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SOME PROPERTIES OF THE EMPIRICAL DISTRIBUTION FUNCTION IN THE
NON-I.I.D. CASE™ (part IT)

Abbreviated title:
ON EMPIRICAL DISTRIBUTION FUNCTIONS

by

M.C.A. van Zuylen

Mathematisch Centrum, Amsterdam
ABSTRACT

Two theorems are proved on empirical df's in the non-i.i.d. case, where
moreover the underlying df's need not to be continuous.

These theorems are useful for proving asymptotic normality of rank
statistics in the case where the multivariate sample elements are allowed
to have different df's and where the scores generating functions are allowed
to have a finite number of discontinuities of the first kind. The theorems

may also be of interest in their own right.

KEY WORDS & PHRASES: Empirical distribution, empirical process.

*) This paper is not for review; it is meant for publication in a journal.






1. INTRODUCTION

Let k be a fixed positive integer and for each N = 1,2,..., let

XnN = (XlnN’XZnN""’anN)’ n=1,2,...,N, be N mutually independent k-

dimensional random vectors with joint distribution function (df) FnN

and marginal df's F For each N, moreover, 1etiFN be the

lnN’FZnN""’Fan'
joint empirical df based on the N random vectors XIN’XZN"°"XNN'

All random vectors are supposed to be defined on a single probability space

(2,A,P).

. = _ =1 ¢N - _ .-l ¢N
We shall also use the notation FN =N 2n=] FnN and FiN =N zn=l FinN
for i = 1,2,...,k. Let us observe that F_ has all the properties of a

N
k-variate df and that its marginal df's are the FiN' Finally we define, for

i=1,2,...,k, the inverse ?;; by F;;(s) = inf {x | FiN(x) > s}, for
0 < ?_f 1. Note that in the case where FN is continuous we have
FiN(FiN(s)) = s for s ¢ [0,1].

This paper contains two theorems which are useful for proving asymp-
totic normality of rank statistics in the case where the multivariate sam-
ple elements are allowed to have different df's and where the scores gener-
ating functions are allowed to have a finite number of discontinuities of
the first kind. The theorems may also be of interest in their own right.

The first theorem is a generalisation to the non-i.i.d. case of a
slightly weaker version of a theorem, due to VAN ZWET (lemma 4.4 in [4 ]).
See also [ 1]. In fact, VAN ZWET proved that in the i.i.d. case theorem 1
holds true, without the factor (log (N+l))% in(1.1). However, we remark
that our theorem 1 still is much stronger than, for instance, a generali-
sation of the Glivenko-Cantelli theorem to the multivariate non-i.i.d. case
would be. Theorem 1 makes it possible to handle problems, connected with
discontinuities in the scores generating functions of rank statistics.

For any Borel set B in 16‘ we shall write fB d?N = ?N(B) and
fB dIFN = IFN (B). By an interval in ]Rk the product set of k half open

(closed on the right) intervals on the line will be meant.



THEOREM 1. Let I,,I,,... be a sequence of intervals in RS and let

— *l *
IN = {IN. IN

and every positive integer k, there exists M = M(e,k), such that for every

2
18 an interval contained in IN}, N=1,2,... .For every € > 0

array of k-variate df's F N=1,2,..., every sequence

e Fone o e
11’12"“ qnd every N = 1,2,...,

log (N+1) F_ {1 _}\}
* = * N N \
(1.1) P <{I§:¥ LFN {IN} Fy {IN}I > M ( N ) }} < €.
N 'N
The second theorem is a result for the one-dimensional non-i.i.d. case,
already given by SEN [5] for continuous underlying df's. However, it is

clear from SHORACK [6] that the proof given by SEN is incorrect. An entirely

different proof is provided here.

