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A note on contiguity and Hellinger distance
by

J. Oosterhoff & W.R. van Zwet

ABSTRACT

n
| Ppytoand {1, Q

are considered. Necessary and sufficient conditions in terms of the

cqs n
Two sequences of product probability measures {Hi— ni
marginal distributions Pni and Qni are derived for the contiguity of the
sequences. Boundedness for n - « of the sum of squares of the Hellinger
distances of the marginals is one of the conditions. By strengthening these
conditions one obtains sufficient and (almost) necessary conditions for the

asymptotic normality of the log likelihood ratio statistic.
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1. INTRODUCTION

For n = 1,2,... let (an’Anl)""’(Xnn’Ann) be arbitrary measurable
spaces. Let P . and Q i be probability measures defined on (X LA L),
ni () b g Q(n) n1Q ni
i=1 "ni =]
(n=1,2,...) denote the product probabllity measures. For each i and n let

i=1,...,n; n = ],2,..,, and let P

X . be the identity map from X . onto X .. Then P_. and Q . represent the
ni ni ni ni ni
two possible distributions of the random element X ; as well as the proba-

bility measures of the underlying probability space. Obv1ously X 1,...,X

nn
are independent under both P( n) and Q(n) (n=1,2,...).
The sequence {Q( )} is sald to be contiguous with respect to the
(n) p(® (n) =
sequence {P } if 11mn+w (A ) = 0 implies 1lmn+m N (A ) 0 for any

sequence of measurable sets A . ThlS one-sided contiguity notion is denoted
{Qén)} a (2™} (the notation is due to H. WITTING & G. NOLLE [71). The
sequences {P(n)} and {Q( )} are said to be contiguous with respect to each
other if both {Qén)} < {P(n)} and {P(n)} < {Q(n)} This two-sided contiguity
concept we denote by {P(n)} < {Q(n)}
The main purpose of this note is to characterize contiguity of product
probability measures in terms of their marginals. To this end we introduce

the Hellinger distance H(P,Q) between two probability measures P and Q on

the same o-field, defined by
a.nEEe - (ehahat - o - 2J bodauyd,

where p = dP/du, q = dQ/dp and u is any o-finite measure dominating P+Q.

This metric is independent of the choice of p and satisfies 0 < H(P,Q) < 2°.

Defining the total variation distance of P and Q by

(1.2) P - Ql = sup|P(A) - Q(A)],

where the supremum is taken over all measurable sets A, we have the follow-

ing inequalities (LECAM [4])

(1.3) %HZ(P,Q) <lp - qll < H(P,Q.



The Hellinger distances of the product measures and of their marginals are

connected by the relationship

(n) (), _ ., _ n o 1l
(1.4) H (P Q ) = 2 2ni=l {1 iH (Pni,Qni)}.

For further reference we first mention two easy results, viz.

(1.5) 15, B 0 ) = o()  for n» == 2V} » (o1,
and

(n) (n) n 2 _ '
(1.6) {Q "} <a{p "} =], H(P,,Q.) =0(1) forn >,

The proof of (1.5) is an immediate consequence of the string of implications
n 2 n 2

= — l =
zi- H™ (P i’Qni) o(1) =»Z. -1 log{1 in (Pni’Qni)} o(l) =

(n) .(n) (n)

- B (B, "4, ) = ell) =~IIP

Q(n)ﬂ =0(1) = {Pﬁn)} <> {Qén)}. To prove

(1.6) suppose that limsup H(P(n) (n)) = 2*. Then by (1.3)

(n)}

11msup IP(n) (n)“ = | in contradiction to {Q(n)} < {p Thus

. (n) (n) - R
11msupn H (P Q ) < 2, therefore 11m1nfn_)m Hi=l {1 3H (Pni’Qni)} >0

: n 2 s
and hence 11msupn+°° zi=l H (Pni’Qni) < and the proof is complete.

