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YVES LEPAGE2

SUMMARY

The asymptotic power efficiency of the class of linear rank tests
relative to the asymptotically most powerful rank test is derived for a
general location and scale problem. The results are then specialised to
the two-sample case and numerical evaluations are presented for two spe-

cial tests.
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1. INTRODUCTION

In this work, the asymptotic power efficiency of linear rank tests
is studied for a location and scale problem. Section 2 contains the asymp-
totic power efficiency of linear rank tests with respect to the asymptoti-
cally most powerful rank test given by LEPAGE (1973) for a general loca-
tion and scale problem. In section 3, the results are specialised to the
two-sample case and bounds are found. Finally, some numerical evaluations
are presented in section 4 for a linear rank test combining the Ansari-
Bradley and Wilcoxon statistics and also for a linear rank test combining

the quartile and median statistics.

2. GENERAL CASE

Let Nv(v=1,2,...) be a sequence of positive integers such that Nv > ©

when v -~ », For each v, consider a sequence of random variables le""’XvN

. _ v
and denote by Rvi’l 1"'°Nv’ the rank of X ; among le""’Xva'

Suppose that under Hv’ the random variables le""’XvN are indepen-
v

dently and identically distributed according to a continuous distribution
and that under the alternatives Kv’ the joint density of (le""’XvN )
v

is given by

-C . -C
V1

v .
(2.1) q =T e fle

i
% dvi)
N N

. _ v - v -
with ¢, = (Cv s+ ey ) eR ’dv (dvl"'"’va ) e R ~ and a known den

Y 1
sity £ in the class C of absolutely continuous density functions on R

such that
1 1

(2.2) 1(£) = J p2(u,E)du < = , I (£) = j 62 (u,H)du < =
0 0

where if F is the distribution function corresponding to £,

1o - 1 -1
EE ) ona g (u,6) = - 1 - F ey ZESD)
£(F ! (u) £rr ()

3

(2.3) ¢ (u,f) =



0 < u < 1, Note that if £ ¢ C,
1 1
(2.4) J ¢ (u,f)du = J ¢l(u,f)du = 0.
0 0
Further, for f ¢ C and K ¢ R, define
1

(2.5) I(£,K) = J 0% (u,£,K)du
0
where
(2.6) ¢ (u,f,K) =.¢](u,f) + K¢ (u,f) , 0 <ux<l.

The linear rank statistics considered are of the form

Nv
(2.7) Sv = .z (Yvi_Yv)av(Rvi)
1=1 N
Nv _ v
with Y, = (le""’YVNV) eR 7, YV:ziZ] Yoi / Nv and av(l)""’av(Nv)

the values of a score function av(-). We will assume that the sequence of
score functions av(°),v = 1,2,..., is generated by some square integrable
function ¢(u), 0 < u < 1, in the sense that
1
(2.8) lim J (av(l+[qu])“¢(u))2du =0
V70
with [qu] denoting the largest integer not exceeding quo

From Theorem 4.3 and Corollary 4.1 of LEPAGE (1973), we know that if

(2.9) lim max (c\)i—a\))2 =0,
v 1<1<N
v
(2.10) i~ Ev 0, i=1,..,N, v=1,2,...,
d .-d exp(-c .+c ) 2
(2.11) 1lim max < vr v — vr v o K\ = (0 for some K ¢ R,
vro 1<1<N c .—-cC
v vi v
and N
Y - 2 2 2
(2.12) lim Z (c ;7¢ ) I(£,K) = b" where 0 < b” < =,

v 1



the test based on
o Y -
(2.13) S = % (Cvi—cv)av(Rvi) ,

. o I3
where the sequence of score functions av(-),v =1,2,..., 1s generated by

¢(u,f,K), 0 < u < 1, with critical region
(2.14) s: >k, b,

where k]—a denotes the (l1-o)—-quantile of the standardized normal distri-
bution, is an asymptotically most powerful test for Hv versus q given by

(2.1) at level o.

In the following theorem, the asymptotic power efficiency of the
Sv—test with respect to the S:-test is given in the sense of HAJEK & SIDAK
(1967), p.267.

