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ABSTRACT 

RANK TESTS FOR INDEPENDENCE WITH BEST 

STRONG EXACT BAHADUR SLOPE 

by 

P. Groeneboom, Y. Lepage(*) and F.H. Ruymgaart 

Mathematisch Centrum, Amsterdam 

Hajek [2] has shown that there are rank statistics for the two-sample 

problem which have the best possible strong exact slope. Here we prove 

the same kind of result in the case of rank statistics for testing inde

pendence against a general fixed dependence alternative. Our proof is also 

based on a strong law of large numbers for the rank statistics involved. 

Moreover, in the appendix we prove that the crucial property A of 

Woodworth [4] is satisfied for both exact and approximate score functions, 

derived from a suitable function on the open unit square. This function 

has to satisfy rather mild integrability conditions, may have certain 

discontinuities and need not be of product type. 

(*) This work was done while the author was on leave from the Universite 
de Montreal and visiting the Mathematisch Centrum, Amsterdam, with 
a post-doctoral fellowship from the National Research Council of 
Canada. 





l . INTRODUCTION 

Let (~,A,P) be a probability space on which a pair (X,Y) of random 

variables (rvs) is defined, having joint distribution function (df) 

H(x,y) = P({X:,; x,Y:,; y}) and marginal dfs F(x) = P({X:,; x}) and 

G(y) = P({Y :;; y}) for all x,y E (-00 , 00). Let be given a sequence of mutually 

independent and identically distributed (iid) random vectors (X1 ,Y 1), 

(X2 ,Y2), ... , all defined on the probability space mentioned above and all 

possessing the bivariate df H. To display the underlying df H, the proba

bility measure will occasionally be denoted by PH rather than P. 

Given a positive interger N, the joint empirical df based on the first 

N random vectors in the sequence is defined by N~(x,y) = 

# {(X ,Y) : X :,; x, Y :,; y, n = I, ... ,N} and its marginal empirical dfs 
n n n n 

FN(x) and GN(y) by NFN(x) = # {Xn: Xn:,; x, n = l, ... ,N} respectively 

NGN(y) = # {Y : Y ~ y, n = l, ••• ,N}. (For any finite set S we denote the 
n n 

number of its elements by# S.) The rank RN of X will be defined as 
n n 

# {X : X ~ X, m = 1, ..• ,N} and the rank Q N of Y as m m n n n 
# {Y : Y :,; Y, m = 1, .•• ,N}. The set of ordered first and second coordi

m m n 
nates will be denoted by Xl:N ~ ... ~ XN:N and Yl:N:,; .•• ~ YN:N respec-

tively. 

For any non-decreasing right-continuous function~ on (-00 , 00 ), satis

fying lim ~(z) = 0 and lim ~(z) = 1 let us define an inverse ~-l on (0,1] 
z-+-00 z-+oo 

of this function by 

~~ -1 (u) = inf 
ZE(-00,00) 

{z ~(z) ~ u} for u E (0,1]. 

-1 
When {z: ~(z) ~ 1} = 0 by convention we define~ (1) = 00 • By this defini-

tion~-! is left-continuous on (0,1]. We obviously have the useful relations 

(1 . 1) 

(1. 2) 
-1 

FN (n/N) = X n:N' 

for n = I, .... ,N. 

-1 
GN (n/N) = Y n:N' 

The rank statistics that will be considered here are suitable for 
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testing the hypothesis of independence and have the form 

(I. 3) T = N-l ,N C (R Q ) 
N ln=l N nN' nN' 

where the numbers CN(m,n), called scores, are defined and finite for 

m,n=l, .•• ,N and N = 1,2, ... 

