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1. INTRODUCTION

Let X]’XZ""’XN’ N = m+n, be independent random variables such that
Xl""’Xm are identically distributed with common distribution function F

and density f and X Xy are identically distributed with distribution

SVPPRER
function G and density g. For N = 2,3,... and 0 < ¢ < m/N < 1-¢ < 1, con~-
sider the problem of testing the hypothesis F = G against a sequence of al-
ternatives that is contiguous to the hypothesis. The level o of the sequence
of tests is fixed in (0,1). Standard tests for this two—sample problem are
linear rank tests and permutation tests and expressions for the limiting
powers of such tests are well-known. In this paper we shall establish

. . -1 .
asymptotic expansions to order N for the powers m_ of such tests, i.e.

N
-1 - -
expressions of the form m_ = c.+c N *+c, N ]+0(N 1). Of course this in-

N 0 1 2,N
volves finding similar expansions for thé distribution function of the test
statistic under the hypothesis as well as under contiguous alternatives. For
simplicity we shall eventually limit our discussion to contiguous location
alternatives. Extension of the results to general contiguous alternatives
is straightforward but messy.

A number of authors have computed formal expansions for the distribu-—
tions of various two-sample rank statistics without proof of their validity.
Their purpose was to obtain better numerical approximations for the critic-
al value of the test statistic and the power of the test than can be provid-
ed by the usual normal approximation. For an account of this work we refer
to a review paper of BICKEL (1974), which incidentally also contains a short
preview of the present paper including a brief description of the expansion
of the distribution function of the two-sample linear rank statistic under
the hypothesis (c.f. corollary 2.1 in the present paper). This result was
also proved independently by ROBINSON (1977). An earlier proof by ROGERS
(1971) for the special case of the two-sample Wilcoxon statistic under the
hypothesis unfortunately appears to contain a non-trivial error.

We shall not discuss the numerical aspects of the expansions we obtain
but we shall concentrate on a rather delicate type of asymptotic comparison
of the power functions of various parametric and nonparametric tests.
Consider two sequences cof tests {TN} and {T&} for the same hypothesis at

the same fixed level o. Let ﬂN(GN) and ﬂ&(@N) denote the powers of these



tests against the same sequence of contiguous alternatives parametrized by

is more powerful than T& we search for a number

WQN(GN). Here kN and dN are treated as

a parameter 0. If TN

kN = N-#dN such that ﬂN(GN) =
continuous variables, the power w& being defined for real N by linear inter-
polation between consecutive integers. The quantity dN was named the
deficiency of {T&} with respect to TN by HODGES and LEHMANN (1970), who
introduced this concept and initiated its study. Of course, in many cases
of interest dN is analytically intractable and one can only study its
asymptotic behavior as N tends to infinity.

Suppose that for N + =, the ratio N/kN tends to a limit e, the
asymptotic relative efficiency of {Tﬁ} with respect to {TN}. If 0 <e <1,

we have dN ~ (e—1

- 1)N and further asymptotic information about dN is not
particularly revealing. On the other hand, if e=1, the asymptotic behavior
of dN - which may now be anything from ¢(1) to 0(N) - does provide important
additional information. Of special interest is the case where dN tends to
a finite limit.

Asymptotic expansions for the power of the type we discussed above
are precisely what is needed for an asymptotic evaluation of dN. With the
aid of such expansions we arrive at the following results. Let F be a dis-
tribution function with density f, let b be a positive real number and

define by = bN ?. Consider the problem of testing the hypothesis (F,F)

against the sequence of simple alternatives (F(-+AN6N),F(-—(l-AN)eN)) at
level o. Let dN denote the deficiency of the locally most powerful rank
test with respect to the most powerful test for this problem. For the rank

test the power is independent of A but for the most powerful test it is

N

not and we choose AN in such a way that the power of the most powerful test

is minimal. Under certain regularity conditions on F we establish an ex~-
pansion for dN with remainder ¢(1). To indicate the qualitative behavior

of dN it suffices to note that the expansion is of the form

N .
1 2 ~
(1.1) d = —————0 ) o7 (¥ (U.. ) +d + 0(1)
N jwf(t)dt 55 173N N,0

where voo= f'(F—])/f(F_]), 02 indicates a variance, U, denotes the j-th

J:N
order statistic of a sample of size N from a uniform distribution on (0,1)



and EN 0= 0(1). Alternatively we may write
3

j-n~ !

J (W;(t))zt(lat)dt + Eﬁ,o + o)
N |

1
o
J¥](B)de
1

(1.2) &y

1-N_
1

J (w;(t))z{t(z-t>}2dt>,

N—]

N

+ 0(N

)

where W; is the derivative of Wl. If we replace the exact scores - EWI(Uj'N
in the locally most powerful rank test by the corresponding approximate

scores - Wl(j/(N+1)), then (1.1) changes to

N
(1.3) dy = ——— L E(Y (U, 0 -, /w4 d

= + o(1)
N fW%(t)dt i=1

N,O0
and (1.2) continues to hold. Thus the asymptotic behavior of dN is governed
by that of the first term in these expansions and under the conditions

1/3) but not 0(1). Typically,

imposed, all we can say is that it is o(N
however, it will be 0(1) or only slightly larger than that. By taking F to
be a normal distribution we find that the deficiency of both the normal
scores test and van der Waerden's test with respect to the test based on
the difference of the sample means for contiguous normal location alter—
natives is asymptotic to loglogN. For logistic shift alternatives the
deficiency of Wilcoxon's test with respect to the most powerful parametric
test tends to a finite limit. Turning to distributionfree tests other than
rank tests, we find that for contiguous normal location alternatives the
deficiency of the permutation test based on the sample means with respect
to Student's test tends to zero for N » =,

If the locally most powerful rank test for shift has nondecreasing
scores, then there exists a corresponding Hodges-Lehmann estimator of
shift in the two-sample problem (c.f. HODGES and LEHMANN (1963)). There
is a similar correspcndence between the locally most powerful parametric
test for shift and the maximum likelihood estimator of shift in the two-
sample problem. We shall exploit this correspondence to obtain asymptotic
expansions for the distribution functions of these estimators. We shall

show that, when suitably defined, the deficiency of the Hodges-Lehmann



g~

estimator associated with the locally most powerful rank test with resvec!
to the maximum likelihood estimator is asymptotically equivalent to the
deficiency of the parent tests for a = 3.