Theorem 2.1. Consider testing H wversus q given by (2.1). Under condi-
tions (2.9) through (2.12) and
NV _
. izl (Cvi—cv)(Yvi—Yv)
RS R g
[0 e Loaymi)?

the asymptotic power efficiency of the Sv-test with respect to the Sz—test,

denoted e, is given by

(2.16) e = p? og
where |

J d(u) ?(u,f,K)du
(2.17) p1 = 0

1

i 7
[J (6(w)-B) 2du - J

¢2(u,f,K)du]
0

0



1
with ¢ = J ¢ (u)du.

0
Proof. Let ®(*) denote the distribution function of a standardized normal
random variable. According to Theorem 4.3 of LEPAGE (1973), the asymptoti-

cally most powerful test SS yields the asymptotic power.
(2.18) 1 - ®(kl—a—b)’

whereas the Sv-test yields, from Theorem 3.2 of LEPAGE (1973), the asympto-

tic power
(2.19) 1 - @(kl_a-plpzb).

Thus, the result is immediate. [J

It is tacitly assumed that 0Py 2 0 since if p < 0, the Sv—test is

P
172
less powerful than the test with critical function constantly equal to «

regardless of the observations and their ranks.

3. TWO-SAMPLE CASE

Let (mv,nv), v=1,2,..., be a sequence of pairs of positive integers

such that Nv =m + no> e when v - =, For each v, define

-1
Al(mvnv/Nv) 2 if 1 = 1,...,mv,
(3.1) c,i =
0 if 1 =m+1,...,N
v v
and,
-1 _
AZ(mvnv/Nv) z if i =1, Seom
(3.2) dvi =

0 if 1 = mv+1,...,N s



2
where A = (A],Az) ¢ R". Also, put

1 ifi=1,...,m,

(3.3)

<
[}

vi
0 ifi=m+l,...,N .

The statistics (2.7) can now be rewritten as

m N
mV v
av(Rvi) TN .z av(l)'
1 v 1=1

(3.4)

[92]
<
i
=P

i

From Theorem 5.2 of LEPAGE (1973), we know that if A_ #* 0, min(mv,nv)+w

1
. o .
when v > © and the sequence of score functions a, A(-),\) =1,2,..., 18
3

generated by ¢(u,f,A2/Al), 0 < u < 1, the test based on

N
v o
(3.5) Sv,A = .Z av,A( vi)
i=1
with critical region
-} : ]
(3.6) (mn /N ) (A1/|A]l)sv’A 2 &y _ TP(E,8,/8))

is an asymptotically most powerful test, at level a, for H versus

<

-l -1
L ma /N )T (A (ma /N ) _l
(3.7) @ =T e VYV g 1TVVIVTT L (man /N )Y
’ Vv, A =1 1 2V vviv
N
AV]
m f(x.).
. 1
1=m +1
Vv

The asymptotic power efficiency obtained in the preceding section is

now given for the Sv-test and the Sz -test given respectively by (3.4) and

,A
(3.5)
Theorem 3.1. Consider testing H wversus q gtven by (3.7). Then, if

A #0 and min(mv,nv) > o when v > =, the asymptotic power efficiency of

the s,~test with respect to the S: ATtest 18 given by

9



1
(J b(w)6(u, £,1,/8 Ydw)?
0

(3.8) e = 7 .

: -2 2
J (¢(u)-¢)"du - [ ¢ (u,f’Az/Al)du
0 0

Proof. First note that conditions (2.9) through (2.12) are fulfilled for
K = AZ/AI' Also, by easy algebraic manipulations, we have in view of (3.1)

and (3.3) that

N
\) —
iZ](cvi-cv)(Yvi-Yv)
(3.9) lim = 1.
Ve Nv - Nv - 9 2
[.z (Cvi_cv) ) .z (Yvi—Yv) ]
1=1 1=1

Thus, the result follows from theorem 2.1. []

On account of the last paragraph of section 2, we have assumed that

1
(3.10) J ¢(u)¢(u,f,A2/A])du > 0.
0

In view of the definition of the asymptotically most powerful test

o

SV Ac 2 natural class of competitors can be given by
3
N

(3.11) S R .)