THEOREM 2. For k = 1 and every € > 0 and & € (0,31, there exists

M ., F

’NN’

M(e,8), such that for every array of univariate df's FIN’FZN"'

N=1,2,..., and every N = 1,2,...,

N 0 - B
P ({sup — — =% P M}) < €.
xeR (Fp(x) (1-F(x)))

Our basic tools are two related results of HOEFFDING [3]. Suppose that

Zn’ 1 < n <N, are independent random variables with P(Zn=l) =1 - P(Zn=0) =

= Py and suppose that

_] N
0 <N z P, =P < 1.
n=1

LEMMA 1 (HOEFFDING). If f Zs a strictly convex function defined on [C,«)
then

E (f (ngl Zn>> < kgo £ (k) (E) < (1-p) VK,

where equality holds if and only if p, = p, = ... = py = B-



LEMMA 2 (HOEFFDING). Let b and c be two integers such that

Then
Cc

N
) (ﬁ) - "< (b < ) Z_ < c) < 1.
b n=1

n
n=

Both bounds are attained. The lower bound is attained only <if P} =Py = «--

-=py =P unless b = 0 and ¢ = N.

In section 2 some preliminary results, supplying upper bounds for

sup LFN - FNI and for central moments of 2§=1 Z_, are proved. These results

n’
are then used in section 3 to prove the theorems in the case of continuous
underlying df's. The fact that the theorems also hold in the case of possibly

discontinuous df's is immediate from lemma 9, given at the end of section 3.
2. SOME LEMMAS

By [a] we denote the greatest integer in the number a.

LEMMA 3. Let for N = 1,2,...the k-dimensional df's F
tirnuous and let I],Iz,.
for N = 1,2,... . Define F;é(l+a) =wo, fora>0,1i=1,2,...,k and let

lN’FZN""’FNN be con-

.. bea sequence of intervals in RX with R Il > 0,

—)
]

* * ., . . .
{IN. IN 18 an interval contained in IN}

7
|

5 K- Mo -1 (Mi2
(2.1) N {IN: Iy=Iy" 121 (FiN (T FN{IN})’ FiN (—N— FN{IN}>]’

for k pairs of integers (“11’“12)’ with n, < ng, and

1]
-
N
-
®
-
=
>
—
]
—
-
N
—

0. e {0,1,2,..., [——3‘—] + 1}, for i
J F (I}
N N
Then, for each w € Q, N = 1,2,..., k = 1,2,... we have

1

* - * ~ _ ~ -—
(2.2) u;; | T (1} - F{Ig}] < max | (T} - F{I 3| + 2kN

F{1.}.
€N Teely .

%
Iy



PROOF. Let I; be an arbitrary interval in I_. Define

N
=% ~ * ~
IN = _N_ IN’ _I_N = z u_ IN'
Ny Ny
I DIN INCIN

Note that T;; and l; are elements of TN U @ and that

- =% = * -1=
'(2.3) FN{IN} - FN{lN} < 2kN FN{IN}.

*x * — * .
If IN is such that ]FN{IN} FN{IN} > 0, we have using (2.3)

*

* =
]FN{IN} - FN{ IN}

IN

* - * =% _ *
| P {14} - F {1} Fy (I} - F{L} <

1

< TF {1}-F{I}+2kN'FN{IN}s

1

IN
=]

=% -] =
{1} -F {IN}[ + 2kN CF I}
d if F {1} - F {1} <0 h
and 1 N Iy NN , we have

*

—_ * -— —_% *
F {1} - ]FN{IN} < FN{IN} - ]FN{lN} <

* = *
| Ty {1} - F{Ig}]

N''N
* -1=
< FN{lN} - IFN{lN} + 2kN FN{IN} <
* * -1=
< |1FN{1N} - FN{lN}I + kN F (T}, O

The following lemma gives upper bounds for the central moments of

Z§=1 Zn’ where Zn’ 1 < n < N, are independent Bernoulli (pn) random variables.

