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SOME PROPERTIES OF THE EMPIRICAL DISTRIBUTION FUNCTION IN THE 

NON-I.I.D. CASE*) (part II) 

Abbreviated title: 

ON EMPIRICAL DISTRIBUTION FUNCTIONS 

by 

M.C.A. van Zuylen 

Mathematisch Centrum, Amsterdam 

ABSTRACT 

Two theorems are proved on empirical df's in the non-i.i.d. case, where 

moreover the underlying df's need not to be continuous. 

These theorems are useful for proving asymptotic normality of rank 

statistics in the case where the multivariate sample elements are allowed 

to have different df's and where the scores generating functions are allowed 

to have a finite number of discontinuities of the first kind. The theorems 

may also be of interest in their own right. 

KEY WORDS & PHRASES: Empirical distribution, empirical process. 

This paper is not for review; it is meant for publication in a journal. 





I. INTRODUCTION 

Let k be a fixed positive integer and for each N = 1,2, ... , let 

XnN = (XlnN'XZnN•···•~nN), n = 1,2, ••. ,N, be N mutually independent k

dimensional random vectors with joint distribution function (df) FnN 

and marginal df's FlnN'FZnN'""''FknN" For each N, moreover, let lFN be the 

joint empirical df based on the N random vectors x1N,XZN'"""•~· 

All random vectors are supposed to be defined on a single probability space 

(r2,A,P). 

We shall also use the notation F = N-i \N F d F N-l \N F N ln=l nN an iN = ln=l inN 
for 1 = 1,2, ... ,k. Let us observe that FN has all the properties of a 

k-variate df and that its marginal df's are the FiN" Finally we define, for 

i = 1,2, ... ,k, the inverse F:~ by F:~(s) = inf {x I FiN(x) 2 s}, for 

0 ~ s ~ I. Note that in the case where F is continuous we have 
- --1 -· N 
FiN(FiN(s)) = s for s E [0,1]. 

This paper contains two theorems which are useful for proving asymp

totic normality of rank statistics in the case where the multivariate sam

ple elements are allowed to have different df's and where the scores gener

ating functions are allowed to have a finite number of discontinuities of 

the first kind. The theorems may also be of interest in their own right. 

The first theorem is a generalisation to the non-i.i.d. case of a 

slightly weaker version of a theorem, due to VAN ZWET (lemma 4.4 in [4 ]). 

See also [I]. In fact, VAN ZWET proved that in the i.i.d.case theorem 

holds true, without the factor (log (N+I))½ in (1 .I). However, we remark 

that our theorem 1 still is much stronger than, for instance, a generali

sation of the Glivenko-Cantelli theorem to the multivariate non-i.i.d. case 

would be. Theorem l makes it possible to handle problems, connected with 

discontinuities in the scores generating functions of rank statistics. 

For any Borel set B in Rk we shall write f B dFN = FN(B) and 

f B dlFN = lFN (B). By an interval in lR.k the product set of k half open 

(closed on the right) intervals on the line will be meant. 
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THEOREM 1 . Let I 1 , r2, • . . be a sequence of intervals in ]Rk and Zet 

I { * * . N = IN: IN &San 

and every positive 

interval contained in IN} 3 N = 1,2, .... For every E > 0 

integer k3 there exists M = M(E,k) 3 such that for every 

array of k-variate df's F1N,F 2N, ... ,FNN, N = 1,2, ... , every sequence 

r 1,r2,.,. and every N = 1,2, ... , 

( 1 • I ) 

The second theorem is a result for the one-dimensional non-i.i.d. case, 

already given by SEN [5] for continuous underlying df's. However, it is 

clear from SHORACK [6] that the proof given by SEN is incorrect. An entirely 

different proof is provided here. 

THEOREM 2. Fork= I and every E > 0 and o E (O,~], there exists 

M = M(E,o), such that for every array of univariate df's F1N,F2N, ... ,FNN' 

N = 1,2, ... , and every N = 1,2, ... , 

P ({sup 
XEJR 

Our basic tools are two related results of HOEFFDING [3]. Suppose that 

Z , ~ n ~ N, are independent random variables with P(Z =I)= I - P(Z =O) = n n n 
= pn' and suppose that 

N 

I 
n=I 

p = p < 1. 
n 

LEMMA 

then 

(HOEFFDING). If f is a strictly convex function defined on [0, 00 ) 

( ( N 
E f L 

\ \n=l 

where equality holds if and only if p 1 = p 2 = 



LEMMA 2 (HOEFFDING). Let band c be two integers such that 

0 s b s Np s cs N. 