This paper is thus the natural counterpart of ALBERS, BICKEL and
VAN ZWET (ABZ) (1976) where exactly the same programme is carried out for
the one-sample problem. Without exception the results are also qualitativ=—
ely the same but contrary to what one might think at first sight, this in
itself is rather surprising. Of course there is a strong similarity
between the one- and two-sample cases but there is also one major dif-
ference. In the nonparametric one-sample location problem the underlying
distribution is always symmetric both under the hypothesis and under the

alternative. Because of this symmetry, the power expansions for contiguous
‘ 1

location alternatives donot contain a term of order N ?

for any of the
parametric or nonparametric tests considered. Since attention is restricted
to sequences of tests {TN} and {T&} with asymptotic relative efficiency I,

the leading terms of the power expansions coincide and these expansiocns

- -1 -1 v - -
mus t E?erefore be of the form T c0+c2’NN +0(N ') and ™= c0+c2’NN
+ 0(N ). In the comparison of rank tests T& with parametric tests TW it is
. . . T o -
found that the deficiency dN is of the order of N(ﬂN WN) (CZ,N CZ’N)-FO(i)

1/3

= o(N ). In the two-sample problem, however, the underlying distributions

are not required to be symmetric and as a result the power expansions do
|

in general contain a term of order N ?

. It is not clear a priori that this
term should be the same in each expansion and because dN is ?gain of the
order of N(ﬁN—ﬂﬁ), one should expect dN to be of the order N’. It turns
out, however, that for the most powerful test, the locally most powerful

test, the locally most powerful rank test and its approximate scores
i

analogue, the term of order N ? in the power expansion for contiguous
location alternatives is in fact the same for each of these four tests.
Borrowing a phrase from PFANZAGL (1977) who noted the same phenomenon for
the (asymmetric) parametric one-sample problem, first order efficiency
apparently implies second order efficiency in these cases. It follows that
Z,N—Cé,N) and since CZ,N and Cé,N exhibit
precisely the same asymptotic behavior as in the one-sample case, cur

again dN is of the order of (c

deficiency results are qualitatively the same as in ABZ (1976). The reader

should note that Pfanzagl's concept of second order efficiency which in



general implies dN = G(N%), is different from Rao's concept of second order
efficiency as discussed in EFRON (1975), which is more in the nature of
dN = ¢(1). This difference in terminology is not as illogical as it may seem
because Rac's concept is related to the asymptotic performance of an estima-
tor MN as measured by the asymptotic variance of N%Mﬁ -and ?xpansions for
this quantity are typically in powers of N_] rather than N 2,

Throughout this paper we shall draw heavily on the techniques developped

for the ome-sample case in ABZ (1976) but several new difficulties appear

that make the two-sample case essentially more complicated. The main source
1

? in our expansions. Not

of trouble is the occurrence of terms of order N
only do they make the actual computation of the expansions much more
laborious, but their presence also poses a number of technical problems that
are hard to handle under the conditions imposed, which are comparable to
those in ABZ (1976). Another complicating factor is that the distribution
theory for the two-sample rank statistic is more involved than for its one-
sample counterpart. In the one-sample case a conditioning argument reduces
the rank statistic to a weighted sum of independent Bernoulli random vari-
ables. A similar argument in the two—sample case leads to the much less
manageable random variable indicated below.

In section 2 we point out that for arbitrary F and G, the conditional
distribution of the two—sample linear rank statistic given the order statis-
tics of the combined sample is the same as the distribution of the sample
sum in a rejective sampling scheme. We establish an expansion for the dis-
tribution function of such a sample sum which may be of interest in its
own right. As a corollary we obtain an expansion for the distribution func-
tion of the rank statistic under the hypothesis. In section 3 we return to
general F and G and obtain an unconditional expansion for the distribution
function of the rank statistic. We specialize to contiguous location alter-
natives in section 4 and derive an expansion for the power of the rank test.
In section 5 we deal with the important case where the scores are exact or
approximate scores generated by a smooth function. The permutation test
based on the sample means is discussed in section 6. The results on deficien-
cies of distributionfree tests are contained in section 7. Section 8 is

devoted to estimators. Some technical results are dealt with in the appendix.
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2. AN EXPANSION FOR THE CONDITIONAL DISTRIBUTION OF TWO-SAMPLE RANK
STATISTICS AND ITS APPLICATION TO REJECTIVE SAMPLING

Let Xl,Xz;...,XN, N = m + n, be independent random variables (r.v.'s)
such that Xl""’Xm are identically distributed (i.d.) with common distri-

bution function (d.f.) F and density f and X .,X_are i.d. with common

m+l’"" N

d.f. G and density g. Let Z1 < 22 < ... < ZN denote the order statistics of

X],.,a,XN, define the antiranks Dl’DZ""’DN by XDj = Zj and let

(2.1) Vj = ] ifm+ 1< Dj <N

0 otherwise.