v
Vv, A B izl av,A( vi

where the sequence of score functions a ,(°),v = 1,2,..., is generated by

Vv, A

(3.12) ¢(u,f],f2,A2/A]) = ¢l(u,f]) + A¢(u,f2) s 0 <uc<l,

where f] and f2 belong to C and A = AZ/A]. From theorem 3.1, one obtains

that the asymptotic power efficiency of the Sv -test with respect to the

A
o . . N 4
Sv,A—test is given by



1
<J<¢]<u,f,>+A2/A1¢<u,f2>>c¢l(u,f)+A2/A1¢(u,f))du>2
0

(3.13) e =

1 1
<J<¢l(u,f1>+A2/A1¢<u,f2)>2du)(J<¢l<u,f>+A2/A]¢<u,f>)2du>
0 0

Thus, if we assume that

1 1 1
(3.14) J ¢(u,f)¢](u,f)du = J ¢(u,f2)¢l(u,f1)du = J ¢(u,f2)¢](u,f)du =
0 0 0
1
= J ¢(u,f)¢](u,fl)du =0,
0
we can write 1 1
(J b, (D0, (u,E dduras/nt J 6 (u, )6 (u, £,)du)”
(3.15) e =2 L

2,2 2
(I](f1)+A2/A] I(fz))(Il(f)+A2/A] I(£))

It should be observed that as a function of AZ/AI’ the preceding expression
for e is symmetric with respect to the origin. Furthermore, when A2/AI =0,

we have e = eS(f,f]) where

1
(j b, (u,E)8, (£ )du)? )
! (3, (£,£,))

.1 = = - [ ——
(3.16) es (£, £)) I (f) I,(f) T (O ()
1 1°71 1 171
m
v
is the asymptotic power efficiency of the test based on 2 alv(Rvi) where
i=1
the sequence of score alv(-),v =1,2,..., is generated by ¢1(u,f1), O<u<1,

with respect to the asymptotically most powerful rank test for contiguous
scale alternatives for a density f. Also, when A2/A1 -+ two, we have

e = eL(f’fZ) where 1

(J b (u, )b (u, £,)du)” )
! (J(£,£,))

(3.17) e (£,£,) = T(6) I(f,) T I(H) I(£,)




m
v

is the asymptotic power efficiency of the test based on 'Z av(Rvi) where
the sequence of score av(-),v =1,2,..., is generated by é(u,fz), 0 <uc<l,
with respect to the asymptotically most powerful rank test for contiguous

location alternatives for a density f.

Let
(3.18) r(f,fl,fz) = (I(f)Il(f])+I(f2)I](f))J(f,fZ) - ZI(f)I(fz)Jl(f,f])
and,
(3.19) s(f,f],fz) = ZI](f)I](fl)J(f,fz) - (I(f)Il(f])+I(f2)I](f))J](f,fl).

In the following theorem, the power efficiency e given by (3.15) is studied

as a function of AZ/AI'

Theorem 3.2. Suppose that A
(3.14) Zs satisfied and

# 0, min(m ,n ) > « when v + «, condition
1 v’y

(3.20) J(f,fz) >0 and Jl(f’fl) > 0.

(i) If

(3.21) r(f,fl,fz) <0 and eL(f’fZ) < eS(f,f])
or

(3.22) s(f,f],fz) >0 and eL(f’fZ) > eS(f,f])

then, the asymptotic power efficiency e of the S, ptest with respect

to the S; -test is bounded in the following way:

, A

(3.23) min(eL(f,fz),eS(f,fl)) < e < max(eL(f,fz),eS(f,f])).

Furthermore, for 0 < AZ/A1 < w, e 1g monotone (non-decreasing or

non—increasing) .



(ii) If

(3.24) r(£,£,,£,) >0 and e (£,f,)) < eg(f,f))
or

(3.25) s(£,£,,£,) <0 and e (£,£)) > e (f,f))

then, the asymptotic power efficiency e of the S, ) test with respect

to the S; -test 18 bounded in the following way:

i\

(3.26) e, < ecs max(eL(f,fz),eS(f,f]))

where e_ is the value of e given by (3.15) for

2 S(f’flifz) 212

2 = - e,———eeeee =
(3.27) By = T(5,E,6,) 10

Furthermore, for 0 < A2/A1 < 2, e 18 non—-increasing and for
Ly < B, /b,
eL(f’fZ) = eS(f’fl)'

< o e 18 non—-decreasing. Also, ey = 0 2f and only <if

Proof. Let ¢ = AZ/AI and denote by e(%) the expression of e given by (3.15).

