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SOME PROPERTIES OF THE EMPIRICAL DISTRIBUTION FUNCTION IN THE
NON-I.I.D. CASE

by

M.C.A. van Zuylen

ABSTRACT

= : 1 3 L
For N 1,2,... let XlN’XZN""’XNN be independent rv's having contin

. For the set X so s X

lN’FZN’“"FNN ] ) e

X -N 2 N . XN N the order statlstlcs, by']FN

the averaged df, i.e. F (x) = N (x) for x € (~»,»), It is
nN

uous df's F let us denote by

N-N’
the empirical df and by

shown that for each € > 0 there ex1sts a0 < B(=Bs) < 1, independent of N,
such that for N = 1,2,...,

_.]_
(a) P(Fy(x) < B Fy(x), for x e (-=,%))
(b) P(Eﬁ(x) > BFN(x), for x € [XI:N’m))
Moreover, these assertions hold uniformly in all continuous df's F
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The theorem can be used to prove asymptotic normality of rank statis-
tics in the case where the sample elements are allowed to have different
df's.
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1. NOTATION AND RESULTS

For N = 1,2,... let X .,XNN be independent random variables

lN,FZN,...,FNN,

where all these rv's are supposed to be defined on a single probability

v Xone e
(rv's) having continuous distribution functions (df's) F

space (Q,A,P). Let us define for N = 1,2,... the empirical df FN of

X]N’XZN""’XNN by taking Nmﬁ(x)to be the number of elements in the set

{XnN : XnN <x,n=1,2,...,N}. The order statistics of XlN’XZN""’XNN
are denoted by X

= -1cN
FN(X) =N Zn=l

I:NSXZ:NS"'SXN:N and let the averaged df FN be defined as

FnN(x) for x € (~»,»),

v

s}. Because F_ is supposed to

R e
Define F ' by Fp (s) = inf{x: FN(x) N

N
be continuous we have FN(FNl(s)) = s for s € (0,1).

THEOREM. For each e > 0 there exists a 0 < B(=BE) < 1, independent of N

and of the continuous df's FIN’FZN""’FNN’ such that for N = 1,2,...,

1

(a) P(Fy(x) < B EN(X), for x € (==,0)) 2 l-¢,
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(b) P(Fy(x) 2 BF\(x), for x e [X »=) 2

Replacing XnN by =X .. for n=1,2,...,N, N 1,2,... the following

nN
corollary is immediate.

COROLLARY. For each & > 0 there exists a 0 < B(=Bs) < 1, independent of N

and of the continuous df's FIN’FZN""’FNN’ such that for N = 1,2,...,
(a) P(F () > 1 - e"(x—FN(x)), for x € (~=,»)) 2 l-g,
(b) P(Fy(x) <1 - s(]-FN(x)), for x e (-=,X.)) 2 I-e.

The theorem and the corollary are useful for proving asymptotic nor-
mality of rank statistics in the case where the sample elements are allowed
to have different df's.

For the i.i.d. case these results are well-known. They are given by

SHORACK in [3] and proved in [2]. The present theorem will be proved in an



entirely different manner. The basic tool is a result of HOEFFDING [1]

which is given in the lemma below.

Suppose that Z]’Z2’°"’ZN are independent rv's, each assuming the
values 0 and 1 only, with
Pr(Zj =1) = pj for 3 = 1,2,...,N

and

_] N -
0 <N Z p.: =p < 1.