For a specified vector of scores a = (al,az,...,aN) define a two-sample

rank statistic by

J

(2.2) T= ) a.V..
j=1 3

Our aim is to obtain an asymptotic expansion as N - « for the distribution
of T for suitable sequences of pairs of d.f.'s (FN,GN), arrays of scores
{aj,N}’ 1 £ j <N, and sample sizes (mN,nN). As in ALBERS, BICKEL and VAN
ZWET (ABZ) (1976) we shall suppress dependence on N whenever possible and
formally present our results in terms of error bounds for fixed, but arbi-
trary, values of N.

Under the null-hypothesis that F = G,

Bl
™)

for any vector (vl,..,,vN) with m co—ordinates equal to O and n co-ordinates

POV =V e, V=) =

1

equal to 1. In general, conditional on Z = (Zl,...,ZN),

-1 N Vj 1=v:
(2.3) P(V.=v,,...,V.=v._ | Z) =c (P) T P.°(1-p,) "1,
I 1 N 'N =1 ] ]
where
(2.4) P. =

i (-0fE) + ez 2



(2.5) A = %- ,
N W, 1-w,

(2.6) c®y =) nm eJ0-p) I,

o J j

]
and the summation is over all vectors (Wl""’wN) consisting of m zeros and
n ones.

1 ¥ Y 1 = = el 1 =
Let wl,wz,. "WN be independent r.v.'s with P(wj 1) 1 P(Wj 0) pj,

1 < j £ N. Suppose that

for at most m indices j

o
li
()

(2.7)

p. = 1 for at most n indices j

and consider the conditional distribution of ) a wj given that ) Wj = n.
Note that if we replace p = (pl,...,pN) by P = (Pl""’PN)’ then this is
the distribution of T given Z. For general p this distribution is of in-
terest in its own right since ) a, Wj given ) Wj = n is the sample sum we
obtain when we use a rejective sampling scheme with parameters PyseeesPy
in selecting a sample of size n from the sampling frame {al,az,...,aN}
(see HAJEK (1964) for details).

Define

-1
(2.8) p(t,p) = E(exp{itN 2 ) a.(W.-p.) |

]

1
P(N 2

(2.9) R(x,p)

I o122

. (W.-p.) < W.=n).
1 aJ( ; pJ) x | jzl n)

N
Our program for obtaining an Edgeworth expansion for the d.f. of T parallels
in part that of ABZ (1976). We obtain a formula for p. From this formula
we obtain an expansion for p which we can rigorously translate into an
Edgeworth expansion for R. Because of the connection with rejective sampling
we iscolate this result as the only theorem in this section. In the next
section we proceed with our main program and obtain an expansion for the
d.f. of T by replacing p by P and taking the expectation of the resulting

expression. We begin with



LEMMA 2.1. Define

N
l(pj—k)}jzl[pj exp{iN_%(l—pj)(s+ajt)}

-1
2

(2.10) v(s,t,p) = exp{isN

e~z

j

+ (l—pj)exp{— iN—%pj(s+ajt)}],

Nl

N
(2.11) - v(t,p) =

y(s,t,p)ds,
N%

H Y—3

1-w.

We
(2.12) c(p) =V ij(l-pj) 1,

==

=1

where the last swmmation is over all vectors (w ,wN) consisting of m

RS
zeros and n ones. Then, i1f (2.7) is satisfied,

m
(2.13) o(t,p) = —— J v(s,t,p)ds = :Eg’g; :
m™

PROOF. Begin with the identity

E(exp{iN—ifs Z(Wj—pj) + t z aj(Wj-pj)]})

Il
I o~122

-1 -1
E(exp{itN 2Zaj(wj—pj)}|zwj=k)P(2Wj=k)exp{isN 2(k-ij)}.

k=0

- -1
Because the system {(27N?) ? exp(iksN 2): k = 0, + 1,...} is orthonormal on

i 1
[ - nN?, 7N?] this implies

Nl

exp{isN—%Z(pj—A)}

Nl

mN

o(t,p) = (ZﬂN%P(ZWj=n))-1 J
=mN
X E(exp{iN—%Z(s+ajt)(Wj—pj)})ds.

Elementary considerations now yield (2.13). [

Note that if pj = X for all j - which corresponds to the null-hypothesis
in the two-sample problem - our formula agrees with that of ERDOS and

RENYI for random sampling without replacement (cf. RENYI (1970) p. 462).



In fact their result motivated our approach.
In our asymptotic study of ¢y, v and p we shall repeatedly come across

the following functicns of p.

-1
2

(2.14) w(p) =N 2 ) (p,-1),
j=1
) -1 ¥
(2.15) c’(p) =N ) p.(I-p.),
i=1 J J
N . N
(2.16) i(p) = JZ] Pj(l—pj)aj /JZI Pj(l_Pj)’
2 -1 N _ .2 -1 ¥ 2 2, 2
(2.17) °(p) = N ) p.(I-p.)(a.-a(p))” =N y p.(1-p.)a. -o (Pa“(p),
j=1 3 373 i=1 1]
1 N —, Wi
(2.18) K3,i(p) =N JZ] Pj(l'Pj)(l‘ZPj)(aj'a(P)) s i=20,1,2,3,
-1 N 2 i .
(2~19) K4,i(P) =N JZ] Pj(I'Pj)(1'6Pj+6pj)(aj"a(P)) ) 1= 0919"'34'

In this notation we shall suppress the dependence on p when this is con-

venient. Let £ denote Lebesgue measure on R1 and define
(2.20) vy(e,z,p) = £{x: Ej lx—ajl <r, e < P; <1 -ce}.
LEMMA 2.2. Suppose that positive numbers c, C, § and e exist such that

(2.21) TZ(P) Z C,

| —
| B~
[V
IA
v(')

(2.22) y(e,z,p) = 8Nz for some ¢ 2 N_3/210g N.

