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A note on contiguity and Hellinger distance 

by 

J. Oosterhoff & W.R. van Zwet 

ABSTRACT 

Two sequences of product probability measures {rr? 1 P .} and {rr? 1 Q .} 
1= n1 1= ni 

are considered. Necessary and sufficient conditions in terms of the 

marginal distributions P . and Q . are derived for the contiguity of the n1 n1 
sequences. Boundedness for n ➔ 00 of the sum of squares of the Hellinger 

distances of the marginals 1s one of the conditions. By strengthening these 

conditions one obtains sufficient and (almost) necessary conditions for the 

asymptotic normality of the log likelihood ratio statistic. 

KEY WORDS & PHRASES: asymptotic normality., contiguity" Hellinger distance, 

log likelihood ratio 





I. INTRODUCTION 

For n = 1,2, ... let (X 1,A 1), ... ,(X ,A ) be arbitrary measurable 
n n nn nn 

spaces. Let P . and Q. be probability measures defined on (X .,A .), 
Ill. Ill. ( ) ( ) Ill. Il:L . n n n n 

1. = I , ••• ,n; n = 1,2, ... , and let P = IT. 1 P . and Q = IT. 1 Q . n 1.= ni n 1.= ni 
(n=l,2, ... ) denote the product probability measures. For each i and n let 

X. be the identity map from X • onto X •• Then P . and Q . represent the 
Ill. Ill. Ill. Ill. Ill. 

two possible distributions of the random element X. as well as the proba­
n1. 

bility measures of the underlying probability space. Obviously X 1 , ••• ,X 
. (n) (n) n nn 

are independent under both P and Q (n=l,2, ••• ). 
n n 

The sequence {Q(n)} is said to be 
n 

sequence {P(n)} if lim P(n)(A) = 0 
n n4-<X> n n 

contiguous with respect to the 

implies lim Q(n)(A) = 0 for any 
D4-<X> n n 

sequence of measurable sets A. This one-sided 
n 

contiguity notion is denoted 

by {Q(n)} 4 {p~n)} (the notation is due to H. WITTING & G. NOLLE [7]). The 
n 

sequences {p(n)} and {Q(n)} are said to be 
n n ( 

other if both {Q(n)} 4 {P~n)} and {P n)} 
n n 

concept we denote by {p(n)} <1> {Q(n)}. 
n n 

contiguous with respect to each 

4 {Q(n)}. This two-sided contiguity 
n 

The main purpose of this note is to characterize contiguity of product 

probability measures in terms of their marginals. To this end we introduce 

the Hellinger distance H(P,Q) between two probability measures P and Q on 

the same a-field, defined by 

( l. l) 

where p = dP/dµ, q = dQ/dµ andµ is any a-finite measure dominating P+Q. 
l 

This metric is independent of the choice ofµ and satisfies Os H(P,Q) s 2 2 • 

Defining the total variation distance of P and Q by 

( l • 2) HP - QU = suplP(A) - Q(A)I 1 

where the supremum is taken over all measurable sets A, we have the follow­

ing inequalities (LECAM [4]) 

( l . 3) 



2 

The Hellinger distances of the product measures and of their marginals are 

connected by the relationship 

(1. 4) 
n 2 

2 - 2TT1.·--I {I - !H (P .,Q .)}. 
Ill. Ill. 

For further reference we first mention two easy results, viz. 

(I. 5) ln 2 
. I H (P .,Q .) = 1.= Ill. Ill. 

o (I) 

and 

( I . 6) {Q (n)} { (n)} ,n 2 ) 
<1 p => l. I H (P . 'Q . = n n 1.= n1. n1. 

0(1) for n + 00 

The proof of (1.5) is an immediate consequence of the string of implications ,n 2 ,n 2 
l. I H (P . , Q . ) = o (I) • l · I log{ I - ½ H (P . , Q . ) } = o (I) .,. 1.= 01. Ill. 1.= Ill. Ill. 

• H2 (P(n) Q(n)) = o(I) • llp(n) - Q(n)II = o(I) • {P(n)} <l> {Q(n)}. To prove 
n 'n n n n n 

(I .6) suppose that limsup H(P(n) ,Q(n)) = 2½. Then by (I .3) 
n+oo n n 

limsup IIP(n) - Q(n)II = I in contradiction to {Q(n)} 4 {P(n)}. Thus 
n+oo n n n n 

limsupn+oo H
2

(P~n) ,Q~n)) < 2, therefore liminf0+oo rr:=I {1 - !H
2

(Pni'Qni)} > 0 

and hence limsup l~ 1 H
2

(P .,Q .) < 00 and the proof is complete. n+oo 1.= 01. Ill. 