Then 

Both bounds are attained. The lower bound is attained only if p 1 = p 2 = 

= PN = p unless b = 0 and c = N. 

In section 2 some preliminary result~ supplying upper bounds for 

3 

sup I lFN - FNI and for central moments of I!=J Zn' are proved. These results 

are then used in section 3 to prove the theorems in the case of continuous 

underlying df's. The fact that the theorems also hold in the case of possibly 

discontinuous df's is immediate from lemma 9, given at the end of section 3. 

2. SOME LEMMAS 

By [a] we denote the greatest integer in the number a. 

LEMMA 3. Let for N = 1,2, ••• the k-dimensional df's F 1N,F 2N, •.. ,FNN be con

tinuous and let 1 1,12 , .•• bea sequence of intervals in ]Rk with FN{IN} > 0, 

for N = 1,2, .... Define F~!(l+a) = 00, for a> O, i = 1,2, ... ,k and let 

IN * * is an interval contained in = {IN: IN IN} 

and 

{rN: IN= IN n 

k 
( -1 (n · l ) (n · 2 ) ] ( 2. 1) IN 

i - --1 i -= n FiN N FN{IN} ' F iN N FN{IN} , 
i=1 

nij E {0,1,2, ... , [_ N ] + 1}, for i = 1,2, ... ,k, j = 1,2}. 
Fi IN} 

Then, for each w E Q, N = 1,2, ... , k = 1,2, ••. we have 

(2.2) 
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* PROOF. Let IN be an arbitrary interval in IN. Define 

-* * 
IN = n IN, !N = u IN. 

~EIN INEIN 
~ * * 
IN2IN INcIN 

-* * ~ Note that IN and !N are elements of IN u 0 and that 

$ lF N n;} - F N n;} + 2kN - l Fi IN} $ 

$ i JF N n; l - F No:;} I + 2kN - 1 F N { IN} 

I lF N { I;} - F N { I;} I = F N { I;} - lF N u;} $ F N n;} - lF N n;} $ 

$ FNU.;} - lFN {!;} + 2kN- 1FN{ IN} $ 

I * * I -1-
$ ]F N {!N} - F N {!N} + 2kN F N { IN}. 

The following lermna gives upper bounds for the central moments of 

D 

,N Z , where Z , 1 $ n $ N, are independent Bernoulli (p ) random variables. ln=I n n n 

LEMMA 4. For every a> !, there exists M E (0, 00 ), such that for N = 1,2, ... , 
a 

N 2a 
-I 

N 
-1 

(2.4) E I I z - Np I $ M (N_)a for p = N I pn ? N 
n=l n a p ' 

n=l 
and 

N 2a 
-1 

N 
-1 

(2.5) E I I z - NpJ $ M Np, for p = N I pn $ N • 
n=l n a 

n=l 

PROOF. Since a> !, lermna ensures that it is sufficient to prove lermna 4 

in the case where p1 = p2 = ... = pN = p. First let us prove (2.4). For 



N = I, we have p = I, so that the left-hand side of (2.4) is zero. Let 

FNp(y) be the distribution function of II:=l Zn - Npl (Np(l-p))-½, then 

using an inequality due to S.N. BERNSTEIN [I, p.578], we have for y > 0 that 

5 

I - FNP(y) = P (in~I Zn - NPI > y/Np(I--p)) s 2 exp ( 2 + - :y ). 
3/Np(l-p) 

- > -] Moreover, for y ~ I and p _ N , N = 2,3, •.. , we have 

(Np(I-p))-! $ (N/(N-1))½ $ 2!, 

so that then 
2 

2 exp (- f). - FNp(y) $ 2 exp(~)= 

Hence, for p -I 
N 2,3, ... , ~ N , = 

IIZ - Npl2a 
00 00 

I 2a J 2a-l E IN;( 1-p) 
= y dFNly) = 2a y (1-FNp(y))dy $ 

0 0 
I CX) 

$ 2a 
J 

dy + 4a I 2a-l (- 1;) dy, y exp 

0 

so that (2.4) is proved. 