Then there exist positive numbers b, B and B depending only on c, C, § and
€ such that

(2.23) ly(s,t,p)]| < py Plogh
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for all pairs (s,t) such that |s| < wN?, |t] < bN3/2 and either
[s] = log(N+1) or |t| = log(N+1).

PROOF.
N _1 1
(2.24) lu(s,t,p)| = T [1 - 2pj(1-pj){1 - cos(N 2(s+ajt))}]2
j=1
N I 4
< exp{- ) p (l-p YOIN (s+a.t)-§ZN (s+a.t) 1}
2y 3 j j

< exp{-3lr2t% 0% (s+a) 2T+ L vl ) (aj—5)4c4-+(s+at)4]}.

P i
Now (2.21) ensures that
(2.25) o2(p) = Net(p) /T at 2Tl
j=1
_ N4y o ~2 5/4
(2.26) la(p)| < ) ajjé / o7(p) £ c "C s
j=1

and by (2.21), (2.24), (2.25) and (2.26) we conclude that there exist posi-

1
tive bl’ B and B depending only on c¢ and C such that for |s]| < b]N2 and

Nl

[t]

(2.27)  |u(s,t,p)| < B expl- 8(s%+tH}.

Next note that (2.25) and (2.21) imply that the number of indices j for
which p (l—p ) = 2c2/C is at 1east 2Nc2/C and the number of j for which

o
in

(C/c)Z is at least N - Nc /C Hence the number of indices j for whlch
(C/c)2 and pj(l—pj) > ic /C is at least Nc /C Put b2 = 2b (c/C)2
1 1

and we see that if blN§ < |s| < 7N2 and |t] < bZN , then for at 1east Nc /C

I\
e
IA

Nl

indices j

[1 - 2p (1- p ){1 = cos(N 2(s+a )}l <1 - ¢ C {1 - cos(——o}
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Combining this with (2.27) we see that it only remains to be shown that
positive numbers b, B and B exist depending only on c, C, § and € and such
that (2.23) holds for |s| < WN% and,(blAbz)N% < |t] < bN3/2. For this we
can appeal to the corresponding part of the proof of lemma 2.2 in ABZ (1976)

with only minor modifications. [

Define functions uk(p), 1 <k €6, and Ak(p), 0 <k £6, by

w 1 u)z 3w w3
(2.28)  wy =3, M= 37, M3t g%
o o] o] o] o
-3 _ 6w2 + Qﬁ _ 15w _ IOw3 + ws
Yy A 6 g ¥s 6 8 10 °
[e) o g (e} o o
- _1_5 _ 45u)2 + 15w4 _ u)6
Mg 6 8 10 12 °
(0] (e] o (0}
_% -1 9
- N N _ _
(2.29) By = 1+ =g kg g Hy * 55 (B, UKy glg) o
-1 -1
N ? N
Ap = Ty Ky Myt g (26, qugTRg kg qug)
_% -1 9
__X N
By = = T Ky g g 170Ky gy (kg grg 3Ky Dugd s
-1 -1
A = N K LN {- 6k u, + (k K. ~+9Kk K Yu.,}
3 6 3,3 736 4,3 M1 3,0°3,377°3,1%3,2’"37 >

N—]

5 12 “3,2 3,3 "1 >

>
I

-1
N2
Be = 77 ¥

where we have suppressed the dependence on p. We shall show that

1 2 2 2 6
2(Trp))2 exp{- w (p) _ T (g)t - iw(p)a_l(p)t} }: Ak(p)(lt)k
=0

(2.30)  V(e,p) =< 5
207 (p) k
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is an asymptotic expansion for v(t,p).

LEMMA 2.3. Suppose that positive numbers c, C, § and € exist such that
(2.21) and (2.22) are satisfied. Then there exist positive numbers b, B and

B depending only on ¢, C, § and e such that for |t| < bN3/2,

2
~ - - -BlogN
(2.31) lo(t,p) = S(e,p) ] < B 32824 £ %) expl- Sy W Ploghy,
PROOF. In this proof b, bi’ Bi’ Bi and NO denote appropriately chosen posi-
tive numbers depending only -on ¢, C, § and €.
Arguing as in the proof of theorem 2.1 in ABZ (1976) we find by Taylor

1
expansion of log ¢ that if [s + ajtl < i7N? for all j, then

*2t2 02(S+5t)2
(2.32) V(s,t,p) = exp{iws - Lz - 5
in 32

L - _ 3
z— 1 p;(1-p,) (1-2p,) (s+a; )

N2 2 4
+ 57 L 5 (1=p) (1-6p,+6p7) (s*a )" + M, (s,t,p) ),
where
b, (56,0 = ¢ N2 ] Jsvase]?
<160, 2] T Ja, - 37 N2 )s + ae)?)

J

1
N_1 Z Iaj - 5}4, N 1/4 maxlaj[ and N 5/4 z laj - §|5 are bounded. Using (2.21)
1

1
and (2.25) we find that for all |s]| < b1N2 and |t] < b]N4

for some absolute constant C,. Now (2.21) and (2.26) imply that N_] z Iaj~5!3,

N—3/2

3 N2 4 2t
g L Lo v agel” e G b Gragn i Gt | 5

t° o+ 02(s+5t)2
Z .