( 0, 1 J x ( 0, 1 J by 

Let us define a score function JN on 

(1. 4) JN(s_,t) = CN(m,n) for (s,t) E ((m-1)/N,m/N] x ((n-1)/N,n/N], 

m,n = 1, .•. ,N. It follows from (I.I) that we may write TN alternatively as 

(I. 5) 

Still another representation of TN may be obtained in terms of the modified 

bivariate empirical df ~' defined on (O,l] x (O,l] by 

( l • 6) ~(s,t) 
-1 -1 

= ¾CFN (s),GN (t)) for (s,t) E (O,l] x (0,1]. 

We may think of¾ as a scalefree version of¾ which assigns mass I to 

(0,1] x (0,1] and has the property that N~(s,t) = # {(RnN'QnN) : 

RniN ::; s ,QnN/N ::; t ,n= l, ••• ,N}. Note that (with PH-probability l) 

~(n/N,O) = ~(O,n/N) = 0 and ~(n/N,I) = ~(l,n/N) = n/N for n = 1, ••• ,N. 

Combining (1.2), (1.5) and (1,6) it follows that 

(I. 7) 

Similarly let us introduce 

(1.8) 
-I -I 

H(s,t) = H(F (s),G (t)) for (s,t) E (0,1] x (O,l], 

and observe that H(s,t) = P({F(X) ::; s,G(Y) ::; t}) so that it assigns mass I to 

the unit square and has uniform (O,I) marginal dfs. 
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Hajek [2] investigated the almost sure convergence of linear rank 

statistics for the two-sample problem and exhibited the existence of linear 

rank statistics with best strong exact slope for testing against a fixed 

simple alternative. It is our purpose to prove similar results for statis

tics of type (1.7). In section 2 we prove the almost sure convergence of 

the random variables (1.7) and section 3 is devoted to the construction of 

linear rank statistics - i.e. statistics of type (1.3) or, equivalently, 

(1.7) - with best strong exact slope. Some results concerning the best 

strong exact slope of rank-likelihood ratio statistics are presented in 
section 4. Finally, in the appendix we prove that the conditions for 

theorem 2,1 and theorem 3.1, one of which is the crucial property A of 

Woodworth [4], are satisfied in the case where the JN are either the exact 

or the approximate score functions, derived from a sufficiently smooth 

function Jon the open unit interval. 

2. ALMOST SURE CONVERGENCE 

It will be convenient to introduce the class Hof bivariate dfs, 

defined by 

H = {H:H is a bivariate df, continuous on (-00 , 00 ) x (-oo, 00 )}. 

For any HEH it follows that 

(2.1) PH({1im sup l¾(s,t)-H(s,t)I = o}) = 1. 
N-+<x> s,tE(O,l] 

To see this let us observe that, with probability l (under PH), 

sup l¾(s,t)-H(~,t)I ~ 
s,tE(O,l] 

~ sup ,~(F-1(F(F;1(s))),G-1(G(G;1(t)))) 
s,tE(0,1] 

- H( F-l ( F (F; l ( s))) , G - l ( G( G; l ( t)))) I 
+ sup IH(F(F;1(s)),G(G;1(t)))-H(s,t)I. 

s,tE(0,1] 



4 

The first term in this bound converges to O with probability 1 by the 
-I -I 

Glivenko-Cantelli theorem in two dimensions. Because F(FN) and G(GN) 

behave on (0,1] as inverse empirical dfs based on random samples from the 

uniform (0,1) distribution and since His uniformly continuous on 

[0,1] x [0,1] the second term in this bound also converges to O with proba

bility I. This proves (2.1). 

In the sequel~~ 0 and~~ 0 will be continuous functions on (0,1), 

satisfying 

(2.2) J~ [~s)Jf,;ds < 00 , J~ [Ht)]ndt < 00 for some f;,n ~ 1 with t,;-1+n-l = 1. 

We shall also need the functions ~N and ~Non (0,1], related to~ and~ 

according to the relations 

-1 on (1-N , 1], 

(2.3) 

For any real function f, by /T) we shall understand the truncated function 

(2.4) f(T) = f on {lfl $ T}, f(T) = 0 on {lfl > T}. 