LEMMA 4. For every o > i, there exists Ma e (0,»), such that for N = 1,2,...,

N 2a -1 N -1
(2.4) E| Y z -np] <M @5, forp=N" ) p =N
n=1 " @ n=1 O
and
N 20 -1 N -1
(2.5) E| Y z - Np| < M NB, for p=N ) p, <N .
n=1 n=1

PROOF. Since o > ;, lemma | ensures that it is sufficient to prove lemma 4

in the case where P =Py = +++ =Py~ p. First let us prove (2.4). For



N =1, we have p = 1, so that the left-hand side of (2.4) is zero. Let

-1
FNﬁ(y) be the distribution function of [Z§=] z - Np| (Np(1-p)) 2%, then
using an inequality due to S.N. BERNSTEIN [1, p.578], we have for y >0 that

N 2
_ - N RS -y \
1 FNI_)(y) P (lnzl Z Np| > y/Np(1 p)) < 2 exp (2 N 2y E
3vNp(1-p)
Moreover, for y 2 1 and p 2 N_l, N=2,3,..., we have
B APPSR R
(Np(1-p)) * < (N/(N-1))?* < 2%,
so that then
-5* (-2
1 - FNﬁ(y) < 2 exp (4}7) = 2 exp —Z>
Hence, for p = N—], N=2,3,...,
YZ_ - Np|2a T
n f 20 2a-1
—| = | y dF__(y) = 2a f y (1-F - (y))dy <
\/Nﬁ(l-ﬁ) )N ! NP
1 oo
20-1 / z}
< -
< 2o f dy + 4o [ y exp \ 4/ dy,
0 1
so that (2.4) is proved.
Let us next concentrate on the proof of (2.5). For k = 1,2,...,N, we

=\k
have Piiﬁ:] Zn = k) < S%?%—-and 1 + k < ek, so that for a > §, p < N ',
N=1,2,...,

N 20 e N A
Ein-Nﬁ = |0 - Np| P<Zzn=o>+§ |k - Np| P(Zzn=k>s
n=1 n=1 k=1 n=1
20 . o 20 (Np)©
< ()T + ) (kNPT S <
k=1 :
© k+1
- .20 (Np
< Np + ) (k+1-Np) ’((_1?%17'— <

k=0
- k ©  2a-1.k

I 20 (Np I

N e N5 [ Gen™ ER < np v Np ] L -
k=0 ' k=0

IN

Np(1 + exp(eza_l)). 0



3. PROOFS OF THE THEOREMS

PROOF OF THEOREM 1 IN THE CASE OF CONTINUOUS UNDERLYING df's.

1f F {I_.} = 0, the theorem follows immediately. It proves to be con-
N N
8 log (N*1) g

venient to consider the cases 0 < F {I_} <
N N eN

FN{IN} > §_12%ﬁiﬁill’ for fixed 0 < ¢ < 1, separately.
First suppose that 0 < FN{IN} < 8 lOEN(N+]), and choose M = Ml(e) =

= (2/5)3/2,30 that
1 -
2 FN{IN}

2

- = 2
log(N+1)F {1 }\41 e(F {I.})
M( N N) ZM( N N )

(3.1) N 8

€

4

Moreover, since

(3.2) up IIFN{Ig} - ?N{I;}I < max (E$I{IN}’FN{IN})’

3
INeIN
we have from (3.1), (3.2) and Markov's inequality that the left-hand side
of (1.1) is bounded above by

P({maX(E$I{IN}’FN{IN}) 2 FN{IN}/E}) = P({IFN{IN} 2 FN{IN}/E}) < e.

8 log (N+1)

eN
are assumed to be continuous. Application of lemma 3 shows that for M > 0 and

Next we suppose that fN{IN} > , whereas the underlying df's

N=1,2,..., the left-hand side of (1.1) is bounded above by

( - /1og(N+1)FN{iN} 3 1
(3.3) P \{Tma% I]FN{IN}—FN{IN}I > M\ S > - 2kN FN{IN}}) <
NEN
log(N+1)F {I }\} F AT }\%
v = N'TN N''N
<P ({Nmagg |]FN{IN}—FN{IN}| >M< N ) -2k (—T——> }) ,
IN€IN

which, for M > Mz(k) = 4k(log 2)_£ and N = 1,2,..., is bounded above by

N N Llog(N+D)F {T J\}
(3.4) P ({Nme% | Ty (T} -F (L 3] > i ( > }) <

N

N . 1og(N+1)FN{IN} 3
P <|IFN{IN}-FN{1N}| > m( N ) )



Since IM(N log (N+1) FN{IN})é 2 1, for M 2 M3 = (/2 log 2)_h lemma 2 is ap-
plicable, so that we may assume that N'FN{E&} in (3.4) is a binomial rv
with parameters N and FN{IN}.