Hence further expansion of part of the exponential in (2.32) shows that

(2‘33) ll)(S,t,p) = m(sstap) + MZ(S,tsp)
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1 1
for |s| < b1N2 and |t!] < blNA, where

N T2t2 02(S+5t)2
(2.34) v(s,t,p) = expl{iws - 5 T '2 }

..~3/2 :
iN _ _ ) 3
[1 ) p;(1-p;) (1-2p,) (s+at)

N_Z

v 2 4
+ = .(1-p.) (1-6p.+6p.) (s+a.t
55 L P3(17p) (1-6p.+6p) (s+a. )

N_ 3,2
- 57 (e (1) (1=2p) (s+a;)) 7T
2.2

5 TtT o+ 02(s+5t)2
[ t] )M3(t,s+5t)exp{— Z }

(2.35) M, (s,t,p)| < (3 204

and M3 is a polynomial in t and (s+at) of fixed degree with coefficients

1
depending only on c and C. Therefore, for |t]| < blN“,

1
b,N?
' -  -3/2. -5/4, .5 ct?
(2.36) J lv(s,t,p) - w(s,t,p)[ds < B](N +N ‘tl Yexp{- 5 }.
1
- 2
blN
1/4
Next we show that for |t]| < blN ,
—leogN

(2.37) .J 1 [W(s,t,p)[ds < B, N ,

b]NESlslﬁﬂNi

-B,logN
~ 3
(2.38) J |¥(s,t,p)|ds < By N .
1
|S|2b1N2
For N 2 NO’ (2.37) is a consequence of lemma 2.2 and since |y| < 1 we can
choose B2 so that (2.37) holds for all N. Because for all s and t
2.2 2, - .2

(2.39) Ia(s,t,p)] < exp{- L 02(s+at) }M4(t,s+5t)

where M4 is a polynomial depending only on c¢ and C, (2.38) follows. Com—

bining (2.11), (2.36), (2.37) and (2.38) we see that for |t]| < b1N1/4
[ ~3/2. =5/4; |5 ct?
(2.40) lv(t,p) - J w(s,t,p)ds[ < B4[(N +N |t| ) exp{- 5 }
—8410gN

+ N 1.
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A direct application of lemma 2.2, the fact that |y| < 1 and (2.39) show

that we can choose B4 and 84 so that (2.40) continues to hold for blNl/é <

< bNB/2 with b as in lemma 2.2.

le]

It remains to be shown that for all s and t
(2.41) v(t,p) = f $(s,t,p)ds.

This follows by straightforward but tedious computation using the fact

that

[eo)

P B N VIS N Pl
™ U(p) Gz(p) e Z

Uk(P) for even k
iuk(p) for odd k. [

badee)

We mow turn to our asymptotic expansion for rejective sampling. For

I €<k £ 6, define functions Qk(P) by

vt N o _ o
a2 Q=TT e e Muits T 3,055,120 5 T g 0
-1 -1 2
e N - 1w 2
% 7 %32 %1 " g 2K4,2“2+2K3,0‘<3,2(G4 g0t <3, 1M
_% -1
N !
Q3 = 5 ¥3,3 * 7 7 2,3 0 3Ky Ky o M3l

Let ® and ¢ denote the standard normal d.f. and its density and let Hk

denote the Hermite polynomial of degree k, thus

(2.43) HG) =1, H GO =x  HG) = 2 -1, H(x) = % - 3x,

x4 - 6x2 + 3, HS(X) = x5 - 10x3 + 15x.

Ha(x)
We shall show that expansions for (2.8) and (2.9) are given by

T2( )t2 6 K
(2.44)  B(t,p) = expl- —5— - lw(@aEEI + ] Q (p)ED)T,
1

k:
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p - . - 6 Q (p) =
5 _ (xre@am) | (xte(@)EP)) k (x+0 (P)A(P))
(2.45) RGx,P) ®\ 7(p) ) ¢\ T(p) /k21 (T(P))k Hk_l\ HONNVA

~

Note that »o

is the Fourier—Stieltjeé transform of ﬁ, i.e. p(t,p) =
itx .~
J e  TdR(x,p).

THEOREM 2.1. Suppose that positive numbers c, C, D, § and e exist such that
(2.21) and (2.22) are satisfied and

(2.46) lw(p)| =< D.

Then there exist positive numbers N. and B depending only on c, C, D, § and

0
e such that for N =z NO, R(x,p) 78 well-defined and

(2.47) sgle(x,p) - ﬁ(x,p)l < BNUS/A.

PROOF. In this proof b, Bi’ B, n and N_ denote appropriately chosen posi-

0
tive numbers depending only on ¢, C, D, § and €.

By (2.21), (2.25), (2.26), (2.46) and lemma 2.3 we have for N = N

O,
(2.48) [V0,p)| =, [v(0,p) = V(0,p)| =3,

so that |[v(0,p)] 2 n/2 > 0. In the first place it follows that for N = NO’

c(p) » 0 and hence (2.7) is satisfied and R(x,p) is properly defined.

We assume that N 2 N, and we shall show that, with b as in lemma 2.3,

0
bN3/2
(2.49) ( lp(t’p) - 0(6P) g < BlN—S/A.
ol

By Esseen's smoothing lemma (Esseen (1945)) this suffices to prove the
theorem bzcause ﬁ(-w,p) =0, ﬁ(w,p) = 1 and the derivative of R with respect
to x is bounded.