If f is a function of two variables defined on a bounded rectangle 

[a,A] x [b,B] in the plane, for any two partitions a= a0 $ a1 $ ••• $~=A 

and b = b0 $ b 1 $ ••• $ bN = B, let us put 

(2.5) 

The total variation off on [a,A]·x [b,B] is defined by 

(2. 6) 

the supremum being taken over all pairs of partitions. 

If JN is defined as in (1.4) the condition IJN(s,t)I $ ~(s)~(t) for all 
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s,t E (0,1) is equivalent to the condition that IJN(s,t)I ~ ~N(s)~N(t) for 

all s,t E (0,1], see (2.3). Each of these conditions on the JN entails that 

(for HEH) 

(2. 7) PH{{lim sup JJIJN-J~,:)ld~=O}) = 1, 
,:-+<x> N= 1 , 2 , ••• 

(2.8) lim sup fflJN-J~,:)ldH = 0. 
,:-+<x> HEH,N=l,2, ••• 

Both (2. 7) and (2, 8) follow from Holder's inequality. By way of an example 

let us prove (2.7) and note that 

for each T ~ O. By synnnetry we need only consider the first term in the 

latter bound. Applying Holder's inequality we see that the supremt.nn over 

all N = 1,2, ••• of the first term is bounded by 

because ¾(•,1) and ¾(1,•) are discrete probability measures, no longer 

depending on w En except for a set with PH-measure O, restricted to the 

points n/N for n = 1, ••• ,N to each of which they assign mass 1/N. 

We also have to introduce a measurable function Jon (O,I) x (O,I) 

which is, in a sense to be made precise, the limit of the functions JN and 

therefore referred to as limiting score function. The condition that 

IJ(s,t)I ~ ~(s)~(t) for all s,t E (0,1) entails 

(2.9) lim sup fflJ-J(,:)ldH = 0 and sup fflJldH < 00 , 

,:-+<x> HEH HEH 

in a completely similar way. 
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THEOREM 2.1. Suppose the following conditions are satisfied: 

(a) 

(b) 

(c) 

IJN(s,t)I, IJ(s,t)I:,; <l>(s)iJ.,(t) for s,t E (0,1) and N = 1,2, ••• (see (2.2)), 

lim llf(JN-J)dHI = O, 
N~ 

( T) 
sup V[l/N,l]x[l/N,l](JN ) :,; V(-r) < oo for each•~ O. 

N= 1, 2, ••• 

Then we have, for each fixed HEH, 

(2. 10) PH({lim TN= JJJdH}) = 1. 
N~ 

PROOF. Let us first observe that 

(2.11) ITN-JJJdHI :,; IJJ(JN-J)dHI + IJJ(JN-J~T))d~I 

+ IJJ(J~T)_JN)dHI + IJJJ~T)d(¾-H)I, 

for each T ~ O. Condition (a) implies (2.7) and (2.8) so that, on account 

of condition (b) it suffices to prove that for each T ~ 0 the last term on 

the right in (2.11) converges to O with probability (under PH), as N -;,. 00 • 

By aefinition J~-r) is constant on each square ((m-1)/N,m/N] x 

((n-1)/N,n/N] for m,n = 1, ••• ,N. Because ~(n/N,O) - H(n/N,0) = 

= HN(n/N,l) - H(n/N,l) = ~(O,n/N) - H(O,n/N) = ¾(1,n/N) - H(l,n/N) = 0 

with probability 1 for n = 1, ••• ,N, it follows that 

(2. 12) 

\N-1 \N-1 - - (-r) :,; 
= I l l l _ 1 [HN(m/N,n/N)-H(m/N,n/N) ]ti l l JN I 

m= n- m+ ,n+ 

:,; sup l~(s,t)-H(s,t)IV(-r) + O, with probability I, as N + 00 • 

s,tE(O,I] 