Applying Bernstein's inequality [1, p.578] and using
max(FN{IN},l—FN{ N}) <1, we find for M > 0,

. . 10g(N+1)FN{IN} %)
(3.5) P (|]FN{IN} - FN{IN}[ > IM ( 5 ) ) <
IM2N log (N+1) F.(I.}
N N
< 2 exp (— — ] I) .
ol il T 2
2N FN{IN} + 3 M(N log (N+1) FN{IN})
F I}
Moreover, since F {IN} > 8 log (N+1) > 8 log (N+1) and N N <1, we ob-
N eN N =
F i

tain for (3.5) the following upper bound

%-Mz/f log (N+1)
(3.6) 2 exp (— ) < 2 exp (-3M log (N+1)),

12/2 + M

for M > M4 = 12/2.

~

Noting that the number of elements in IN

2k 2 2k
N N'e 2,2k
(:—*") S(ﬁm”‘) < (8O,
F Ly

is bounded above by

we obtain from (3.3) - (3.6) for M 2 max (MI’MZ’M3’M4) = M5 the following
upper bound for the left-hand side of (1.1),

=3 =3 =3
(s82) o1y T M < g 5% (Na)AKTIM < g 52k HAkTIM

for M > max (MS,S%-k).
Before presenting the proof of theorem 2, in the case of continuous
underlying df's, we introduce some more notation. Moreover, from now on it
will be assumed that k = 1. Define, for n = 1,2,...,N,

Y= P ) and G_y(t) = FnN(F;I(t)).

Note that, because of the assumptions, YnN has continuous df GnN on [0,1]

and also



N .
N T o6 (0) =, for 0 < t < 1.
n=1 N

Let GN denote the empirical df of Y "YNN; following SHORACK [ 6 ]

lN’XZN""’XNN’ We remark
that it suffices to prove theorem 2 for the empirical df GN. Furthermore,

lN’YZN"'
we shall call GN the reduced empirical df of X

we define the reduced empirical process XN by
xg(t) = NE(g(0)-t), for 0 <t <1,

and the process SN by setting SN(ﬁ) = XN(ﬁ), for i = 0,1,...,N, and by

letting SN be linear on the intervals [i—é—l s %J. Finally, we define on

[0,1] the stochastic processes XNG(t) and S (t) by XNG(t) = XN(t)/qd(t)
and SNS(t) = SN(t)/qG(t)’ where for 0 < § < },

q5(t) (t(l-t))%_s, for 0 <t <1,

and

qs(1) = q5(0) = 1.

The following lemmas are needed for the proof of theorem 2:

LEMMA 5. For k
every 0 <s, t <1, every N =1,2,... and every array of continuous uni-

1 and every o > } there exists M, € (0,») such that for

vartiate df's F]N’FZN”"’FNN’ N=1,2,...,

' 2
E [sy(6) = sy()| ™ < m e - s]”.

PROOF. (The proof follows the pattern of SHORACK [6 ], where lemma 5 is
proved for o = 2.)

Let N>1, 0<s <t<1l, a>13%and the continuous univariate df's

.,F __ be arbitrary, but fixed. Choose integers i and j so that

NN

i-1 i j -1 j
< - < < &
N < s < N and N <t < N

FiweFone

_ m, _ k . .
Let Akm = |SN (N) SN (N)I for integers k and m, with m > k. Then from

lemma 4 we have for some number Ma e (0,x),



20

EA E

o (o (3) - o (8)) - 59
N |N (GN (%) - GN(%)) - (nltq;k)

ekm(say).

20, o
SM .In_-_}_{_\) =
a N,

We also let § ISN(V) - SN(u)!.