The derivative of e(f) with respect to & can be written as

zz(J](f,f1)+J(f,f2)zz)(s(f,f1,f2)+r(f,f1,f2)zz)

(3.28) e'(R) =
(1, (H+1(0)L5) (1, (£ )+1E, e

Also, note that since I(f)ll(fl) + I(fZ)Il(f) > 2(I(f)1(f2)11(f)Il(f]))%,

we have that

(3.29) r(f,fl,f > 0 if eL(f’fZ) > es(f,fl)

5)

and

A

(3.30) S(f’fl’fz) < 0 if eL(f’fZ) < eS(f’fl)'



10

Thus, in view of (3.20), (3.29), (3.30) and condition (i), we deduce
that for 0 < & < =, e'(R) 0 or e'(%2) < 0. Consequnetly, the result of
part (i) follows from (3.16) and (3.17).

In the case condition (ii) holds, e'(QO) = 0 and, from (3.29) and
(3.30), we deduce that for 0 < 2 < 20, s(f,f],fz) + r(f,fl,f2)22 < 0 and
for QOS L < oo s(f,f],fz) + r(f,fl,fz)JL2 > 0. Hence, the result of part
(ii) follows from (3.16), (3.17) and (3.20). O

In many practical situations, the value of AZ/A1 is unknown and con-
sequently, the class of tests Sv,A given by (3.11) cannot be used. Instead,
we will consider the class of tests Sv,A where 0O is any real number. From
theorem 3.1, one obtains that the asymptotic power efficiency of the

- o
Sv,e-test with res?ect to the S\)’A

(J(da](u,f])+6¢(u,f2))(¢1(u,f)+A2/A]¢(u,f))du)2
0

-test is given by

(3.31) e =

] ]

(j(¢,<u,f,>+e¢<u,f2>>2<J<¢l<u,f>+A2/A1¢<u,f>)2du>

0 0

Under condition (3.14), one can write

1 I

(J¢,(u,f)¢](u,fl)du+eAJ¢(u,f)¢(u,f2)du)2

0 0
(Il(f])+621(f2))(11(f)+A21(f))

(3.32) e =

with A = AZ/A]. It should be observed that if 6 = A, we get back relation

(3.15). Furthermore, when 6 = 0, we obtain

| I, E)
(3.33) e =

Il(fl)(I](f)+A21(f))

and thus, eS(f’fl) if A = 0. Also, when 6 = #x, we obtain

223%(£,£.)
(3.34) e =

L(£,) (1, (E)+a°1(£))

and thus, eL(f,fz) if A = to, The values of e given by (3.33) and (3.34)
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*

0
J(f’fZ)Il(fl) )
Jl(f,f])l(fz)

will be denoted by e, and e; respectively. For

*

(3.35) 6 = A 8 5

the value of e given by (3.32) can be written as

Jf(f,fl)1(f2)+A2J(f,f2)11(fl) s
I(fz)I](f)(Il(f)+AI(f)) =€ €

*

(3.36) e =

0

In the following theorem, the power efficiency e given by (3.32) is studied

as a function of 6 for A fixed.

Theorem 3.3. Suppose that A = A2/A1 18 fixed (a4,#0), min(mv,nv) + o when

v + o, condition (3.14) is satisfied and
(3.37) J(£,£,) >0 and J](f,fl) > 0.

(i) For 6A > 0, the asymptotic power efficiency e of the S, g test with

3

respect to the SS -test is bounded in the following way:

A

* + *
eo em.

IN

(3.38) 0 < min(eg,el) < e

Furthermore, for 6 < 0", e is strictly increasing and for 6 > 0", e

18 strictly decreasing.

(ii) For 6A < 0, the asymptotic power efficiency e of the S, g test with

9

respect to the S: -test is bounded in the followsing way:

s A
(3.39) 0 <ec< max(eg,e:).

Furthermore, if

Jl(f’fl)
T ATlE £ N °
AJ(f,fz)

**

(3.40) B =

e 18 strictly decreasing for 6 < 0™*, and strictly increasing for

*%
6 >06 .
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Proof. Denote by e(8) the expression of e given by (3.32). The derivative

of e(8) with respect to 6 can be written as

2(J (f,f])+eAJ(f,f ))(AJ(E, £ )Il(fl)—eJl(f,fl)I(fz))

1

(3.41) e'(6) = 5 5 5
(Il(f])+6 I(fz)) (I](f)+A I(f))