Here we use (2.1), which holds by continuity of H, and condition (c). The 

difference operator~ 1 1, defined in (2.5), refers to the partitions m+ ,n+ 
{m/N,m=I, ••• ,N} and {n/N,n=I, ••• ,N} of [1/N,I]. 0 
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The theorem, properly modified, remains true in some situations where 

the sample elements do not all have the same underlying bivariate df. More 

specifically this is the case if, for some fixed positive integer k, 

N = N1 + ••• + Nk and Ni sample elements have df H(i) EH, provided 

N./N ➔ v. E [0,1] as N ➔ 00 and Hin (2.10) is replaced by H( )' where 
1 1 V 

H(v) = ll=t viH(i)" The bivariate empirical df ~ and, consequently, its 

marginals FN and GN are based on the combined sample in this case. 

Let us specialize this generalization to the case where k = 2 and 

H(i) (x,y) = F (i)·(x)U (i) (y), where F (i) is a continuous univariate df and 

U(i) is the uniform df on (i-1,i) for i = 1,2. Choosing, in addition 

JN(s,t) = ~(s)xN(t), where xN(t) = 1 fort E (O,N1/N] and xN(t) = 0 for 

t E (N1/N,1], (1.7) reduces to the (I-dim.) two-sample statistic, because 

(2. 13) 

For the limiting score function we take J(s,t) = K(s)x (t), where X (t) = 1 
V V 

fort ·E· (O,v 1J and xv(t) = 0 fort E (v 1,I). In order that the JN and J 

satisfy condition (a) of the theorem it suffices that the l~I and IKI are 

bounded by a continuous function~ satisfying (2.2) with~= 1 because the 

xN and xv are bounded by 1, so that we may take$= 1 on (0,1) and hence 

n = 00 • Conditions (b)and (c) can accordingly be modified. In view of (2.13) 

we obtain 

(2. 14) 

where F(l) and F(v) are the first marginals of H(l) and H(v) respectively. 

This is essentially theorem 1 of Hajek [2]. 

It should be noted that if HEH has a density with respect to 

Lebesgue measure, theorem 2.1 still holds if condition (b) is replaced by 

(b') li"mf 1J 1 IJ ( ) ( )I 0 0 N s,t -J s,t dsdt = O. 
N➔oo 

For special choices of JN and J satisfying conditions (a) and (b) of the 

theorem we refer to the appendix. 



8 

3. BEST STRONG EXACT SLOPE 

* In this section we restrict our attention to a subclass H of smooth 

dfs. If we say that a df has a density, we shall tacitly assume that it is 

a density with respect to Lebesgue measure. Similarly, if we say that a 

relation holds a.e. this is also with respect to Lebesgue measure. The sub

class is given by 

( 3. I) H* = {HE H: H has a density h on (-00 ,oo) x (-00,00)}. 

We shall also consider the special families 

(3. 2) H* = 
0 

{HE H * } H* H = FxG , I = H* - H* 
0 

* For any HEH the univariate marginal dfs F and G possess densities 

f and g respectively, and the transformed df H has a density h with support 

* contained in (0,1) x (0,1). Each F x GE H0 has the transformed df 

H(O)(s,t) = st for all s,t E (0,1) with density h(O) = I, a.e. on 

(0,]) X (0,]), 

* From now on let us fix H(I) E H1 with density h(I)" For each N we 

wish to test, on the basis of the sample (X1,Y1), .•. ,(~,YN), the composite 

hypothesis that the underlying df H satisfies HEH~ against the simple 

alternative H = H(I)' The probability measure on (Q,A) corresponding to 

F x GE H; will be denoted by PFxG' or simply by PO if the probability of 

an event involving ranks only 1.s considered. The probability measure cor

responding to H(I) is denoted by P1• For this testing problem we shall be 

concerned with the properties of tests based on the statistics TN as 

defined in (1.7), where the score functions JN are related to the special 

fixed limiting score function 

(3.3) 

Again we suppose that IJ(l)(s,t)I ~ ~(s)t(t) for all s,t E (0,1). 