It can be shown by counterexamples that in (1.5) the condition cannot be
weakened to X?=1 Hz(Pni’Qni) = 0(1), and that in (1.6) the conclusion cannot

0(1), for n > », Hence there remains

[

be strengthened to X?=l Hz(Pni’Qni)
a gap between the sufficient condition and the necessary condition for con-
tiguity in (1.5) and (1.6) respectively. In section 2 we obtain conditions
which are both sufficient and necessary for contiguity of the product
measures by adding another condition to Z?=l Hz(Pni’Qni) = 0(1).

In many applications asymptotic normality of the log likelihood ratio
statistic A_ (see (3.1)) plays an important part. Since
L(Aanin)) %4 Bi=36°5"} tiplies {Pin)} < {Qén)} (cf. HAJEK & SIDAK [1],
LECAM [ 2], [3], [4], ROUSSAS [6]), we have to impose stronger conditions on
the marginals Pni and Qni to ensure the asymptotic normality of An. Some suf-
ficient (and almost necessary) conditions for the asymptotic normality of An’
which are clearly stronger than those in section 2, are given in section 3.

These conditions are closely related to some earlier results of LECAM [3]1,[4].



2. CONTIGUITY OF PRODUCT MEASURES

We begin by noting the following useful implication:

@n ™ <e™-
= [lim J7 P (A ) =0=1in J% q.(A.)=0]

for any collection of measurable sets A,;. For suppose

. n = . (n) n = _
lim Zi=] Pni(Ani) 0. Then lim _  P- (Ui=1 Ani) 0, hence by con
. . (n), n oy o 12 n _ _ _
tiguity 11mn+w Qn (Ui=l Ani) = 1 11mn+w Hi=l(] Qni(Ani)) = 0 and there
. n _
fore 11mn+°° Zi=] Qni(Ani) = 0.
Now let p_. be a o-finite measure on (X _.,A .) dominating P . + Q_.
ni ni’ ni ni ni
and write P; = dPni/duni and q,; = dQni/duni (i=1,...,n; n=1,2,...).
The main result of this section is
THEOREM 1. {Qin)} q {Pén)} iff
(2.2) limsup__ J® . H2(P_.,Q.) < =
e fi=] ni’ *ni
and
. n
(2.3) Lim L Fo QG (X )/p (X ) 2c) =0  whenever c_ > .

PROOF. First assume that (2.2) and (2.3) are satisfied. Write

Lni = qni(xni)/pni(xni)’ i=1,...,n3 n=1,2,...,

and consider H2=] Lni' It is easily shown (cf. LECAM [4], ROUSSAS [6]) that

{Qin)} < {Pin)} is equivalent to tightness of the sequence of distributions

{L(H?_ L .|Q(n)); n=1,2,...}. The tightness of this set of distributions
1=1 ni'"n

can also be expressed in the more convenient form

(2.4) lim Q (n L.>k)=20 whenever kn > o,



Hence
to be

A, we

we have to prove (2.4). Let 0 < kn + o, Let 0 < cn -+ o be real numbers
chosen in the sequel. If lA denotes the indicator function of the set
have by (2.3) and Markov's inequality for n » «

nlt

QIE“)(H?=1 L,2k) <

IA

(n) , . n . (n) , n
Qn (IIi=1 LniZI%1ALni‘:Cn for i=1,...,n) + Qn (Ui=]{Lnizzcn}) <

(n) .0 % R n S <
= Qn (Hi=l Lni I(O,cn)(Lni)'_kn) * Zi=l Qni(Lni_'cn) -
-1 n 3 -1
<k Mo j Qpi Ppi dpi + (D
9hi“%nPni
Since for all ¢ = 1
2 - <
J 9hi Pni “ni
qn1<cnpni
-4, 3 4
< _
< J dni Hpi * J Ui Pnil9piPpi) Mg <
qn1<cnpni qni<cnpni
It DI U BN 3}, 53

s+ J 954 pni(qni pni) duni + qni(qni pni) dunl <

901 %aPni 90i~%nPni

1 [ 1 1 1
< 3 342 PR P B _ 5,3 3
- l-+cn J(qni pni) dunl ! 95i Pni duni qnl(qni pnl) dunlS