Thus, e'(®) = 0 if and only if 6 = e* or 6**. Since e(e*) = e* and

e(e**) = 0, one can easily deduce in view of (3.37) that if 6A > 0 and

6 < 6% or if 8A < 0 and 6 > 67, e'(8) < 0 and, if 6A > O and 6 > 6 or if
A < 0 and 6 > 6**, e'(8) > 0. Consequently, the proof is complete. [J

In the preceding theorem, if J(f,fz) > 0 and Jl(f,f]) = 0, one can

easily verify from relation (3.41) that

(3.42) 0

IN
(1)
IA
®

and, for 6 € (-~,0], e is strictly decreasing and for 6 ¢ [0,»), e is

strictly increasing. Similarly, if J(f,fz) = 0 and Jl(f,f]) > 0, we have
(3.43) 0 <ec<e

and, for6 e(—~,0], e is strictly increasing and for 6 ¢ [0,»), e is

strictly decreasing.

4. NUMERICAL EVALUATIONS

A particulary interesting class of tests Sv is given by combining

A
b
the Ansari-Bradley statistic (see ANSARI & BRADLEY (1960) and the Wilcoxon-
Mann-Whitney statistic (see MANN & WHITNEY (1947)). Consequently, in view
HAJEK & SIDAK (1967), p.87 and 95, let f1 be the double quadratic density,

f](x) = %(l+|x[)—2, and f, be the logistic density, fz(x) = e—x(l+e_x)_2,
and define

2

m m

_ ] d J ]
(4.1) So.n = ¥ [4 izl IRvi—(NV+1)/2|—mv(Nv+l)+A(2i§1Rvi—mv(N +1))J




where A = AZ/AI'
If £ is the normal density, one obtains that the asymptotic power ef-

ficiency e of the Sv pTtest with respect to the S; pTtest is given by
b 9

3(/F‘A§/Af+2)2

(4.2) e =
2,,2,,2 2,2

T (AZ/A]+1)(A2/A]+2)

and is thus strictly increasing from 6/'rr2 (~.61) to 3/m (~.95) as AZ/A]

varies from O to «. Similarly, if f is the Cauchy density,

6(n A%/Af+4>2

4, 2,2

(4.3) e = 5
ﬂ (AZ/A]+1)

and is strictly decreasing from 96/1r4 (~.99) to 6/Tr2 as AZ/AI varies from

o to », If f is the double exponential density, we get

(4.4) e = 3/4

independently of AZ/AI’ When f is the logistic density,

3(A§/Af+41n2-1)2

(4.5) e = s
(A%/A%+l)(3A§/A%+n2+3)

this function is strictly decreasing from 3(1n2—])/(n2+3) (=~.73) to .719
for 0 < A2/A1 < .675 and then, is strictly increasing from .719 to 1 for

.675 < AZ/A] < «, Finally, if f is the double quadratic density,

2
2

2,2
4A2/A1+1

A /Af+l

(4.6) e =

and is consequently strictly decreasing from 1 to 1/4 for O < A%/A% < o,

In table 1, the asymptotic power efficiencies given by (4.2), (4.3),
(4.4), (4.5) and (4.6) are respectively evaluated for different values of
AZ/AI.



14

AZ/AI

. o |.15].25] .50.75] 1 |2.5| 5 | 10| =
Normal 611 .61].62.65].68|.72] .87 |.93] .95 .95
Cauchy 99| .98|.96| .90 .84] .79 .66 .62 .61 | .61
Double =\ 5| 751 75| .75|.75| .75( .75 |.75| .75 | .75
exponential
Logistic 730 .73 .73 72 ] 72| .73 .84 | .94 | .98 | 1.00
Double 1y 001 94| .85| .63 .48 .40 .28 |.26] .25 | .25
quadratic

Table 1. Asymptotic power efficiency of the combined

Ansari-Bradley and Wilcoxon-Mann-Whitney Sv pTtest
2

. (o]
with respect to the Sv A-test.
3

Another class of tests Sv,A which are ?asy to apply, is given by com-
bining the quartile statistic (see HAJEK & SIDAK (1967), p.96-97) and the
median statistic (see HAJEK & $IDAK (1967), p.88). Thus, let fl(x) = 1 for
|x| < 1/4, 1/(16x2) for |x| > 1/4 and £

and define

9 be the double exponential density

m
v v

2 . .
(4.7) S\)’A = N7 [.z s:.gn('R\)i (NV+])/2 (NV+1)/4)+A.Z 51gn(R_\)i (Nv+])/2)]

v i=1 1=1
where sign(x) = -1 for x < 0, O for x = 0 and 1 for x > 0 and A = AZ/A].