It can be shown by counterexamples that in (1 .5) the condition cannot be 

weakened to l:=I H
2

(P0 i,Q0i) = 0(1), and that in (I .6) the conclusion cannot 

be strengthened to'~ 1 H2 (P .,Q .) = o(I), for n + 00 • Hence there remains 
[. l. = Ill. 01. 

a gap between the sufficient condition and the necessary condition for con-

tiguity in (1.5) and (1.6) respectively. In section 2 we obtain conditions 

which are both sufficient and necessary for contiguity of the product 

measures by adding another condition to l~ 1 H
2

(P ., Q .) = 0(1). 
1.= Ill. Ill. 

In many applications asymptotic normality of the log likelihood ratio 

statistic A (see (3.1)) plays an important part. Since 
n 

L(A jp(n)) ._ N(-!o 2 ;o 2) implies {p(n)} <l> {Q(n)} (cf. HAJEK & SIDAK [J], 
n n w n n 

LECAM [2], [3], [4], ROUSSAS [6]) , we have to impose stronger condit ions on 

the marginals P . and Q. to ensure the asymptotic normality of A . Some suf-
n1. n1. n 

ficient (and almos t necessary) conditions for the asymptotic normality of A, 
n 

which are clearly stronger than those in section 2, are given in section 3. 

These conditions are closely related to some earlier results of LECAM [3],[4]. 



2. CONTIGUITY OF PRODUCT :MEASURES 

We begin by noting the following useful implication: 

( 2. l) 

,q [lim '~ I P .(A.)= 0 ~ lim '~IQ .(A.)= OJ n-+<o l1.= Ill. Ill. n-+<o li= Ill. Ill. 

for any collection of measurable sets Aui· For suppose 

lim }:~ 1 P .(A.)= 0. Then lim p(n)(u~ A.)= 0 hence by con-n-+<o 1.= ni ni n-+<o n 1.=l ni • 

tiguity lim Q(n)(U~ A.)= I - lim TI~ 1(1-Q .(A.))= 0 and there-
n-+<o n 1.=l ni n-+<o 1.= ni ni 

fore lim I~ 1 Q .(A.)= 0. n-+<o 1.= Ill. Ill. 

Now letµ . be a a-finite measure on (X .,A .) dominating P . + Q . 
Ill. Ill. Ill. Ill. Ill. 

and write p . = dP ./dµ . and q . = dQ ./dµ . (i=I, ... ,n; n=I,2, ... ). 
Ill. Ill. Ill. Ill. Ill. Ill. 

The main result of this section 1.s 

(2.2) 

and 

(2.3) lim L~ 1 Q .(q .(X .)/p .(X .) ~ c) = 0 n~ 1.= Ill. Ill. Ill. Ill. Ill. n whenever c -+ 00 

n 

PROOF. First assume that (2.2) and (2.3) are satisfied. Write 

L . = q .(X .)/p .(X .), 
Ill. Ill. Ill. Ill. Ill. 

1. = l, ... ,n; n = 1,2, ... , 

3 

and consider TI~ I L .. It is easily shown (cf. LECAM [4], ROUSSAS [6]) that 1.= Ill. 

{Q(n)} ~ {P(n)} is equivalent to tightness of the sequence of distributions 
n n 

{L(TI~ L . IQ(n)); n=l,2, ... }. The tightness of this set of distributions 1.=I ni n 
can also be expressed in the more convenient form 

(2.4) k ) = 0 
n 

whenever k -+ oo. 
n 
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Hence we have to prove (2.4). Let O < k + 00 • Let O < c ➔ 00 be real numbers 
n n 

to be chosen in the sequel. If lA denotes the indicator function of the set 

A, we have by (2.3) and Markov's inequality for n ➔ 00 

Q (n) (rrr:1 L . ~ k ) s 
n 1=! ni n 

$ Q(n)(rr:1 1 L. ~k AL. <c for i=l, ... ,n) + Q(n)(u:'1 1 {L. ~c }) $ 
n 1= n1. n ni n n 1.= 1 n1. n 

s Q(n)(rr:1 1 L½. l(O )(L .) ~k½) + I~_- 1 Q .(L. ~c) $ 
n 1.= ni ,c n1. n i ni ni n 

q .<c p. n1. n ni 

Since for all c ~ 

f 
q .<c p . 