This entails that we only consider alternatives H(I) which satisfy the 

condition h1 (s,t) > 0 for all s,t E (0,1). 

To formulate theorem 3.1 we shall have to introduce some more notation 

and to give a short review of some results obtained by Raghavachari r 3 l and 
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Woodworth [4]. For any two densities p and q of probability measures with 

respect to a o-finite measure µ on a measurable space, denote the Kullback

Leibler information number by 

(3. 4) K(q,p) = f {q>O} q log (q/p)dµ. 

The property that O ~ K(q,p) ~ 00 , where K = 0 if and only if µ({p#q}) = O, 

plays an essential role in the sequel without explicit reference. A change 

of variables entails K(h,fxg) = K(h,h(O)) = ff log (h)dH, for each HEH*. 

* In particular for the fixed H(I) E H 1 we have 

(3. 5) 

For J(l) as in (3.3) let us introduce 

It can be shown that 

(3. 6) -•00 < < oo. 

We shall also employ the notation 

(3. 7) 

In view of (3.6) this function pis defined at K(ii(l)'h(O))' where it 

assumes the value 

(3. 8) 

By way of an example let us prove (3.8). It follows from Jensen's in

equality that ~(J(l)'ii) - K(h,h(O)) = ff log (h(l)/h)dH ~ log (ff dH(l)) = O, 

so that 
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(3.9) 

for all HEH*. We have to compute the infimum in (3.7) fort= K(h( 1),h(O)). 

Because n(J( 1),h( 1)) = K(h( 1),h(O)) it follows that this infimum is not 

greater than K(h( 1),h(O)). On the other hand, by (3.9) we have, for any 

density h' satisfying n(J( 1),h') ~ K(h( 1),h(O)), the relations 

K(h',h(O)) ~ n(J( 1),h') ~ K(h( 1),h(O)). Combination of these results yields 

(3. 8). 

Let SN= SN~x1,Y1, ••• ,~,YN) be an arbitrary extended real-valued 

measurable function and define 

sup PFxG ({SN~ s}) for s E [-00,00]. 
FXGEH~ 

According to Bahadur [1] the level attained by SN is defined as the rv 

LN(SN;SN), for brevity denoted by i(SN). It follows from theorem l of 

Raghavachari [3] and (3.5) that 

(3. 10) 

Because TN is a rank statistic we have LN(TN;t) = P0 ({TN ~ t}). Under a 

suitable condition (actually condition (b) of theorem 3.1 below), theorem l 

of Woodworth [4] yields that 

(3.11) 

where pis defined in (3.7). 

THEOREM 3.1. Let J( 1) be the function defined in (3.3) and suppose that the 

following conditions hold: 

(a) IJN(s,t)I, IJ(1)(s,t)I ~ ~(s)w(t) for s,t E (0,1) and N = 1,2, ••• 

(b) 

(c) 

lim sup lff(JN-J(l))dHI = 0, 
N~ HEH* 

(see (2.2)), 

(T) 
sup V[l/N,t]x[ 1/N, 1](JN ) ~ V(T) < 00 for all T ~ 0. 

N= 1 , 2, ••• 



Then the level 2(TN) attained by the linear rank statistics TN 

satisfies 

(3.12) 

- - * so that {TN} has strong exact slope 2K(h(l)'h(O)) for testing H0 against 

H(l)" Moreover, this is the best strong exact slope for this testing 

problem. 

I I 

PROOF. Under the present conditions theorem 2.1 applies, which yields that 

P1({J~ TN= ff J(l)dH(l) = K(h(l)'h(O))}) = I. Re:atio~ (3.11) and the 

continuity of pimply that (1/N)log(i(TN)) ➔ -p(K(h(l)'h(O)), as N + 00 , 

on a set with probability I under P1• The assertion (3.12) follows at once 

by applying (3.8). 