Let us next 
.IN have P( Z = n=l n 

concentrate on the proof of (2.5). Fork= 1,2, ... ,N, we 
(N-)k k -1 

k) $ (! and 1 + k $ e , so that for a > ½, p $ N , 

N = 1,2, ..• , 

00 

(Npl 
$ (Np)2a + I (k-Np)2a $ 

k! k=l 
ro 

(NEl+I 
$ Np+ I (k+l-Np) 2a $ 

k=O (k+I)! 

co 

(k+l) 2a (Np)k < 
00 (e2a-l / 

$ Np + Np I Np+ Np I = 
k=O 

(k+ l) ! -
k=O k! 

2a-l 
= Np(l + exp(e )). D 
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3. PROOFS OF THE THEOREMS 

PROOF OF THEOREM 1 IN THE CASE OF CONTINUOUS UNDERLYING df's. 

If FN{IN} = 0, the theorem follows immediately. It proves to be con-
. - 8 log (N+l) 

consider the cases O < FN{IN} s EN and 
log (N+l) f EN , or fixed O < E < I, separately. 

- 8 log (N+l) 
First suppose that O < FN{IN} s £N , and choose M = M1(E) = 

= (2/E) 312, so that 

(3. 1) 

Moreover, since 

~up I IFN u;} - FN{I;} I $ max (IFN {IN} ,FN{ IN}). 
INEIN 

(3.2) 

we have from (3.1), (3.2) and Markov's inequality that the left-hand side 

of (I.I) is bounded above by 

P({max(IFN{IN},FN{IN}) ~ FN{IN}/d) = P({IFN{~} ~ FN{IN}/d) s E. 

- 8 log (N+I) 
Next we suppose that FN{IN} > EN , whereas the underlying df's 

are assumed to be continuous. Application of lemma 3 shows that for M > 0 and 

N = 1,2, ... , the left-hand side of (1.l) is bounded above by 

(3. 3) 
(log(N+l)FN{IN})! _ 1_ }) 

> M \ N , - 2kN F N { IN} s 

s P ( { ~ma~ 1 wN {IN} - FN{IN} I 

INEIN 

which, for M > M2(k) = 4k(log 2)-! and N = 1,2, ... , is bounded above by 

(3 .4) P ( {~ma~ I IF N {IN} - F N {IN} I 
INEIN 

~~I~ p (IJFN{IN} -FN{IN}I 
INEIN 
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½ r,::- -1 
Since ½M(N log (N+l) FN{IN}) ~ I, for M ~ M3 = (v2 log 2) , lemma 2 is ap-

plicable, so that we may assume that N lFN{IN} in (3.4) is a binomial rv 

with parameters N and FN{~}. 

Applying Bernstein's inequality [I, p.578] and using 

max(FN{IN},1-FN{IN}) ~ 1, we find for M > O, 

(3. 5) ( _ ~ (log(N+l)FN{IN})½) 
p I ]FN {IN} - FN{IN} I ~ ½M N / ~ 

!M2N log (N+I) FN{IN} ) 
~ 2 exp (- -----------------~ 

2N FN{IN} + ½M(N log (N+l) FN{IN}) 2 • 

Moreover, since F {L~} > 8 log (N+l) 
N ~ EN 

tain for (3.5) the following upper bound 

(3.6) 

3 2 r::-

( z M v2 log (N+l)) 
2 exp - -------- ~ 

12/2 + M 
2 exp (-¾M log (N+l)), 

1, we ob-

for M ~ M 4 = 1 2 /i. 