Ill. Il Ill. 

n 

n 

½ -½ q P dµ + o (1). 
ni ni ni 

q . dµ . + f 
Ill. Ill. 

q .<c p . 
Ill. Il Ill. 

q .<c p . ni n ni 

$ I + f ! ! ! 

q .<c p . 
n1. n ni 

q .<c p . 
Ill. fl Ill. 

1 r 1 1 2 f 1 1 f 
$ l +c 2 j(q 2 .-p 2 .) dµ. + I - q 2 • p 2 dµ. -n Ill. Ill. Ill. Ill. ni Ill. 

q 2 (q2 -p2 ) dµ . s 
ni ni ni ni 

I I I 
2(2 2)d < q . q . -p . µ • -
Ill. Ill. Ill. Ill. 

q .2':c p . 
Ill. Il Ill. 

it follows that 

limsup Q (n) (rr1? L . 2': k ) s 
n➔oo n 1.=I n1 n 

_1 n (c½+D 2 
$ limsup k 2 ITi=l{l + H (P . , Q • ) } $ 

n➔oo n n ni ni 

-½ l 

r:=1 2 
$ limsup k exp{ (c 2 +D H (P .,Q .)}. 

n➔oo n n ni ni 



2 Choosing c in such a way that c = o((log k) ) for n ➔ 00 , (2.2) implies n n n 
Q(n) (rr:1 1 L . ~ k ) = o(l) for n ➔ co and (2.4) is established. 

n 1.= n1. n 
Conversely, suppose that {Q(n)} 4 {P(n)}_ Since (I .6) implies that 

. n n 
(2.2) is satisfied, it remains to prove (2.3). Let O < c ➔ co and consider 

n 
the inequality, valid for c ~ 4, 

n 

q .~C p • Ill. Il Ill. 

= -½{In en i=l f ½ ½ ½ 
pni(qni-pni) d . + I:1 µIll. 1.=l f pni dµni} 

q .~C p • Ill. n Ill. q .~C p • n1. n n1 

-1{ n f 
1 ½ 2 

dµ . + }:1: 1 f :,:; 
cn 2 t=I (q2.-p .) p . dµ ·} Il1 Il1 n1 1= Ill. Ill. 

q .~C p . 
Ill. Il Ill. q .~C p . Ill. n Ill. 

_1{ n 2 In f :,:; cn2 li=I H (P . ,Q . ) + . p . dµ . } . Ill. Ill. 1=l Ill. Ill. 
q .~C p . 

Ill. Il Ill. 

Since by (2.2) c:½ l~=l 
lim Lr: l P (L . ~ c ) 

2 H (P .,Q .) ➔ 0 for n ➔ 00 , it follows that n1 n1 

n➔oo 1= n n1. n = 0. Hence (2.l) implies that 

:,:; 

:,:; 

lim \':1 1 Q . (L . ~ c ) = 0 and the proof of the theorem is complete. 0 n➔oo l1.= n1 n1. n 

COROLLARY 1. {P(n)} <I> {Q(n)} iff (2.2) and (2.3) are satisfied and 
n n 

(2.5) lim }::1 1 P .(p .(X .)/q .(X .) ~ c) = 0 
n➔oo 1.= Ill. n1 Ill. Ill. Ill. n whenever c + ""· 

n 

In connection with contiguity Hellinger distance seems to be a more 

appropriate metric than total variation distance. Note that from (I .3) and 

(1.6) we immediately obtain the implication 

(2.6) for n ➔ oo, 

where again the order term cannot be strenghtened to o(l). However, 

\n HP. - Q .U 2 = 0(1) is too weak a condition to replace (2.2) in theo-li=l n1. n1 

BlBLIOTHEEK MATHEMATISCH CE:,rf 
-AMSTERD,l'.\fJl--

5 
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rem 1. On the other hand we cannot strengthen this condition to 

\'n II p - Q • II r = 0 ( I ) 
li=l ni n1 

for some r < 2, since {Q(n)} ~ {P(n)} does not 
n n 

necessarily imply I~ Up . - Q .Dr= 0(1) for any positiver< 2. The 
1=l n1 n1 

following example serves to illustrate these points. 