By (2.21), (2.25), (2.26) and (2.46), ©p has a bounded derivative with

respect to t. Also



i
=z
[T

do(t,p) | _ 4 _ o) - N2
Se8B) < n(|Ta rpmp) |1 T0mm) < WH ] Jag] <

Since p(0,p) = p(0,t) = 1, it follows that

N2

(2.50) J |eep) = BCER) |gp < p y73/2,
9 | t | 2

..N_
Nexﬁ we note that (2.21), (2.25) and (2.26) ensure that for all t
ct2 1
(2.51) ]v(t,p)l < B3 exp{— —Z—-I .

Tegether with (2.13), (2.48) and lemma 2.3 this implies that for |t| < bN3/2

v(t,p)
v(0,p)

IA

(2.52)  |o(t,p) - 2 [u(e,p) - S|+ L [See,p)|

n

‘!V(OsP) - G(Oap)l

2
B4{(N 3/2, 5/4lt|5)e3p{- E%_} N BlogN} .

IA

Again with the aid of (2.21), (2.25), (2.26) and (2.46) one can easily check
that, for 1 < k < 6, Qk is obtained from Ak/AO by expanding the denominator

N <t

and discarding all terms of order N—3 2, i.e. that IQk - Ak/AO| < BSN_B/Z'
It follows that
(2.53) 15(t,p) - 383&2&4 L LN EEEI

e PLER) TS0, < s P
and combined with (2.52) this yields

| - - - -
(2.54) J Ip(t’P)tp(t’P) dt < B, (N 312y penan 214y < BN >4,
2 e <on /%

Together with (2.50) this proves (2.49) and the theorem. 0

Two remarks should be made with regard to theorem 2.1. The first one
concerns condition (2.46) that does not occur in the preceding lemmas. The

meaning of this condition is perhaps obscured by the fact that we make it
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do some odd jobs in the proof for which it is not really needed. We use it
to show that (2.7) is satisfied for N 2 NO’ but (2.25) ensures that the
number of indices j with p. = 0 (or p.=1) cannot exceed m - C_ICZN +lw(p)lN%
1c2N + lw(p)IN%)Jso that {w%p)l < C—ICZN% already implies (2.7)

for all N. Condition (2.46) is also used to obtain (2.50), but in (2.50)

(or n - c

we may replace N_2 by an arbitrarily high power of N_1 without doing any
1
damage to the proof, and then the trivial bound |w(p)| < N? suffices. Final-

ly we note that since
2, -4,
(2.55) min(A,1-1) = o (p) - N 2|w(p)]|,

(2.46) forces X to be bounded away from O and 1 for large N, which is ob-
viously important although it does not show up explicitly in the proof.
However, here |w(p)| < %C_ICZN% would be sufficient.

The basic function of assumption (2.46), however, is to avoid a large
(or intermediate) deviat%on situation that the condition Z Wj = n would
get us into if w(p) = N—E(Ezwj—n) would not be bounded. Technically speaking
this is reflected in the proof at the point where (2.46) is used to show
that v(0,p) is bounded away from zero. Also (2.46) ensures that (2.45)
provides an expansion in powers of N—% to the required order.

To see what happens when condition (2.46) is relaxed, we prefer not to
try to adapt the proof of theorem 2.1 but to answer this question more

directly by remarking that the conditional distribution of X a.W. given

z Wj = n remains unchanged if we replace p by P where 5j/(l—§j = gpj/(l—pj)

1 £ j <N, for some 0 £ £ < o, If (2.7) is satisfied there exists a unique
¢ for which ) SJ. = NA. Since w(p) = 0 it follows that if (2.21) and (2.22)
are satisfied with p replaced by p, then (2.47) holds with R(x,p) instead
of ﬁ(x,p). Of course the snag is that in general p can only be expressed
analytically in terms of p as an infinite series. However, if w(p) = O(Na)
for some o < i, then a finite number of terms of this series will yield the
required degree of accuracy and aﬁ explicit expansion for R(x,p) can be ob-
tained. If a = 0 this is expansion (2.45) but for 0 < a < ! more terms have
to be included.

5/

. -5/4 .
The second remark concerns the remainder O(N ) of our expansion.

It is clear that by requiring that ) Iajl5 < CN in theorem 2.1 one obtains
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~ -2/
IR - K| < BN 372

3/2

log(N+1), Of course the '"matural' crder of the remainder
is O(N °'“) and the factor log(N+1) is due only to technical difficulties
in finding the conditional expectation of ) 2 wj given ) Wj = n.

The special case pj = A, 1 £ 3 £ N, which is random sampling without
replacement, is worth singling out because it corresponds to the null-hypo-

thesis in the two-sample problem. Let % denote the vector (Ayee.52). Fox

p =X, (2.45) simplifies to

~ =[x\ \T(A) BYSERD) X
(2.56) R(x,1) = Q\T<X>/ TGSy | H}(T(X))
3
N {>\(1~>‘)}%(1-2x) Z("’Ij'aw) i (—%
6 {Z(aj—ag)2}3/2 2 T())
A
Lfi-e v e FEmad )2 }H (=)
[N {Z(aj—a_)z}z EANP AR ARYeN)
3,2
(1-an? (2@ma )7} o]
/2 {Z(aj~aw)2}3 5 T X) J
where
. N
2 = A=) 2
(2.5 ) =24 -jzl (a;-2)",
(2.58) a, = a(r) = I z a..
j=1 1

1
Define, with £ denoting Lebesgue measure on R ,
(2.59) v{(z) = F{x: Hjlx - aj[ <z}

For p = A, theorem 2.1 yields

COROLLARY 2.1. Suppose that positive numbers c, C, § and e exist such that

(2.60) e <A< 1 =g,

(2.61)
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(2.62) v(z) = 8Nt for some T = 1\1_3/2 log N.

