ... ,y =y ,x 1=x]dP I _ _ (x) = .. - -=-n n -n+ x I y 1-y 1, ... ,y -y 
-n+ - -=-n n 

Hence P[y +I E Bly 1=y 1, .•. ,y =y J is a function of Bandy only, which 
-=-n - -=-n n n 

proves the Markov property. Moreover, since these conditional probabilities 
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do not depend on n, the Markov process is stationary. D 

Remark I. From lemma 2a we see that .lri is sufficient, in the sense of 

Bayesian statistics, for the family {P lt-t(·)lt real} because 
.!1, ... ,~ - -

f I _ _ (t) depends on x 1, ••• ,x only through y. 
t x 1-x1, ••• ,x -x n n 
-- -n n 

Remark 2. Although in general the state space of the Bayes process is the 

interval [0,1], there are important situations for which a countable state 

space suffices. For example when the observed sequence ,!1,x2 , ••• is a se­

quence of Bernoulli trials. In this case the number of successes in combi­

nation with the number of failures can be used as state parameters of the 

process. Also when the likelihood ratio or the logarithm of the likelihood 

ratio takes on only rational values with positive probability then the 

state space is countable. In general, when from every state only a coun­

table number of states can be reached and the initial distribution has a 

countable support, then the state space is countable. 

3. Some properties of the Bayes proaess 

For the Bayes process {Iri,n=0,1,2, ••• } with state space (E,B) where 

E = [0,1] and B the Borel-a-algebra on E, we shall define the transition 

probabilities pn(x,A) and on the Banach space B(E,B) of bounded measurable 

functions with norm 11£11 = su"Q lf(x)I we shall define a sequence of linear 
n xe:E 

operators {P ,n=0,1,2, ••• }. 

Definitions. 

I. p(y,A) = Ix IA(gy(x)){y fo(x) + (1-y) fl (x)} dµ(x), 

y fo(x) 
-where g (x) = --=---e--e----,---~ 

y y f 0 (x) + (1-y)f 1 (x)" 

2. 0 -- {01 p (y ,A) = I A (y) , -with I A (y) 
if ye: A 

otheruise. 



3. 

4. 

n p (y,A) = f 
E 

n-1 
p(y,dz) p (z,A), 

pnf(y) = J pn(y,dz) f(z), 

n=2,3,4, ..•. 

f E B(E,B) and n=O, 1,2, •... 

We note that according to (4) the above defined transition probabi­

lities are the transition probabilities of the Bayes process introduced 

in section :2. Note also that pn(x,A) is a probability measure on B for 

fixed x and n, and pn(x,A) is a B-measurable·function for fixed A and n. 

Lemma 3. 

< or: f p (x,dy) 

E 

J n-1 
p (y ,dz) f (z) 

E 
= f n p (x,dz) f(z) > • 

E 

2. = f n m p (x,dy) p (y,A). 

E 

3. 
n 

p (x,A) = P[y E Aly =x], 
rn+n ~ 

m= I , 2, 3, . . • . 

4. Pf(y) = f f(gy(x)) {y f 0 (x) + (1-y) f 1 (x)} dµ(x). 

X 
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Proof. The assertion 2 follows from assertion I by induction on n. To prove 

assertion 1 take f(z) = IA(z), A EB, then 

f p(x,dy) 

E 

f n-1 
p (y,dz) IA (z) 

E 
=J 

n-1 p (x,dy) p (y ,A) = 

E 

n = p (x,A) = f n 
p (x,dz) IA(z). 

E 

Hence assertion is true for elementary functions. For nonnegative 
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f E B(E,B) there is an increasing sequence of elementary functions 

fk(z) t f(z); hence by the monotone convergence theorem 

J p(x,dy) J pn-l(y,dz) fk(z) + J p(x,dy) J pn-l(y,dz) f(z). 

E E E E 

On the other hand, also by the monotone convergence theorem 

J p(x,dy) f pn-l(y,dz) fk(z) = f pn(y,dz) fk(z) ➔ J pn(y,dz) f(z). 

E E E E 

Hence assertion 1 is true for nonnegative functions and therefore for all 

elements of B(E,B). 