EXAMPLE. Letµ . denote Lebesgue measure on (0,1), let 

qni = (l+n-!) 7;0,1-n-!) + n-½ 1[1-n-!,1)' i = l, ... ,n; 

n 2 -! 2 l· 1 IIP. - Q .R = (1-n ) s I and (2.3) is trivially 
1= n1 n1 ( ) ( ) 

q ./p . is uniformly bounded. But {Q n} ~ {P n} does 
n1 n1 n n 

I~ 1 H2(P .,Q .) = 2n{l - fq½. dµ .} = 2n{l - (l+n-!)! 
1= n1 n1 n1 n1 

! 
= n 2 (l+o(l)) for n + 00 • 

pni = l(O,l) and let 
n = I , 2, . . • . Then 

satisfied since 

not hold because 
-1 _;i 

(l-n 2 ) - n 4 } = 

. - -½ -½ Taking qni - (l+n ) l(O,½) + (1-n ) l[~,l) for all i and n, we have 

{Q(n)} 4 {P(n)} since (2.3) is satisfied and l~ 1 H2(P .,Q .) = 
n n 1.== n1 n1. 

= 2n{l - ½(I+n-½)½ - ½(1-n-½)!} = ! + o(l) for n + 00 • However, in this case 

\'~ 1 Up. - Q .Hr= n(ln-½)r + 00 for n + 00 if r < 2. 
l1.= n1 n1. 

3. ASYMPTOTIC NORMALITY OF A 
n 

Define 

(3. I) A = l~ 1 log{q .(X .)/p .(X .)}, n i= n1. ni ni ni n = 1,2, ... 

Note that, with probability one, A is well-defined under P(n), although 
n n 

A may assume the value -oo with positive probability under P(n). 
n n 

In our search for necessary and sufficient conditions for the weak 

convergence L(A jP (n))-;. N(-½cr 2 ;o 2) in terms of the marginal distribu-
n n w 

tions of the X. we shall confine ourselves to the case where the summands 
Ill. 

in (3.1) satisfy the traditional u.a.n. condition (cf. LOEVE [5]). 

THEOREM 2. For a:ny a~ 0 

(3. 2) 

and 



(3. 3) lim max 1 . P .(llog{q .(X .)/p .(X .)}I c£) = 0 n-+<» $1.$0 Ill. 01 Ill. Ill. 01. 

for every e: > 0 iff for every e: > 0 

(3.4) lim I~=l 
2 !cr 2 

H (P . ,Q . ) = • n-+<» 01. 01. 

(3. 5) lim rr=l Q .(q .(X .)/p .(X .) c l+e:) = o, 
n-+<» n1. n1. n1 n1. n1 

(3.6) lim l~=I P .(p .(X .)/q .(X .) c l+e:) = o. 
n-+<x> n1 n1 n1. n1. n1. 

or equivalently3 iff (3.4) holds and for every e: > 0 

(3. 7) lim \n f (q½.-p~.) 2 dµ . = O. 
n-+<» li=l n1. n1. n1 

I q . -p . I ce:p . 
01 01 Ill. 

PROOF. To simplify the notation we writer.= q ./p .• We first show that n1 n1 n1 
(3.5) and (3.6) are equivalent to (3.7). From 

-½ 2 f q .(1-r .) dµ . + 
Ill. Ill. Ill. 

we obtain the double inequality 

r . $I -e: 
01 

- 1 2 \n { I - ( l+E:) 2 } l. l Q • ( r . (X . ) c I+£) + 
1.= n1. n1. n1. 

l 2 
p .(l-r 2 .) 

Ill. Ill. dµ ·} 01 

7 
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and the equivalence of (3.5) and (3.6) to (3.7) is innnediate. 

Next we note that both (3.2), (3.3) and (3.4), (3.5), (3.6) imply 

{P(n)} <1> {Q(n)} (cf. corollary 1). 
n n 

The remainder of the proof relies on the normal convergence theorem 

(cf. LOEVE [SJ). According to an equivalent form of this theorem (3.2) and 

(3.3) are equivalent to 

(3 .8) lim I~=l P . ( I log r . (X . ) I ~ o) = 0 for every o > 0, n-+<x> Ill. Ill. Ill. 

(3. 9) limo+O lim I~=l f (log r .) dP -½o 2 = ' n-+<x> Ill. Ill. 

I log r . I :s;o 
Ill. 

(3. 10) 

l~ 1{f (logr .) 2 dP. - cf (logr .) dP .) 2fl=o2 
1.= Ill. Ill Ill. Ill 

I log r . I :s;o I log r . I :s;o 
Ill. Ill. 