Case 1. i < j - 1. Then
< . . . VA, . . .
Sst Ai,J-] v Al,J Al—lsj‘l v Al“},J’
so that
E§% <o, . te .*e . . +e.  .<be, | .=
st i,j-1 1,] i-1,3-1 i-1,3 i-1,]

j - G-DY o, o
4Ma (—-—-——N—‘———> = 4M0L3 (t S) .

Case 2. 1 = j. Since the change of a linear function on an interval of

length t - s equals the slope times t - s, we have

< -
6st < NAi-l,i(t s),
so that
20 2a 20, 20 a o, =0, o
< - - - .
Edst < N7 (t-s) ei—l,i < MaN (t-s) (t-s) N < Ma(t s) .
Case 3. i = j — 1. Then
< 8 1+ 61 < 2(8 1 v 8%

so that by Case 2 we have

20 20 20, 20 2a [
Es . =2 QEGS i+ E8i t> <2 \\M

IA
[N
=
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1 and every o > } there exists M, € (0,%) such that for

LEMMA 6. For k
every 0 < s, t <1, every N =1,2,..., every § € (0,31 and every array of

continuous univariate df's F N=1,2,...,

]N’FZN""’FNN’

208
NE

2
(3.7) E{|sys(t) - (s)]“%} < M |t -

SNG
PROOF. Because of symmetry in s and t of (3.7) we suppose t = s, so that we
only have to prove the lemma in the three cases 0 < s < t < },
0<s<}{<t<landj<s<tcsl,

Since for the second case we have (cr-inequality)

_ 2a _ 1y |20 1y - 2o
ElSyg(t) = Spe(8) [ < ¢ ElSy,(t) SN6(2)| + c B[Sy (4) SNG(S)| ,
where c, is a number, depending on a only, it suffices to give a proof for
the first and third case. Moreover, the lemma is trivially true for s is

Zero.

IA

Let a > §, 0 <s<t<}),N>21, 8§ € (0,}] and the continuous uni-

variate df's F ,F.__ be arbitrary, but fixed and let Mi’

]N’FZN’°" NN
i=1,2,...,6 be numbers, only depending on o. Because of lemma 5,
20, 20 20,

S (t) - S, (s)
N N 1 1
< | 3, *HE (q5<t> - q6<s))5N(S)

SN(t) _ SN(S)
qd(t) q6(s)

E

1 1 2a
_ o
4, () g (0] °

IN

2a8
Mz(t-s) + M3(

Moreover, for s < it, we have

IN

3 1 _ 1 ] ) s 6
° (qé(s> qé(t)> M, g s T M s M(ems)

whereas for s > it, we find

t
o 1 5( 1 1 > ! du
2 - < - = 2 —_— <
s (q ) g (t)) Mss™ (15 ~ T=5) = MsS 3/2-5
§ § s t U
4

s®(t-s) (t-s) _\S

< M5 —372-% < M6 = < M6(t s) .
s ot

The proof for the case } < s <t < | goes analogously. 0
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LEMMA 7. For k = 1 and every € > 0 and 6 ¢ (0,31, there exists M = M(e,6),
such that for every array of continuous univariate df's FIN’FZN""’FNN’
N=1,2,...,and every N = 1,2,...,

P({ sup ‘%w(t)' 2 M(e,é)}> < e,

0<tx<l1

PROOF. Choose arbitrary, but fixed ¢ > 0, 8§ ¢ (0,31, N e {1,2,...} and

. . . .
continuous univariate df's FlN’FZN""’FNN' Because of lemma 6 we have for
every 0 £ s, t £ 1,
-1 -1
(6 1+2 o 8(L8 T 1+2)
(3.8) E{|SN6(t) SNG(S)I } < Mslt s| ,

where MS € (0,) only depends on §. Remark that 6([6_1]+2) > 1.