The result in (3.10) implies that 2K(h(l)'h(OY is the best possible 

strong exact slope. D 

Condition (b) of the present theorem is stronger than condition (b) of 

* theorem 2.1 (for HEH). In the appendix it will be shown, however, that 

the present condition (b) is still satisfied in some interesting special 

cases. 

4. RANK-LIKELIHOOD RATIO STATISTICS 

For a fixed positive integer k let us introduce the composite alternative 

( 4. I) * { H( i) E HI , i = I , ... , k}, 

and denote the probability measu~e on (n,A) corresponding to H(i) by Pi. 

For each N = 1,2, ••• and i = 1, ••• ,k we introduce the function 

(4.2) 

where (r 1, ••• ,rN) and (q1, ••• ,qN) are two arbitrary permutations of the 

numbers 1, ••• ,N. 
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(4.3) 

(4.4) 

Let us consider the random variables 

M__ = max A. , 
-~ 1 :s;i:s;k 1.N 

defined on n, where AiN is given by (4.2). The AiN are called rank-likeli

hood ratio statistics. It will be convenient to compare the AiN with special 

linear rank statistics (see Hajek [2]), TiN say, given by (1.7) with score 

functions satisfying 

(4.5) 

Here J(i) is defined according to (3.3) with h(l) replaced by h(i) and bµ,v 

is the beta-density with parametersµ and v. 

THEOREM 4.1. Suppose that J(i) and the JiN satisfy conditions (a)-(c) of 

theorem 3.1 for i = 1, ••• ,k. Then the sequence{~} has strong exact slope 

2K(h(i)'h(O)) for testing H~ against H(i) in the alternative (4.1), 

i = 1 , ••• ,k. These exact slopes are the best attainable. 

PROOF. The proof is a straightforwardmodification of the approach in sections 

3 and 4 of Hajek [2]. To avoid a needless repetition of arguments let us 

just observe that the proof centers around the remark that 

(4.6) 

To indicate the proof of this relation let us define the random 

variables 

(4. 7) 

where F and Gare marginal dfs of H(i)" 

By EO(· IR1N=r 1,Q1N=q1, ••• ,~=rN,QNN=qN) we understand a conditional 

expectation given RnN = rn' QnN = qn for n = 1, ••• ,N, computed under the 

null hypothesis that X and Y are independent, so that H = F x G and each 
n n 



vector (F(X ),G(Y )) has the uniform distribution on the unit square. We n n 
have the identity 

(4.8) 

and the proof proceeds like in the paper by Hajek [2]. 0 

In the proof of theorem 4.1 we use theorem 2.1 and relation (3.10) 

which follows from a result of Raghavachari [3]. However, it should be 

noted that, still in accordance with the results of Hajek [2], we do not 

need here the large deviation result (3.11) of Woodworth [4]. Conditions 

(a) and (b) of theorem 3.1 are considered in the appendix. 

5. APPENDIX 

In this appendix we shall investigate conditions (a) and (b) of 

theorems 2.1 and 3.1 in the two special cases where the JN are either the 

exact or the approximate score functions derived from a fixed function J. 

Let us start with condition (a) and introduce the notation 

(A. 1) R(u) = [u(l-u)]-l for u E (0,1). 

In the sequel we shall exclusively deal with measurable functions Jon 

(O,l) x (O,l) that satisfy 

(A. 2) IJ(s,t)I ~ c[R(s)Ja[R(t)J 8 for a,B E (0,1) with a+ S < I, 

and for s,t E (0,1). Here c is an arbitrary positive constant. Let us 

observe that, for k1,k2 E (0, 00), the functions 

(A. 3) <l>(s) 
a = k1[R(s)J , ~(t) = k2[R(t)J 8 for s,t E (0,1), 

satisfy (2.2) with~= (a+B)/a and n = (a+B)/B. 