>
qnl—cnpnl
3oy w2
<1+ (Cn+2) H (Pni’Qni)’
it follows that

limsup Q(n)(ﬂl:l L .2k ) <

n>e n i=] ni n
< limsup k—% m {1+ (c£+%) H2(P .,Q )} <

nHe n i=1 n ni’ ‘ni

IA

limsup k-£ exp{(c%+£) Zn HZ(P Q .)}
n>® n n i=1 ni’*pi’ "’



Choosing c in such a way that c, = 0((log kn)z) for n > », (2.2) implies
Qin)(H?=] Lnizzkn) = 0(1) for n >+ = and (2.4) is established.

Conversely, suppose Fhat {Qén)} < {Pin)}. Since (1.6) implies that
(2.2) is satisfied, it remains to prove (2.3). Let 0 < c, -+ « and consider

the inequality, valid for ) > 4,

n -3 tn b3
< =
Zi=l J Pni duni “n Xi=l J Pai 9ni ni
9,i%%nPni qni> nPni
-3Jyn Yoo 44 n
= 2 -
“n {zl=1 J pnl(qnl Pni) ¥p; * z1=1 Pni dnif <
>
qn1> nPni i nPni
-1 n % % n
2 - + <
= “n {zl=l J (qnl P 1) dunl Zl=l J Phi dunl} -
qn12cnpn1 qni> nPni
ifen 2 n
2
= % {z p B (Pnl’Q i) zi=] j Pni unl}'
>
91" %nPni

. -} on 2 o
Since byn(2.2) c, Zi=] H (Pni’Qni) > 0 for n » », it follows that

i > = . .
1lmn+m Zi:] Pn(Lni"cn) 0. Hence (2.1) implies that

. n _ )
11mn+m Zi=1 Qni(Lni;zcn) = 0 and the proof of the theorem is complete. []

COROLLARY 1. {Pi“)} < {an)} iff (2.2) and (2.3) are satisfied and

. n
> = o)
(2.5) lim o Jo P (X /g (X ) 2c) =0 whenever c_ > .
In connection with contiguity Hellinger distance seems to be a more
appropriate metric than total variation distance. Note that from (1.3) and

(1.6) we immediately obtain the implication

(n) (n) n - 2 _ o
(2.6) fo 'Y afp "r=]._ P . -Q 0" =0() forn~>w,
where again the order term cannot be strenghtened to 0(1). However,

Z? IlPp . - Q ."2 = 0(1) is too weak a condition to replace (2.2) in theo-
1=1 ni ni

g
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rem 1. On the other hand we cannot strengthen this condition to

Z? Ip . - Q .IT = 0(1) for some r < 2, since {Q(n)} < {P(n)} does not
i=1 ni ni r n n

N

i

following example serves to illustrate these points.

necessarily imply 22=, "Pni -Q = 0(1) for any positive r < 2. The

EXAMPLE. Let p . denote Lebesgue measure on (0,1), let p . =1 and let
_é ni _% . ni (O’])
9,; = (14n %) I(O,]—n'%) +n l[l—n“%,])’ i=1,...,nyn=1,2,... . Then

Z?=1 "Pni - Qniﬂ2 = (l—n_%)2 < 1 and (2.3) is trivially satisfied since
q ./p_. is uniformly bounded. But {Q(n)} < {P(n)} does not hold because
ni’ “ni n n

_%} _

- -1
[y B (2,0, = 201 - Jqfxi au ;) = {1 - (enhE 7h - n

= n?(1+0(1)) for n > =,

. _ -1 _ -} .
Taking q,; = (1+n %) 1(0’%) + (1-n %) 1[5’1) for all i and n, we have

(n) (n) . . . e n 2 -
{Qn } < {Pn } since (2.3) is satisfied and Zi=l H (Pni’Qni)
= 2n{1 - %(1+n_%)% - %(l—n-i)i} =} + 0(1) for n > ». However, in this case
n r _ 1S 2 o
zi=] "Pni Qniu =n(jn ?)" > © for n > » if r < 2.
3. ASYMPTOTIC NORMALITY OF An

Define
— n -

(3.1) A= )i, loglq (X )/p (X )}, =n=1,2,...
Note that, with probability one, An is well-defined under Pén), although
An may assume the value -~ with positive probability under Pén).