Consider for fixed positive integer m, the random variables

s (i _ g (it1) -
gim - SNS\m/ SNG m } l - l,2,...,m.
Obviously, S (E) =g+ + & (S,..(0)=0)
> N6 'm lm tt km *"N§ :

Because of (3.8) we now have for 0 < i < j <m, M ¢ (0,») that

ol |s

\

1

- . . -1
5 M) < M—[G ]—ZE{’SN6<%> _ SNG(l\ [s ]+2} <

\n/

(1) . (i)
) ™ S

N&\m N6\m/

-1
ul)é([é ]+2)’

-1 -1
where u, = (MG)(é([é *2)) %, for 2 = 1,2,...,m.

Applying theorem 12.2 of [2, p.94] we obtain for some Ks € (0,),
depending on § only, that

A

\ 0<i<m

IN

-1 -1
S M}) et ]—«2(u . +...+um)6([6 1+2) _

-1
- -[s " 1-
= KM 2Md.

Since, for each w € @, S, is a continuous function on [0,1], letting m » «

N§
leads to

BIBLIOTHEEK MATHEMATISCH CENTRUM
o AMSTERDAM ——
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P({ sup hﬁét)l > M}} KM [6_]]_2M6,

0<t<l

from which the lemma follows. g

LEMMA 8. For k = | and every € > 0 and & ¢ (0,41, there exists M = M(e,$§),
such that for every array of continuous univariate df'’s F F

N=1,2,..,and every N = 1,2,...,

lN’FZN""’ NN’

P({OSUP thG(t) ﬁ(t)‘ > M(S,(S)}) <

<t<l

PROOF. We shall only give the proof of the lemma in the case where we re-
strict t in the supremum to the interval [0,}] and N = 2,3,...

We remark that for M > 0 and N = 2,3,... and § € (0,}],

(3.9) ({mm m@w-%gwhw%\ sup L%&o %&Ulﬂﬁﬁ

O<st<i} T<¢
\

sup ]Iﬁwgt)| ZM}/ +

0<t<N™

NEGN(t)
sup ———— 2 M}) +
R N O

3
Nt
+ P _— > M}) .

Let us now derive upper bounds for these terms seaprately, assuming through-

+ P

("
o
<

r—’b\r—-’“—ﬂr—"‘ﬁ

out continuous univariate df's FlN’FZN""?FNN' . o
From the fact that ]xN(t) - SN(t)I }xN(t) - SN(ﬁ)I v 1xN(t) - S =1

for i:l-St < it follows for M > 0, N 2,3,... and 6 ¢ (0,41] that

S
N N’

(3.10) <{
|

IN

‘/\

E l&gw—smuﬂ zﬂ)s

Nl—‘

7

i2 P(NGN(%) i NGN(%> - Nqucs(lN]> i 3)’

Moreover, from Chebyshev's inequality, (3.10) and lemma 4 we find that for

§ e (0,41, 8= B(8) = (2-28)/(1-28) > 2, M > 6/2 and N = 2,3,

i



o

2 , P
< 7 Tum™® GB(IN]\N 585{1N@N<§> - NGN(1_1> - NN 1| } <
i=2
[ne1)
<M, () BylTi8 ll f I g 1) Cm o BaltEBg
T N oL T W }p? 5’

where Ké‘e (0,») is a number only depending on §.
Next, since SN(t) = NtSN(N—]) for 0 < t < N—], we have for M > 0,

§ € (0,b4) and N = 2,3,..., that (Chebyshev's inequality and lemma 4&)

(3.12) P({ sup I_Sﬁl > M}) < p(M 5 M) _

1 49.(t) -1 )
OStSN S qG(N )

- - - 1
P(INGN(N by - ‘| > Mq (N hn?y <

M

< ] < kM 2720,
M2Nq2 1 8
S\N,

where Ké is a number only depending on 6.
1

Furthermore we have for M 2 22, N=2,3,... and § ¢ (0,17,

(s =) = (o 35 )
21 \ octon-1 4500 ) 02:21]3 RE )

S

- -1 - -1
=P(N52M2‘S é)sP(ZézMZ ) = 0.