By the contiguity of {P(n)} and {Q(n)} and (2.1) the condition (3.8) is 
n n 

equivalent to (3. 5) and (3. 6) and hence to (3. 7). Henceforth we assume (3. 7), 

(3.8) and {P(n)} <I> {Q(n)}. We still have to show that (3.4) is equivalent 
n n 

to (3.9) and (3.10). 

Let O < o < I. For jlog r .j :s; owe have the expansion 
Ill 

(3.11) 

= 2(qi.-pi.) p-t _ (qi p! / p-!(l+p -~) 
Ill. Ill. D1 ni- ni Ill. Il1u 

with IP I < 2o. Thus nio 

f ( log r . ) p . dµ . = 
Il1 Ill Ill. 

I log r . I :s;o 
Ill. 

= -2 I 
I log r . I :s;o 

Ill. 

+ I (q .-p .) 
D1 01 

I log r . I :s;o 
Ill 

dµ . + 
D1 



Since by (3. 7) 

lim { \'~ 1 n-+oo l1.= f 
I log r . l So Ill. 

I I 2 2 ~ 
(qn21.·-pn21..) dµ . - \'~ I H (P .,Q .)JL = 0 n1. l1.= Ill. Ill. 

and by (3.8), {P(n)} <t> {Q(n)} and (2.1) 
n n 

-}:1.1_ 1 f (q .-p .) dµ.-+ 0 l.- Ill. nl. Ill. 
llogr .l>o Ill. 

for n + 00 , we have 

9 

(3. 12) f (logr .)dP. 
Ill. Ill. + 2 l~ I H2 (P . ,Q . ) I s 

1.= Ill. Ill. 

I log r . I So 
Ill. 

where we have used (1.6). Similarly, 

(3. 13) dP .}2 s 
n1 

If (log rni) dP · I s Ill. 

I log r . I so ni 

Finally (3.11) implies that for I log r . I so< ni 

2 (log r .) 
ni 

with jp -~I < iOo. Hence, in view of (3.7) and (l .6), 
niu 

(3.14) lim~, 0 limsup llT; if (logr ./dP .-4"~ 1 H2 (P .,Q .), 
u"' n➔oo I 1= n1. ni li= n1. ni 

I log r . I so 
Ill. 

0. 
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The equivalence of (3.4) to (3.9) and (3.10) is now an immediate consequence 

of (3.12), (3.13) and (3.14). The theorem is proved. 0 

In the one sample case where, for each n, X 1, ..• ,X are identically n nn 
distributed, condition (3.3) is implied by (3.2) and theorem 2 slightly 

simplifies. This remains true in the k sample case (k~2) provided all 

sample sizes tend to infinity. 

The first part of the proof of theorem 2 also shows that the conditions 

(2.3) and (2.5) in corollary I may be replaced by the single condition 

lim tx:1 , 
n-+<x> l1.=1 J 

I q . -p . I ~c p . 
Ill. Ill. n Ill. 

½ ½ 2 (q . -p . ) dµ • = 0 
Ill. Ill. Ill. 

whenever c 
n 
➔ co 

The proof of theorem 2 could also be given in a more roundabout way. 

Introducing the r.v.'s 

W. = 2{q .(X .)/p .(X .)}½ - 2, 
Ill. Ill. Ill. Ill. Ill. 

1. = I , ••• ,n; n = 1,2, ••• , 

one shows that L(t1:1 W .jP(n)) ~ N(- 1cr 2 -cr2) iff L(A jP(n))-+- N(-lcr2 -cr2) 
l1.=l n1. n w 4 ' n n w 2 ' • 

provided the respective u.a.n. conditions are satisfied. It is then not dif-

ficult to prove that the weak convergence of t1:1 1 W. and the u.a.n. con-li= Ill. 

dition on the summands are equivalent to (3.4) and (3.7). In this proof 

(3.7) appears as the Lindeberg condition in the central limit theorem 

applied to t1:1 1 W .• li= ni 
The equivalence of both weak convergence results has first been proved 

by LECAM ([3],[4]). The initial assumptions lim sup]<'< H2(P .,Q .) = 0 
( ) ( ) n-+oo -l.-n ni n1 

and limsup Up n - Q n H < I made by LeCam are not restrictive since 
n➔co n n 

they are implied by our condition (3.7) and the contiguity of {P(n)} and 
n 

{Q(n)}, respectively. One part of this proof is also contained in HAJEK & 
n 

SID.AK [l J. 
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