~ Noting that the number of elements in IN is bounded above by 

( N )2k (s N2E: 2k 

F {I}+ 4 ~ 
log (N+l) 

+ 4) ~ (5N2)2k, 

N N 

we obtain from (3.3) - (3.6) for M ~ max (M 1,M2,M3 ,M4) = M5 the following 

upper bound for the left-hand side of (1.1), 

l for M > max (M5,Sj- k). D 

Before presenting the proof of theorem 2, in the case of continuous 

underlying df's, we introduce some more notation. Moreover, from now on it 

will be assumed that k =I.Define, for n = 1,2, ... ,N, 

and 

Note that, because of the assumptions~ YnN has continuous df GnN on [0,1] 

and also 
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-I 
N 

N 
l GnN(t) = t, 

n=l 
for O ::; t ::; I. 

Let GN denote the empirical df of YIN,Y2N, ... ,YNN; following SHORACK [ 6 J 

we shall call ~N the reduced empirical df of x 1N,x2N, •.• ,~. We remark 

that it suffices to prove theorem 2 for the empirical df ~N. Furthermore, 

we define the reduced empirical process~ by 

for O::; t::; I, 

and the process SN by setting SN(½)= XN(½), for i = O,1, •.. ,N, and by 
i - I i 

letting SN be linear on the intervals [ N , NJ. Finally, we define on 

[0,1] the stochastic processes ~ 0(t) and SN0 (t) by ~ 0(t) = ~(t)/q0 (t) 

and SN0(t) = SN(t)/q0(t), where for O < o::; ~. 

!-o q0 (t) = (t(l-t)) , for O < t < I, 

and 

The following lemmas are needed for the proof of theorem 2: 

LEMMA 5. Fork= I and every a> ½ there exists M E (0, 00 ) such that for 
a 

every o::; s, t::; I, every N = 1,2, ... and every array of continuous uni-

variate df's FIN'F 2N, ... ,FNN, N = 1,2, ... , 

PROOF. (The proof follows the pattern of SHORACK [6 ], where lennna 5 is 

proved for a= 2.) 

Let N ~ I, 0::; s::; t::; I, a> ½ and the continuous univariate df's 

F1N,F2N, ... ,FNN be arbitrary, but fixed. Choose integers i and j so that 

l -
N 

i 
::; s ::; N and J - I J 

N $ t $ N" 

Let ~km= lsN (i) - SN (*)I for integers k and m, with m > k. Then from 
' lemma 4 we have for some number M E (0, 00 ), 

a 



E6~: = E IN! (~N 0~) - GN (*)) - m;k)I 2a = 

= N-aE IN (tN (~) - tN(~)) - N (m;k)\ 2
a s Ma 

Case 1. i < j - I. Then 

o s 6 .. I v 6 .. v 6. l . l v 6. , ., st i,J- i,J i- ,J- i-1,J 

so that 

Eo 2a. s e. . l + e. + e. l . l + e. l . $ 4e. l . = st i ,J- i,J i- ,J- i- ,J i- ,J 

e - ~i-l)r a a 
= 4M s 4M 3 (t-s) . a a 

Case 2. i = j. Since the change of a linear function on an interval of 

length t - s equals the slope times t - s, we have 

so that 

o s N6. l .(t-s), st i- ,i 

Eo2a 
st 

2a 2a s N (t-s) e. 1 . s 
i- ,i 

2a a a -a a MN (t-s) (t-s) N s M (t-s) . 
a a 

Case 3. i = J - I. Then 

cS s cS { + cSi s 2(o i V cSi t)' st s 'N N' t s,N N' 

so that by Case 2 we have 

Eo2a s 22a (Ea 2a i + Eo?a ) s 22a (M (i_ - \a + M (t - i\a\ 
st *' t \ a1 N 5 I a\ NJ) , s 'N \ \ / 

D 

s 

9 



10 

LEMMA 6. Fork= 1 and every a> ! there exists M E (O, 00 ) such that for 
a 

every O $ s, t 5 1, every N = 1,2, ... , every o E (O,½J and every array of 

continuous univariate df's F1N,F2N, ... ,FNN, N = 1,2, ... , 

(3. 7) 

PROOF. Because of symmetry ins and t of (3.7) we suppose t ~ s, so that we 

only have to prove the lennna in the three cases O 5 s $ t $ ½, 
0 $ s 5 ½ 5 t 5 1 and! 5 s 5 t 5 I. 

Since for the second case we have (c -inequality) 
r 

where c is a number, depending on a only, it suffices to give a proof for 
a 

the first and third case. Moreover, the lennna is trivially true for sis 

zero. 