According to theorem 1 we have for n = 2 

p2 (x,A) = f p(x,dy) p(y,A) = 
E 

The assertion 3 now follows by induction on n. 

The assertion 4 follows from a well-known theorem on the change of 

integration variables. Indeed, for arbitrary but fixed integer n 

Pf(y) = Jf(z) dP I _ (z) = 
E Xo_+t 1n-y Jf(gy(x)) dP (x) = x Iv =y 

E --n+l ""-n 

= Jf(gy(x)) {y f 0 (x) + (1-y) f 1(x)} dµ(x). D 

E 



Lemma 4. Let An be the o-a"lgeJJra induced by (~+l'~+2 , .•• ) and let z he 

A -measurable. Then for m :c::: n 
n 

(the subscripts O and I mean the distribution given t=O or t=l). 

Proof. 

The first equality follows from the fact that 1m_ is a function of 

x 1, •.• ,~. Because z and .!i•··•,3m are independent given_£, the second 

equality is true. D 

To avoid integrability questions, we assume in the sequel that all 

functions are elements of B(E,B). It is straightforward to verify that 

f E B(E,B) implies Pnf E B(E,B) for all n=l,2,3, ..•• 

9 

We call a function f harmonic if Pf = f. The function f is excessive 

if f is nonnegative and Pf(x) :C::: f(x); x EE. The function f is called a 

potential if for some nonnegative function <t> (called the charge), 
\oo n . . 

f = ln=O P 4), We recall that a function f is concave if 

f(ya+(l-y)b) ~ yf(a)+(l-y)f(b) for ally E [0,1] and a,b EE. 

Note that if f is harmonic, then 

(5) for n=O, 1,2, ... . 

Theorem 2. Jl linear function f on E i,s harmonic:, in particular the function 

I for which I(x) = x on E. 
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Proof. Let f(z) = az+b, then Pf(y) = Jp(y,dz) (az+b) = a Jp(y,dz)z + b = 
= aPI(y)+b. By lennna 3, point 4 we kn~w E 

PI(y) = f gy(x) {y f 0 (x) + (1-y) f 1(x)} dµ(x) = 
X 

= f X y f 0(x) dµ(x) = y, 

which proves the theorem. D 

Theorem 3. If his concave then Ph is aiso concwe. 

Hence, since his concave, 

By lennna 3, point 4 we have 

Ph(y0) = Jh(gYo (x)) {y0f 0 (x)+(I-y0)f 1(x)} dµ(x) ~ 

~ A Jh(gy1(x)) {y1f 0(x)+(I-y1)f1(x)} dµ(x) + 

+ (1-A)J h(gYz (x)) {y2f 0(x)+(l-y2)f I (x)} dµ(x) = 

= A Ph(y 1) + (1-A) Ph(y2). 0 



Theorem 4. If his conea:ve then Ph~ h. 

Proof. By Jensen's inequality: Ph(y) = J p(y,dz) h(z) ~ h 1 p(y,dz)z) = 

= h(y). □ 

Theorem 5. S~ppose 

(6) 

If his ha:1.'monic and liw h(x) = lim h(x) = h(O) = h(l) = 0, 
x+u xtl 

then h(x) = 0 for all x EE. 

Proof. Call m = su~ h(x). Because h E B(E,B) we have that m < 00 • There 
XEE 

exists a sequence {y.}, with y. EE, such that h(y.) t mas i ➔ 00 • i i i 

I I 

Moreover, there is a subsequence {yk} c {yi} and a point y0 EE such that 

yk ➔ Yo ask ➔ oo. 

Let us assume for a moment that 

for each interval [a,b] c E with O <a~ b < 1, there are 
(7) numbers n ands> 0 such that pn(y,[a,b]c) > s for ally E [a,b]. 

Let y0 I= 0 or 1. Let interval [a,b] be such that O <a~ b < 1 and 

y0 E (a,b). We shall prove that (7) implies sup c h(x) = m. Note that 
xda,b] 

sup 
xda, b] 

h(x) = m. Suppose sup h(x) = m-a, with a> O. Fork large 
xE[a, bJc 

enough we have yk E [a,b], hence in view of (7) 

n n c 
~mp (yk,[a,b])+ (m-a) p (yk,[a,b] ) = m-as. 