In our search for necessary and sufficient conditions for the weak
n 2 2, . . . .
convergence L(Aann( )) -y N(-40";0") in terms of the marginal distribu-
tions of the Xni we shall confine ourselves to the case where the summands

in (3.1) satisfy the traditional u.a.n. condition (cf. LOEVE [5]).

THEOREM 2. For any ¢ = 0

(n) 1.2 2
(3.2) L(Aann ) -, N(-ic";07)

and



lim ,_ ma (]1og{q

(3.3) (xm.L)/pn

l<1<n n1

for every € > 0 Zff for every € > 0

. n 2 _ 2
(3.4) lim ), HO(P;,Q ) = {07,
(3.5) lim I, Q@ (X D /p_ (X .)=1+4€) =
noe Li=] ni’
. n _
(3.6) lim Zi=l P (p (X )/q (X .)21+e) =
or equivalently, <iff (3.4) holds and for every e > 0
. n i 1.2
(3.7) 11mn->00 zi=1 f (q nl) duni
ani_pnilzepni

PROOF. To simplify the notation we write r
(3.5) and (3.6) are equivalent to (3.7).

From

21+e

we obtain the double inequality

-1
{1 = (1+¢) 2}2 zg=, Qni(rni(xni)z 1+g) +

-1 -1
.(Xni)z (1-e) ) <

ni

+ {1 - (l—e)%}2 Z?=l P_.(r

ni
|

lqni'P

i (qii'l’ii) g

> .
i| €Phi

(X Dzlve) + JT P (x

n
zi=1 Qni(rnl ni

-1
>
ni(xni)_

i= 95 Py

(1-e) )

;X O ze) =

We first show that



and the equivalence of (3.5) and (3.6) to (3.7) is immediate.

Next we note that both (3.2), (3.3) and (3.4), (3.5), (3.6) imply
{Pin)} < {Qén)} (cf. corollary 1).

The remainder of the proof relies on the normal convergence theorem
(cf. LOEVE [51). According to an equivalent form of this theorem (3.2) and

(3.3) are equivalent to

‘ . n

(3.8) 11mn_)oo Zi=l Pni(llog rni(Xni)lz §) =0 for every 8§ > 0,
. . n _ 1.2
(3.9) lim, o 11mn+°° Zi=l I (log rni) dPni = -1g7,
|10grni|s6
(3.10)
. . n 2 21 _ 2
11m6+0»11mh»m zi=1{] (1ogrni) dPni (J (IOgrni)dPni) I—CF.
|logr .|<6 llogr .|<§
ni ni

By the contiguity of {Pﬁn)} and {Qén)} and (2.1) the condition (3.8) is
equivalent to (3.5) and (3.6) and hence to (3.7). Henceforth we assume (3.7),
(3.8) and {Pén)} <> {Qin)}. We still have to show that (3.4) is equivalent

to (3.9) and (3.10).

Let 0 < § < 1. For |log rnil < § we have the expansion

- 1 _ 4 -4
(3.11) log r_. = 2 log{1 + (qni pni) pni}
- 3 _ 4 -y 5 _ 4 2 -1
- 2(qni pni) Phi <qni pni) pni(]+pni6)
with Ipniél < 26. Thus
(IOgrni) Phi duni =
Ilogrnilsé
- -2 @ -pl?au . + (q.-p .) du_. +
ni “ni ni ni “ni ni
Ilogrnilsé llogrn |<68
- 3442
Pnis(IniPpi) Mg



Since by (3.7)