Let a> ½, 0 5 s 5 t $ ½, N ~ I, o E (O,½J and the continuous uni

variate df's F 1N,F 2N, ... ,FNN be arbitrary, but fixed and let Mi, 

i = I ,2, .•. ,6 be numbers, only depending on a. Because of lennna 5, 

Moreover, for s 5 ½t, we have 

whereas for s > ½t, we find 

M5s!(Fo - To)= M5s½ 
s t 

s½(t-s) 
$ Ms 3/2-o s 

s 

M (t-s):,; 
6 1-0 

t 

The proof for the case~ s s st s I goes analogously. 

t 

f 
du 

3/2-o 
$ 

u 
s 

0 
M6(t-s) . 

D 
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LEMMA 7. Fork= I and every E > 0 and o E (O,!J, there exists M = M(E,o), 

such that for every array of continuous univariate df's F 1N,F 2N, ... ,FNN' 

N = 1 , 2, ••• , and every N = I , 2, ••• , 

P({ sup l~it) I ;c: M(E,o)})::; e. 
O:s;t::; l 

PROOF. Choose arbitrary, but fixed E > 0, o E (O,!J, NE {1,2, ... } and 

continuous univariate df's F1N,FZN'"'''FNN. Because of lemma 6 we have for 

every O::; s, ts l, 

(3 .8) 
-J 

1
6([6 ]+2) 

s , 

-1 
where M0 E (0, 00 ) only depends on 6. Remark that o([o ]+2) > I. 

Consider for fixed positive integer m, the random variables 

s (~\ 
No m ) 

1 = 1,2, ... ,m. 

k 
Obviously, SNo(m) = ~lm + ••• + ~km(SN 0 (0)=0). 

Because of (3.8) we now have for O::; i::; j ::; m, ME (0, 00 ) that 

-I -I 
where u£ = (M0)(o([o ]+Z)) ¼,for£= 1,2, ... ,m. 

Applying theorem 12.2 of [2, p.94] we obtain for some K0 E (0, 00), 

depending on 6 only, that 

-I -I 
::; K M-[o ]-2( + + + )6([6 ]+2) = 

o u I u2 · · · urn 

Since, for each w E Q, SN 6 is a continuous function on [0,1 ], letting rn ➔ oo 

leads to 

BIBUOTHEEK MATHEMATISCH cENrrw~ 
-AMSTERDAM--
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P({ sup I ~0( t) I ~ M}) 
Q::,t::, 1 I 

-1 
:5: K M-[o ]-~ 

o o' 

from which the lemma follows. D 

LEMMA 8. Fork= 1 and every£> O and o E (O,½J, there exists M = M(£,o), 

suah that for every array of continuous univariate df's F 1N,F 2N, ..• ,FNN, 

N = 1,2, ••• ,and every N = 1,2, ••• , 

PROOF. We shall only give the proof of the lemma in the case where we re

strict tin the supremum to the interval [O,½J and N = 2,3, ••.. 

We remark that for M > 0 and N = 2,3, •.. and o E (O,!J, 

(3.9) 

Let us now derive upper bounds for these terms seaprately, assuming through-

out continuous univariate df's F1N,F 2N, •.• ,FNN. . 

From the fact that l¾(t) - SN(t) I :5: l¾(t) - SN(N)I v l¾(t) - SN(i; 1)1 
for i;l:,;; t:,;; ½, it follows for M > O, N = 2,3, .•• and o E (O,!J that 

(3. 10) 

[N+l] 
T ( (i) (i-1) ½ fi-1) ) s i~2 P N~N N - N'N N - I ~ N Mqo\N - 3 . 