LEMMA (HOEFFDING). If f Zs a strictly convex function defined on (-«,»)
then
N-k

N N Ny-k
E(EC ] z)) < ] £W()p (1)
j=1 k=0

where equality holds <if and only if P =Pp=:+-=Py = 5.
In particular this lemma together with Markov's equalities implies’
that for n > NE,
N

N
(1.1) Pr() Z.2n) <Pr(|] ] Z,-Np| 2 n - Np)
j=l J j=] J

IN

IA

N
(a8p) 4 ECT z. - Np)?
j=1
N

()t ] e ()R a-pN
k=0

IA

(n-Np) "4 (5(1-p)) 2 (3N-6N) + Np(1-p)}

(n-Np) ™4 min((3N°524Np), (3N%(1-2)2 +N(1-))).
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2. PROOF OF THE THEOREM

(a): For all N 21 and all 0 < B < 1 we have



1

(2.1) P(Fy(x) < B F(x), for.x e (-=,=))

1

= P(Eﬁ(xn:N) < B FN(xn:N)’ for n = 1,2, ,N)
N .
> 1 - ] P(F(X ) < 8oN ).
n=1
Here we have used the Bonferroni inequality and the fact that Eﬁ(Xn,N) =

= nN ! with probability one for n = 1,2,...,N. Now for n = 1,2,...,N,

N
= -1, _ =1 -1 _
(2.2) P(Fy(X ) < BaN ) = P(X_.o < F (BoN 1)) = Pr(jzl Z; =),
where Z]’ZZ""’ZN are independent rv's each assuming the values 0 and 1
only, with

1

_ _ _ =-1 - ;
Pr(Zj = 1) = p. FJ.N(FN (RnN 7)) for j 1,2,...,N.

J

BnN ! it is now

o= _ =IoN —=1,, -1
From (2.2) and (1.1) with p = N ijl Foy(Fy (BN )
immediate that for n = 1,2,...,N,

-3 2

! ) < 48(1-8) 072,

P(Fy(x_ ) < BoN') < B(1-8) *(3gn % + n

so that

N
- -1 -4
(2.3) HZI P(Fy(X_.) < BoN ') < M B(1-B) ~ >0 as g ~ 0,

where M, is a finite constant, independent of N and of the df's F

1
N .

lN’FZN""
Assertion (a) in the theorem now follows from (2.3) and (2.1).

(b): For all N =21 and all 0 < B < 1 we have

(2.4) P(Eﬁ(x) > BFN(x), for x € [XI:N’w))
N -
2 P(N [T (X ,07) 2 BFy(X .0 D
n=2 ) ’
N _ -1 -1 [BN]+1 -1 -1
>1- ) P(Fy(X_.) > B8 (a=DN ) =1 - P(Fe(X .) > B (n-DN ),

n=2 ) n=2



where [BN] is the greatest integer in BN. The terms with n > [BN] + 1
may be omitted because B_](n—l)N_'1 > 1 for these terms. Since n 2 2 we are
guaranteed that 0 < B(n—l)N_l < 1 for every term, for each N > 1 and
0 <B <.
Now for n = 2,3,...,[BN]+1,

N
(2.5) PF (X .) > 8 1(a-DN ) =P() 2z, 2N-n+1),
N "n:N . i
j=1
where ZI’ZZ""’ZN are independent rv's each assuming the values 0 and 1

only, where in this case
Pr(z, = 1) =p, =1 -F, (F (8 '(a-1)N"")) for j = 1,2,...,N.
j j N

From (2.5) and (1.1) with now 5 =1 - B_](n—l)N—] it is immediate again

that for n = 2,3,...,[BN]1+1,

- -1 -1 -2, ~1.-4 -2
P(Fy(X ) > 8 (DN 7)) <48 “(1-8 ) "(n-1) 7,
so that
[BN]+1 - -1 -2 14
(2.6) ) P(Fy(X ) > 8 (n-)N ') <MB “(1-8 ) "~ >0 asB~>0,
n=2
where M2 is a finite constant, independent of N and of the df's FIN’FZN""
F Assertion (b) in the theorem now follows from (2.6) and (2.4).
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LIST OF SYMBOLS

LATIN GREEK MATHEMATICS
Normal Italics Seript
a a A - : "bar"
b b B 0 : zero
c e I : omne
d d o : infinity
e e E ) ) : summation
f f ¢ element of
g g n : intersection
h h Q ]FN: empirical distribu-
i z tion function
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