1 i
R n 2 __32 2 _ n 2 =
llmn%n{:zi=l J (qni pni) dunl zl_l i (Pnl’in)} 0
|1ogrnilsé
and by (3.8), {Pr(l“)} < {Qr(l“)} and (2.1)
n = . yn -
zi=lJ (4557Ppy) dup; = =I5 J (a37Pp) dHp; =~ O
|logrni|56 Ilogrnil>6
for n >+ », we have
. . n n 2
(3.12) llmﬂollmsupn+°° zi=l I (1ogrni)dPni + 22i=1H (PniQQni) <
Ilogrnilsa
< 1im limsup 26 zn HZ(P Q.)=0
- 8§40 n-> i=1 ni’ *ni ’
where we have used (1.6). Similarly,
(3.13) lim limsup Z? (logr .) 4P . 2 <
‘ §+0 o Li=] ni ni
llogrnilsé
< 1lim limsup § Z? (logr_.) dP .| <
- §40 n-- 1=1 ni ni
Ilogrnilsé
< 1im, . limsup §(2+26) J*  H2(P_.,Q .) =0
- 8§40 n>e i=1 ni’ ‘ni :
Finally (3.11) implies that for |log rnil <6 <1
2 b2 -1 - b2 -1
(log rni) - 4(qni pni) Pni * pnié(qni pni) Phi
with |Eni6' < 108. Hence, in view of (3.7) and (1.6),
(3.14) 1im,_, . limsup " (logr )2 ap -4 )" n(p Q )| =
: 840 noe |Li=] ni ni i=1 ni’*ni

Ilogrnilsﬁ

0.
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The equivalence of (3.4) to (3.9) and (3.10) is now an immediate consequence

of (3.12), (3.13) and (3.14). The theorem is proved. []

In the one sample case where, for each n, an""’Xnn are identically
distributed, condition (3.3) is implied by (3.2) and theorem 2 slightly
simplifies. This remains true in the k sample case (k>2) provided all
sample sizes tend to infinity.

The first part of the proof of theorem 2 also shows that the conditions

(2.3) and (2.5) in corollary | may be replaced by the single condition

. n i i .2 _ .
11mn+w Zi=1 J (qni p-.) du i = 0 whenever c, > o,

<P _.|2C .
anl pnll npnl

The proof of theorem 2 could also be given in a more roundabout way.

Introducing the r.v.'s

- b _— o
W= 2{qni(xni)/pni(xni)} 2, i=1l,...,n3n=1,2,...,

one shows that L(Z?= ]P(n)) -, N(-} o H; ) iff L(A IP(n)) - N(- '02 02),

provided the respectlve u.a.n. condltlons are satlsfled. It is then not dif-
ficult to prove that the weak convergence of Z?=] wni and the u.a.n. con-
dition on the summands are equivalent to (3.4) and (3.7). In this proof
(3.7) appears as the Lindeberg condition in the central limit theorem
. n
applied to Zi=1 Wni'
The equivalence of both weak convergence results has first been proved
2
by LECAM ([3],[4]). The initial assumptions lim e SUP cien H (Pni’Qni) =

and 11msup "P(n)

in)ﬂ < 1 made by LeCam are not restrictive since
they are 1mp11ed by our condition (3.7) and the contiguity of {P( )} and
Q™)

SIDAK [1].

, respectively. One part of this proof is also contained in HAJEK &

REFERENCES

(1] HAJEK, J. & Z. SIDAK (1967), Theory of rank tests, Academic Press,
New York.



[2]

£3]

(4]

[5]

[6]

(7]

11

LECAM, L. (1960), Locally asymptotically normal families of distribu-
tions, Univ. California Publ. Statist., 3, 37-98, University of

California Press.

LECAM, L. (1966), Likelihood functions for large numbers of independent
observations, Research papers in statistics (Festschrift for

J. Neyman), 167-187, F.N. David (ed.), Wiley, New York.

LECAM, L. (1969), Théorie asymptotique de la décision statistique,

Les Presses de 1'Université de Montréal.

LOEVE, M. (1963), Probability theory (3rd ed.), Van Nostraﬁd,
New York.

ROUSSAS, G.G. (1972), Contiguity of probability measures: some applica-

tiong in statistics, Cambridge University Press.

WITTING, H. & G. NOLLE (1970), Angewandte mathematische Statistik,

Teubner, Stuttgart.