13 

As before, b will denote the beta-density with parametersµ and v. µ,v 
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For any function Jon (0,1) x (O,I) as described above let us define the 

exact score functions 

(A. 4) Je,N(s,t) = f 0
1 f 0

1 J(u,v)b N I (u)b N I (v)dudv, m, -m+ n, -n+ 

(derived from J for the sample size N), and the approximate score functions 

(A. 5) Ja,is,t) = J(m/(N+l),n/(N+I)), 

(derived from J for the sample size N), for (s,t) E ((m-1)/N,m/N] x 

((n-1)/N,n/N] and m,n = I, ••. ,N. 

are defined throughout (0,1]. 

In this way the functions J N and J 
e, a,N 

THEOREM A.I. Suppose that J satisfies (A.2). Then there is a constant 

c E (0, 00 ) such that 

(A. 6) J.J N(s,t)I, IJ N(s,t)I, IJ(s,t)I :<; ;[R(s)f°'[R(t)J 13 , 
e, a, 

for s,t E (0,1) and N = 
(A.5). 

1,2, .•• Here J and J are given in (A.4) and 
e,N a,N 

PROOF. It suffices to prove the theorem in the special case where J(s,t) = 

[R(s) Ja[R( t)] 13 • This function trivially satisfies the condition of the 

theorem, so that we need only consider the corresponding J N and J N 
e, a, 

which are, in this special case, also of product type. By syunnetry, we may 

restrict attention to the first factors, K and K say, given by e,N a,N 

(A. 7) 
I a = ! 0 [R(u)J b N 1(u)du, m, -m.+ 

(A. 8) Ka.,N(s) = [R(m/(N+1))]a, 

for s E ( (m-1 )/N,m/N] and m = 1, ..• ,N. 

The properties of the function Ra and the fact that K N and K are 
e, a,N 

simple step functions entail that we only have to prove that (for some 

c 1 E (0, 00 )) 
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a 
IKe,N(m/N)I, IKa,N(m/N)I ~ c 1[R(m/N)] form= 1, ••• ,N-1, 

IK N(l)I, IK N(l)I = O(N°) as N ➔ oo. e, a, 

It is innnediate from (A.I) and (A.7) that 

IK N(m/N)I ~ r(N+l)[r(m)r(N-m+l)J-l J1 sm-a-l(l-s)N-m-ads = 
e, 0 

= r(m-a)r(N-m-a+l)[r(m)f(N-m+l)f(N-2a+l)J-l ~ 

~ ~ ~ a 
~ c2m (N-m+l) (N+l) = c2[R(m/(N+t))J 

for some constant c2 E (0, 00 ) and m = t, •.. ,N. Hence, according to (A.8) it 

suffices to show that, for some constant c3 E (0, 00 ), 

R(m/(N+l)) ~ c3R(m/N) form= t, ... ,N-1, 

R(N/(N+l)) = O(N°) as N ➔ 00 • 

These relations follow immediately from the properties of the function R0 • D 

Next we shall consider condition (b) of theorem 3.1, which is the 

crucial property A of Woodworth [4], in the even stronger form where the 

supremum is taken over all HEH. It is clear that in this form the condi

tion is also stronger than condition (b) of theorem 2.1. We shall say that 

the function J is piecewise continuous on (0,1) x (0,1) if there exist 

partitions O = s0 < s 1 < ••• < sp = 1 and O = t 0 < t 1 < ••• < tq = 1 such 

that J is continuous on 

p q 
U U (s. 1 ,s.) x (t. 1,t.). 