Then there exists B > 0 depending only on c, C, § and € such that

sup|R(x,7) - (e, 1) BN /4

Note that there is considerable further simplification in (2.56) if we

-3/4

either have almost equal sample sizes, i.e. A = % + O(H ), or antisym-

metric scores, i.e. aj + is constant for all j. The latter happens

a,. .
N—J+]
for the locally most powerful rank test against shift alternatives when

the underlying distribution is symmetric. In either case the H2 and H5

terms disappear so that the correction to the leading normal term is of

-1 . . .
order N ° only and is due solely to a correttion to the variance, the H1

term, and a kurtosis correction corresponding to H3.
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3. AN UNCONDITIONAL EXPANSION

We encounter several difficulties on the way to a usable unconditional

expansion.

(1) The distribution of Z is awkward tc handle analytically;

(ii) As in ABZ (1976), the random variables obtained by substituting P for
p in § or R are generally not summable;

(iii) Again as in ABZ (1976), final simplification is not possible with our
present techniques unless we assume that the sequence of alternatives

is contiguous to the hypothesis as N - =,

In this section we shall deal with the first two difficulties. Although
we do not assume contiguity we shall be governed in the form of our expansion,
which will involve pelynomials in (Pj—A), in the number of terms that we
calculate and in what we relegate to the remainder by the consideration that

-1
=4+ 0 (N %) a ~a) = 0. ().
we expect PJ A OP(N ) and Z (PJ A) OP(I)

Recall that we assumed that X ..,XN are independent, X]""’Xm having

1°°
common density f and Xm+1’°°°’XN having density g. We shall write P for
probabilities and E for expectations calculated under this model. In addition

we need to consider an auxiliary model where X ..,XN are i.i.d. with common

1°°
density h = (1-A)f + Ag and d.f. H = (I-)\)F + AG. We shall write PH for
probabilities, EH for expectations and oé for variances calculated under
this second model.

To simplify our notation we assume from this point on that
N
(3.1) ) a. =0.

Since T = ) (aj-a‘)Vj + na_ it is obvious how all expansions need to be
modified if (3.1) does not hold.
We meet difficulty (i) through

LEMMA 3.1.

—1
1 EHv(t,P)exp{itN 2Za.P.}
(3.2) E exp{itN °T} = ; 1] .

3
27N BN’D(A)
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where

_ (Ny,n,. N-n
BN,n(k) = (n)x (1-1) .

PROOF. Under our original model therdensity of Z at the point z = (z],...,zN)
with z2) <z, < ... < zy is given by
m N
Z nm f(z. ) 10 g(Z- ) ’
. i.” . i.
i=1 3 J=m+l ]

where the sum ranges over all permutations i],...,i of 1,...,N. Under our

N
second model this density is

N
NI T L(1-A)£(z.) + Ag(z.)]
j=] J J

By the Radon-Nikodym theorem and lemma 2.1,

1 1
P - v(t,P) e 3
E exp{itN 2T} = E 0P exp{itN ? § aij}
‘ m f£(Z:.) N g(Z;.)
v(t,P) .o 1j 1371
=B, o) exp{itN 2 ¥ 2P} ) Moo o o
H v(0,P) i3 i=1 h(le) j=m+1 h(le) N!

-1 v(t,P)
Ba,a M B v Ry

exp{itN_% Z aij}c(P),

where ¢ is defined by (2.6) or (2.12): The lemma follows from (2.11) and
(2.13). g '

Lemma 3.1 shows that we are concerned with V rather than E, but since
Y as a function of P is no more summable than p, we still have to face dif-
ficulty (ii). We do this by showing that V may be replaced by a summable
function v outside a set that will later be seen to have sufficiently small
probability. Define
A(1-2) 2

1
* e 1S 2
(3.3) | v (t,p) = LX?T:XT} expl N Z ajt I

Il 100

* k
(P) (i),
k=0 Ak

where
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* 1 [ 2 _ a2 1 -+
* _ —3/2 _1 = 2x ]
b =00 [ kT ]
2
ra,
A;(p) = =20 ZA) ) a -A) - ——% [(1=20)) (p.=2) = A(1-A)]
2N J
2 2
T T e AT
20 (1-))N? GRS
-3/2
* N [ _ 3 _ 2 3,
Ay(p) = —¢ LA(I ) (1-230) ) ay + (1-61+617)) aj(pj A)

_ 3. ]
N(l ZA) z a Z a. pJJ .

2 2 2
* A(1-2) (1-61+617) 4 A(1-2) (1-2)) 2
A (p) = z a, - {Z a.}
4 24N> J 8> J
2 2
(1-20)° 2, 1
' {Z (e~

8N2

-5/2
N 2. 3¢ 2
Az (p) = == A(1=0 (1=207 ] 2 IEHCEESR

2 2 2 2
* AT(=0 =20 [v 31
6 (®) U %)

72N3

LEMMA 3.2. Suppose that (3.1) holds and that positive numbers c, C and ¢
exist such that (2.21) is satisfied and

(3.5) €

IA
>
IA
I
™

Then there exist positive numbers B and B depending only on c, C and e such
that '

L 54

(3.6) [V(t,p) - v*(t,p)| < B exp{-Bt }r{N [t]3{1 + NZ(pj—k)A}

-3/2f N
N 12 (p;=2)

——
[ S—
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PROOF. For simplicity we make use of order symbols in this proof and 0(x)

will denote a quantity that is bounded by Bllx[ where B, depends only on ¢, C

1
and ¢.