Finally, we have for 0 < t <N , M >0, N= 2,3,... and § ¢ (0,3] that

6, (6 G (t) 1+s € (1) 2%-6{1X%+6

<

qs(t):: t (l—t)%—é t \N/

13
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and hence

1
N2G (t) 6 (t) 5 0
N , N M2
10 P({02t2§- RO M}> ) P({oiiix e c 2%'6}) '

In [7]*)it is proved that for each n > 0, there exists a a, 0 < a < 1, in-

dependent of N and of the continuous df's F

Gt
(3.15) P({ sup S < o }) > 1 -n.
O<t<l1

]N’FZN""’FNN’ such that

Hence, the lemma follows after combining (3.9), (3.11), (3.12), (3.13) and
(3.14), together with the remark above. O

PROOF OF THEOREM 2 IN THE CASE OF CONTINUOUS UNDERLYING df's

Remark that it suffices to prove theorem 2 for the empirical df GN.
Then the theorem follows immediately from lemma 7, lemma 8 and the fact

that for M > O,

o({ sop o1 2 u}) < p({ swp Is (001 )

0<t<l1 ‘ 0<t<l]

+ P({ sup lXN(S(t) —SNé(t)I > %}) . 0

Ost<l1

The following lemma and its proof make it clear that the theorems also

hold in the case where the underlying df's are allowed to be discontinuous.

LEMMA 9. Let k be a fixed positive integer and let I%q be the empirical

df based on N k-variate sample elements Xn = (Xln’XZn""’an)’
n=1,2,...,N, where the Xn are distributed independently according to
given, possibly discontinuous df's F . There exist N k-variate random
vectors Yn = (Yln’YZn""’Ykn)’ n=1,2,...,N, where the Yn are distributed
independently according to continuous df's G » such that with probability

one

*) The proof of (3.15) can also be found in Report SW 34/75 of the Depart-

ment of Mathematical Statistics, Mathematisch Centrum, Amsterdam.
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(3.16) oy xsup o IGN(x],xz,...,xk) - GN(xl,xz,...,xk)l >
1°722°° 7%k
> sup LFN(XI,...,xk) - FN(XI’XZ"’°’Xk)I’

—oo<X X v o e <o
12%0 0000 %y

where Gy is the empirical df based on the Yn’ n=1,2,...,N and

= _ = _ 1IN
F =N F,G =N ] | G.

-1¢N
N )

n=1

PROOF. For i = 1,2,...,k let us denote by Fin the ith marginal df of Fn’
= _ ~I¢N (1)

let F,p =N ) F. and let {g

This set contains the discontinuity points of

each Fin’ n=1,2,...,N. Moreover, let pél) be the jump at 551) of fiN and
let {Uil), v=1,2,...} be a set of uniform (0,1) distributed random

variables, mutually independent and also independent of the random vectors

Xn’ n=1,2,...,N.

, v=1,2,...} be the countable set of

discontinuity points of fiN'

Since Zv pil) <1 fori=1,2,...,k, we can define for n = 1,2,...,N the
random vector Yn = (Yln’YZn""’Ykn) as follows (1_denotes the indicator func-
tion):

_ (1) Lo (1) (1)
(3.17) Yin - Xin ) 1X. >g (1) P, * z 1X. =¢(1) P, Uv ?
v in °v v in v
for i = 1,2,...,k,

so that Xn is transformed stochastically to Yn.

Let Gn be the df of Yn and let GN be the empirical df based on
Y]’YZ""’YN' It is clear that all the marginal df's of Gn are continuous
and hence Gn is continuous.

From definition (3.17) it is immediate that for n = 1,2,...,N
(3.18) (X, < x, fori=1,2,...,k] e [Y,_ <x + g 1, 2 (i) By

for i = 1,2,...,k].

Moreover, from (3.18) it is obvious that (with G. = N_IZ§=] G)

N n

- - (1) (k)
FN(XI’XZ""’xk) = GN<x]+z 1x 25(1) P, "o X ¥ Z 1x Zg(k)PV >
v 17y v kv

and with probability one
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(k)
Se (DPY S D )

]FN (xl’XZ""’xk) = GN(xl+z'1 §
17V v xk_gv

so that (3.16) holds. [
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