If £ is the normal density, the asymptotic power efficiency e of the
. ] 3 3
Sv’A—test with respect to the Sv,A test is given by
2,2
-1

2(83/82+2ve ™)

(4.8) e =

2,2 2,2
w(AZ/A1+l)(A2/A]+2)

where ¢(y) = .75 and &(-) is the distribution function of a standardized
normal random _variable; this function is strictly increasing from

-1 1
8[ (27) Z2ve zY ]2 (=~.37) to 2/m (=.64) as A2/A1 varies from 0 to »., If £

is the Cauchy, we get
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2
(4.9) e = 8/n" =~.81.

If £ is the double exponential density, we get

(Ag/Af+1nz)2

(4.10) e =
2,2 2

(AZ/A]+])

which is strictly increasing from 1n2(=.48) to 1 as[&/A1 varies from o to «.

When f is the logistic density,

9(2A§/Af+31n3)2

2, 2 2,2 2
16(A2/A1+1)(3A2/A1+” +3)

(4.11) e =

and the function is strictly decreasing from .4748 to .4745 for
0 < AZ/A] < .26 and then, strictly increasing from .4745 to 3/4 for
.26 < A2/A1 < o, Finally, when £ is the double quadratic density,

3(2A§/Af+1)2
(4.12) e

I 2,2

A(AZ/A]+I)(4A2/A1+1)
and is consequently strictly decreasing from 3/4 to 2/3 for 0 < A2/A1 < .703
and then, strictly increasing from 2/3 to 3/4 for .703 < AZ/Al < o,

In table 2, the asymptotic power efficiencies given by (4.8), (4.9),
(4.10), (4.11) and (4.12) are evaluated for different values of Az/Al.

Byl
o |.15|.25| .5(.75| 1 |2.5| 5 10|
£
Normal .37 .37 .38 | .40 | .43 | .46 | .57 | .62 | .63] .64
Cauchy .81 .81 |.81].81 .81 .81 ].81].81].81| .81
Double .48 | .49 | .51 | .57 |.65|.72|.92] .98 .99|1.00
exponential
Logistic .475| .475] .474| .476] .483] .50 | .61 | .70 | 74| .75
Double .75 | .74 | .72 | .68 | .67 | .68 | .73 | .74 | .75] .75
quadratic

Table 2. Asymptotic power efficiency of the combined quartile

. o
—test with respect to the S ~test.

and median S
v Vv, A

A
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In the case A = AZ/A1 is unknown, the Sv -test given by (4.1) with 86

8
5
any real number can be used. If f is the normal density, one obtains that

the asymptotic power efficiency of the Sv e—test with respect to the

3
s° -test is given by

v,A
3(/7 26+2)°
(4.13) e=— 5
m (AT+2) (67 +1)
with
2
TRV SC N - S U S
T (AT+2) T(AT+2)
If f is the Cauchy density, we get
6(m A6+4)2
(4.15) e == 5
m (AT+1)(87+1)
with
* 96 * 6A2
(4.16) e0=——4————2-——— and ew=—2-—-—7—— .
T (AT+1) T (AT+1)
If f is the double exponential, we get
2
(4.17) e = 25A6+])2
4(AT+1)(67+1)
with
2
(4.18) eg = ———%——— and e: = ——E%———.
4(AT+1) 4(ATH+1)

*

0o * e: = 3/4 independently of

It should be observed that in this case, e

A = AZ/A]. When f is the logistic density,

3(A6+41n2—l)2
(1%+1) (36%412+3)

(4.19)

with

L ]
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o5 3in2-1)? s _3?