1- 1 J- J i=l j=l 

THEOREM A.2. Suppose that J is piecewise continuous on (0,1) x (0,1) and 

satisfies (A.2). Then we have 

(A.9) lim sup lff(J N-J)dHI = O, 
N➔oo HEH e, 
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(A. IO) lim sup IJJ(J N-J)dHI = O. 
N+<x> HEH a, 

PROOF. Let us choose an arbitrary£> O. For sufficiently small y > 0 let us 

consider the sets 

p 
u (s.-y,s.+y) n (O,J), D2 i=O i i y 

= i (t.-y,t.+y) n (O,J). 
J J j=O 

For~ and$ as in (A.3) with~= (a+8)/a and n = (a+B)/8 we have, because 

each H has uniform. (O,J) marginals, 

sup JJ0 x(O J) ~(s)$(t)dH(s,t) ~ 
HEH I y , 

~ {J [~(s)]~ds} 11~{J 1 [~(t)Jndt}l/n + 0 as y i 0. 
D)y 0 

A similar result holds for integration over the set (O,J) x D2y. Consequent

ly, in view of theorem A.I, there exists a sufficiently small fixed 

y = y(E) > 0 independent of HEH such that the contribution to the inte

grals in (A.9), when integration is restricted to the set 

{D1yx(O,J)} U {(O,J)xD2y},is bounded by£ for all HEH. 

To prove the theorem it suffices to show that J is uniformly approxi

mated by both Je,N and Ja,N on the closed subset {(O,J)-D1y} x {(0,1)-D2y}. 

Since J is uniformly continuous on this closed subset, this is trivially 

true for the J N. As far as the exact scores are concerned it suffices to 
a, 

prove that the J N approximate J uniformly on the set 
e, 

(A. I I ) 

which is one of the rectangles constituting the set {(0,1)-D1y} x {(O,J)-D2y}. 

The uniform continuity of Jon the set (A.JI) implies the existence of 

a number O < s = s(E) < y/2 such that for any two points in an arbitrary 

square with sides of lengths and centre in [y,1-y] x ~y,l-y7, the difference 

of the corresponding values of J does not differ by more than£ in absolute 

value. Let us, for brevity, introduce the notation 
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0 = (m/N-~/2,m/N+~/2), 0 = 0 x O , m,N m,n,N m,N n,N 

max b (u) = TI N• 
u¢O m,N-m+l m, 

m,N 

We shall use the property 

(A. 12) lim max TI = 0 • 
N+oo m:m/NE[y,1-y] m,N 

By uniform continuity of J it follows that IJ(u,v)-J(m/N,n/N)I ~ E for 

all (u,v) E om,n,N and all m,n such that (m/N,n/N) E SY. Hence we obtain 

max IJ N(m/N,n/N)-J(m/N,n/N)I ~ 
m,n:(m/N,n/N)ES e, 

y 

max ff I J(u,v)-J(m/N,n/N) I 
m,n:(m/N,n/N)ES (u,v)EO 

Y m,n,N 
x bm,N-m+l(u)bn,N-n+l (v)dudv 

+ max ff IJ(u,v)-J(m/N,n/N)I 
m,n:(m/N,n/N)ES (u,v)iO 

Y m,n,N 

x b N 1(u)b N 1(v)dudv ~ 2E, m, -m+ n, -n+ 

for N sufficiently large, because the second term in this bound is less than 

K x I ma[x 1 J Tim N which tends to Oas N ➔ 00 by (A.12). 
m:m NE y, -y ' □ 
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List of Symbols 

Latin Greek Mathematics 

Normal Italics Script IBM 
symbol 10 

A a A a A a. 1R . real line . 
B b B b 8 0 . zero ' . 
C r y 1 : one 

D tJ. 00 . infinity . 
E e: I : integral 

F n L . sum . 
G K X . multiplication . 
H H A ). + . summation . 
I µ - . subtraction . 
J V inf . infimum . 
K K 1T sup . supremum . 
L JI, p lim: limit 

M a E : element of 

N T # . number of ele-. 
0 <P 

ments in a set 

p '¥ l/J 0 . void set . 
Q X u . union . 
R IL n w n . intersection . 
s 
T 

u 
V 

w 
X 

y 

z 