So, lim h(y1.) ~ m-as, 
k➔oo ~ 

Hence sup h(x) = 
C xda,b] 

which is in contradiction with lim h(yk) = m. 
k➔oo 

m. By the continuity of h(x) in the points O and 

it follows that m = O. If y0 = 0 or 1 then also m = 0. Hence h(x) ~ O for 

all x E E. 
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In the same way, reasoning with g(y) = -h(y), it is easy to see that 

h(y) ~ O for y EE. Hence h(y) = 0 for ally EE. 

In order to prove (7) assume that µ({xJf0 (x) > f 1(x)}) > O. 

Let y E [a,b] with O < a,b < 1, 

where 

[ n f 1 (x. ) 1 /b- lJ 
> p • IT -1. < ....,.-r--::- ~ 
- y O 1.=l f (x.) 1/y-1 

0 -1. 

= y i;l I fo(x) dµ(x), 

A 

A={ xlfl (x) < (t/b-11/n}. 
f 0 (x) \1/y-IJ 

Then for n sufficiently large µ(A) > 0. Hence 

iUt J f 0(x) dµ(x) = £ > 0 

A 

n C and p (y,[a,b]) > a£ for ally E [a,b]. 

The proof of (7) for µ({xlf0 (x) < f 1(x)}) proceeds in a similar 

way. D 



Theorem 6. Under condition (6) any continuous harmonic function ~s 

a linear function. 
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Proof. Leth be an arbitrary continuous harmonic function. Call b = h(O) 

and a= h(l)-h(O); g(y) = ay+b. The function g is by theorem 2 harmonic. 

A linear combination of harmonic functions is also harmonic. Hence f = h-g 

is harmonic, continuous and f(O) = f(l) = O. According to theorem 5 we 

have f = 0 and consequently h(y) = ay+b. D 

Theorem 7. If relation (6) is true and his a nonnegative concave function 

with h(O) = h(l) = 0 then lim P¾ = 0 and his a potential with charge n-+<x> 
h-Ph. 

Proof. From theorem 3 it follows by induction that P¾ is concave. Since 

P¾ ~ 0 for all n ~ 1 we have from theorem 4 that O ~ Pn+lh ~ P¾ for 

n ~ 1. Hence g(x) = lim P¾(x) exists. Since g(x) is bounded and concave n-+oo 
g(x) is continuous. Also g(x) is harmonic, since 

Pg(x) = Jp(x,dy) lim P¾(y) = lim Jp(x,dy) P¾(y) = g(x), n-+<x> n-+<x> 

by the boundedness of h. Furthermore O ~ g(O) ~ h(O), so g(O) = 0 and 

similar g(l) = O. Applying theorem 5 we obtain g(x) = O, which proves the 

first assertion of the theorem. 

Let cp(x) = h(x)-Ph(x). By theorem 4, cp(x) ~ o. 

N N N 
pn+lh(x) I Pnij>(x) = I P¾(x) - I = 

n=O n=O n=O 

= h(x) - PN+lh(x) + h(x) as N+00 , 

which proves that h(x) is a potential with charge ij>(x). D 

n fl (~i) 
Remark 3. It is well-known that the likelihood ratios, z = TT 

--n i=I fo(5) 
form a martingale (cf. [Feller], page 211). Hence the sequence 

{y, n=0,1,2, ••• } forms also a martingale because y (x1, ••• ,x) 
~ n n 

is a 
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one-one correspondence 

y (x} , •• • , X ) 
n n 

1-y 
0 

Yo 

Theorem 2 is an innnediate consequence of this. 

It is also well-known (cf. [Doob]) that the likelihood ratios converge 

a.s. if condition (6) is true, z + 0 a.s. on t = 0 and z + ~ a.s. on 
--n - --n 

!_ =I.From the martingale convergence theorem it follows that there exists 

a L such that Xn + L a.s. Hence P[X«,=0] = I - P[X«,=I] = y0 . Theorem 5 is 

a direct consequence of this. 
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