Moreover, from Chebyshev's inequality, (3.10) and lemma 4 we find that for 

6 E (O,~], B = B(6) = (2-26)/(1-26) > 2, M ~ 6/z and N = 2,3, ... , 



(3.11) 

where K0 E (0, 00 ) is a number only depending on c5. 
-1 -1 

Next, since SN(t) = NtSN(N ) for O ~ t ~ N , we have for M > O, 

c5 E (O,!J and N = 2,3, .•. , that (Chebyshev's inequality and lemma 4) 

(3. 12) 

where K~ is a number only depending on c5. 
l 

Furthermore we have for M 2 2~, N = 2,3, ... and c5 E (O,½J, 

(3.13) 

Finally, we have for 0 <:; 
-1 

M > O, N = 2,3, ... and o (0, ½J t <:; N , E 

tN(t) 11:N( t) t½+o G;N(t) 2½-0(1\!+o 
= :::; 

qo ( t) (I-t)~-o 
\-, t t . N; 

that 

13 
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and hence 

(3.14) 

In [7]*)it is proved that for each n > O, there exists a a, 0 <a< I, in

dependent of N and of the continuous df's F 1N,FZN' ••• ,FNN, such that 

(3.15) P({ Sup GN(t) -1}) --- s a ~ l - n. 
OStSI t 

Hence, the lemma follows after combining (3.9), (3.11), (3.12), (3.13) and 

(3.14), together with the remark above. D 

PROOF OF THEOREM 2 IN THE CASE OF CONTINUOUS UNDERLYING df's 

Remark that it suffices to prove theorem 2 for the empirical df GN. 

Then the theorem follows immediately from lennna 7, lenma 8 and the fact 

that for M > O, 

lsNit) I ~ ;} ) + 

+ P({ sup 
0StS1 

~cft) -SNit)I ~~}). D 

The following lemma and its proof make it clear that the theorems also 

hold in the case where the underlying df's are allowed to be discontinuous, 

LEMMA 9. Let k be a fixed positive integer and let lFN be the empirical 

df based on N k-variate sample elements X = (X1 ,x2 , ..• ,Xk ), 
n n n n 

n = 1,2, ... ,N, where the X are distributed independently according to 
n 

given, possibly discontinuous df's F. There exist N k-variate random 
n 

vectors Y = (Y 1 ,Y2 , ... ,Yk ), n = 1,2, ..• ,N, where the Y are distributed n n n n n 
independently according to continuous df's G, such that with probabilitu 

n 
one 

The proof of (3.15) can also be found in·Report SW 34/75 of the Depart
ment of Mathematical Statistics, Mathematisch Centrum, Amsterdam. 
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where tN is the errrpi'J'icai df based on the Y, n = 1,2, ... ,N and 
- -1 N - -1 N n 
FN = N ln=l Fn' GN = N ln=l Gn. 

. 1 2 k 1 d b F h · th . 1 df f PROOF. For i = , , ... , et us enote y . t e i margina -o F, in n 
- -J,N (i) 

let F.N = N l l F. and let {s , v = 1,2, ... } be the countable set of i n= in v 
discontinuity points of F.N. This set contains the discontinuity points of 

i (i) . (i) -
each F. , n = 1,2, .•. ,N. Moreover, let p be the Jump at s of F.N and in . V V i 
let {U(i), v = 1,2, ... } be a set of uniform (O,l) distributed random 

\) 

variables, mutually independent and also independent of the random vectors 

X, n = 1,2, ••. ,N. 

n Since l p(i) ~ 1 for i = 1,2, ... ,k, we can define for n = 1,2, ... ,N the 
\) \) 

random vector Yn = (Y 1n,Y 2n•···,Ykn) as follows (1 cenotes the indicator func-

tion): 

(3. 17) + '1 P(i) + '1 (") P(i) u<i) 
yin= Xin l X. >s(i) v l X. =s i v v ' 

v in v v in v 

for i = 1,2, ... ,k, 

so that X is transformed stochastically to Y. 
n n 

Let Gn be the df of Yn and let ~N be the empirical df based on 

Y1,Y2 , •.. ,YN. It is clear that all the marginal df's of Gn are continuous 

and hence G is continuous. 
n 

From definition (3.17) it is immediate that for n = 1,2, ... ,N 

(3. 18) [X. ~x.,fori=l,2, ... ,k]~[Y. ::;x,+'1 (i") 
in i in 1 l ¾.~s 

\) 1 \) 

for i = 1,2, ... ,k]. 

- N-1,N Moreover, from (3.18) it is obvious that (with GN = ln=l Gn) 

and with probability one 
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so that (3.16) holds. 0 
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