0 55 and e = 5

(4.20) L
387+ +3 30 +n 43

Finally, when f is the double quadratic density,

2
(4.21) SOV
4a%+1) (82+1)
with
2
(4.22) en = — and el =%
LAT+1 LAT+]
In table 3, the bounds eS and e: given by (4.14), (4.16), (4.18),
(4.20) and (4.22) are evaluated for different values of ]Al = IAZ/All'
7y
0 .15 .25 .5 .75 1 2.5 5 10 w
£
Normal .61 |.60 .59 .54 47 41 .15 .05 .01 0
0 .01 .03 11 .21 .32 .72 .88 .94 .95
Cauch .99 |.96 .93 .79 .63 .49 14 .04 .01 0
J 0 .01 .04 .12 .22 .30 .52 .58 .60| .61
Double .75 |.73 .71 .60 .48 1.375  |.10 .03 .01 0
exponential 0 .02 .04 .15 .27 .375 .65 .72 741 .75
Logisbic .73 .73 .72 .69 .65 .59 .30 11 .03 0
& ol .o1 .01 .06 .12 .19 .59 .85 .96| 1.00
1.00 |.92 .80 .50 .31 .20 .04 .01 0 0
quadratic 0 .02 .05 .13 .17 .20 .24 .25 .25 .25

*

0
efficiency of the combined Ansari-Bradley and Wilcoxon-Mann-Whitney

Table 3. Components e, and e: of the bounds on the asymptotic power

. ¥ o .
Sv e-test with respect to the Sv A—test when A is unknown.
3 9

Similarly, the Sv -test given by (4.7) with any real number 6, can

S
3
also be used when A = AZ/A] is unknown. If f is the normal density, the

]
-test with respect to the S -test

asymptotic power efficiency of the Sv v A
3

,0
is given by
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—lYZ 2
2
(4.23) o = (2Ae;4ye ; )
2n(AT+2) (67+1)
with
2
2 -y 2
(4.24) eg = §1—§L——- and e: = 23
m(AT+2) T(AT+2)
If £ is the Cauchy density, we get
8(16+1)2
(4.25) == 5
T (AT+1)(87+1)
with
2
(4.26) o= ——— and el =20
7 (AT+1) T (AT+1)
It should be observed that, independently of A = A2/A], eg +
(~.81). When f is the double exponential density,
2
(4.27) e = POt
(A"+1)(87+1)
with
2 2
(4.28) e; = Ll%%l_ and e: = é
A" +1 AT+1
When f is the logistic density
9(240+31n3)>
(4.29) e = 73 5
16 (307 +n1 +3) (67 +1)
with
2 2
(4.30) e; = 81(;1‘13‘,)2 and e: = —*—%AT——- .
16(3A7+77+3) 4(3A7+m7+3)

Finally, when f is the double quadratic density,

3(280+1)2

(4.31) =
440241y (0%41)
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with
* 3 * 3A2
(4.32) ey = —5 — and e = 5
4(4AT+1) 4AT+1
. * * * .
In this case, eg te,=e = .75 independently of A = A7/A1.
In table 4, the elements of the bounds eS and e: given by (4.24),
(4.26), (4.28), (4.30) and (4.32) are evaluated for different values of
8] = [ayrn,].
|a]
£ 0 .15 .25 .5 .75 1 2.5 5 10 oo
Normal .37 .36 .37 .33 .29 .25 .09 .03 .01 0
0 .01 .02 .07 .14 .21 .48 .59 .62 .64
Cauch .81 .79 .76 .65 .52 L 405 .11 .03 .01 0
y 0 .02 .05 .16 .29|  .405| .70 .78 .80| .81
Double .48 47 .45 .38 .31 .24 .07 .02 .005 0
exponential 0 .02 .06 .20 .36 .50 .86 .96 .99 1.00
Logistic 475 |.47 W47 .45 42 .39 .19 .07 .02 0
& o| .004| .01 .04 .09 4 b .64 720 .75
Double .75 .69 .60 .375 .23 .15 .03 .01 .002 0
quadratic 0 .06 .15 .375 .52 .60 .72 T4 .748 .75

Table 4. Components eg and e: of the bounds on the asymptotic power

efficiency of the combined quartile and median Sv g test with res-
3

pect to the Sz A—test when A is unknown.
3
In the preceding section, it has been mentioned that when A6 > 0 and

A is unknown, the maximum power efficiency of the S _-test with respect

V,0
to the S: pTtest is achieved at 8 = 8~ given by (3.35). In practice, one
3
can try to approach this maximum by estimating A and using the Sv g test
b

with the corresponding 6". In table 5, the value 0" is giving as a function

of A.
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ost Combined Ansari- Combined
Bradley and Wilcoxon |quartile
f Mann-Whitney and median
2
-1
Normal A5F1 2ave 2
Cauchy At A
A
Double A A
exponential 1n2
.. A 2A
Logistic 4Tn2-1 31n3
Double
quadratic A 2h

Table 5. Value of 6* in function of A.
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