Suppose first that |w(p)| > 1. Then (2.21) and (3.5) are easily seen
to imply that Iv*(t,p)l = O(wz(p)exp{- e(l—s)ct2/4}), whereas for Vv(t,p) we
have the bound (2.51). The right-hand side of (3.6), however, contains a
term.BN%w4(p)exp{— Btz} so that the lemma is trivial for |w(p)| > 1.

We therefore assume that |w(p)| < 1. Noting that oz(p) is bounded away
from zero (c.f. (2.25)), we expand 0—2, a, T2 and Kr,i about the point

pj =X, 1 £ j <N, using elementary inequalities to bound the remainders

in terms of N and

- -1
M= N ] <pj-x>4, My =N |Le0]
We find
1 1 [1 _ o (a=2x) ) ( N 1 I (p.- 2]
= - TOoON P:~\)
Oz(p) A(1-1) A(1-0O)N x(y AN j
+ 0™ +M2) -1 O(M%+M )
12 A(1-)) 1727 2

- 1-2) i i
a(p) = X%T:Xf%-z a.pj + O(Mi) = O(Ml) ,

Py = M T a0 U2 T a2 - 5 T el
K3,O(P) = A(1=-2) (1-2)) + O(M%+M2) ,
%J@>=—2%%ﬁzéfj+omb,

e () = BT 5 22 gaddy
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3’3(p)

<, 4(?) =

To illustrate the computations involved we present the argument for «

A(1I=A) (1-2)) (l 6A+6X )

N Z N 2 J-X)
3(1-22)2
==V a Z apps + 0t M ) (=0(1)) ,

02
2 1
A(1=2) (1-6A+617) + O(M;) R

oot

A(1=2) (1-61+612) 5

a2+ 00t
N ; ) o

o)

A(1=0) (1-63+612) ;

. a§ + O(szf)(=0(1)).

3,3°

By (2.21), the result for a(p) and the fact that 0 < M., < 1, we have

Kq 3(p)

I

+

+

E

N 'Y p.(1-p.) (1-2p.)a> - 3N 'a(p) T p.(1-p.) (1=2p.)a>
it Fj i’%3 ittt i’%3

O(Mf) = N_]A(I—A)(I—ZA) ) a? + N’1(1—6x+6xz)2 a?(pj—k)

W2a-20% ] al | app; + o<M§+N'lziaj|3<pj—x>2

“lyav, 2
N leaj[pj A

Holder's inequality and (2.21) imply that

T S P I (AR RS R ITHO
N']ZIaj|3(pj—x)2 < N_I(CN)]/4Za§(pj—A)2 < C]/4N_3/4(NM]Za%)1/2
- o' /4l /2y

1



As a(p) is bounded, Kq (p) 1s obviously also 0(1). Note that the a typical
order of the remalnder O(N Mz) orlglnates from the term O(N XIa | (P =-A) )
where we have to sacrifice a factor om ‘) in order to apply Holder s in-
equality and (2.21). The same thing occurs for K4’4(p).

For uk(p) defined by (2.28) we find

u @ = —— 71 (.- + O(M2+N w)
A(1-2)N? ]
1
45 (P) = Ty OGN
b3 ®) = = I (-0 + i)
AT (1=-)) N2
3 ! 2
u, (p) = —————, + O(M?+M_+NM.) ,
4 2122 172
1
ws(p) = O(NZMZ) )
15 3 2
pu,(p) = —4——= + O(MZ+M,+NM.)
6 RN 177

Straightforward but tedious calculation now yields

6 2
) R Q-2 Ny - (=) ]
(3.7) kZO A (p)(it) - = [1 =N ) ( 12X (1-0)N |
2
b2 5P i IRE 20)) (p,=1) = A(1- k)]( %
+ it- P “A) - it
372 w2 L ]

2
| PPN 2.v. .3, _,\_30-20)"% 2 1,...3
+ ;;§7§»Lx(1 N (1 2A)Zaj+(1 61+6) )Zaj(pj 9 "——73————Zajzajpjj(lt)

3 1

2 2 2 2 ~ _
L A=) (1-2)) { ) a?} (it)6 N 0((1t13+t4)[N 5/4 N 1/4M1/2]
72N

3/2

. (et L1212 L 12 sz)

1 2
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Next we expand the remaining factor in (2.30). Because both Tz(p) and

. . - 2 .
its leading term A{1-A)N : z aj are bounded away from zero, there exists

B > 0 depending only on ¢, C and D, such that

1
2

2 2 2
exp - “’;P> - TR - umae)
207 (p)

e w130

DOl

NN R N o - - 2 232}
Y TR R A TR N e D R AT DR

(1-2)) z 2
- 575 (P -))) a. 5P; (i) + -'{(1 2)) ) ai(p.—\)
A (1-0N 2 1]
- a?(pj—K)Z - é%%%%%ﬁ {) a. 5P; } }(1t)2

+

2
(1-22) 2, 2. 4]
——;;z——-{f aj(pj MNIT3EL) |

(. [.~3/2 1/2 D72 4N
O\GXP{ Bt }I_I\ + N Ml 2_J/

+

Multiplication by (3.7) yields (3.6). [

Here is our first unconditional expansion. Define
-1
(3.8) p(t) = E exp{itN °T} ,

(3.9) o (1) = exp{ A(i A) ) a } {exp{itN_% ) aij}

y {1 et (@m0t - (] @m0 + g “2) i<}
oo b (Fs 3 L RASACN

LEMMA 3.3. Suppose that (3.1) holds and that positive numbers c, C, &, &'

. . . . 2 ~1 . .
and e exist with §' < min(},8/2,¢7C /&) and such that (2.62) 78 sariecfied

and
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1 2 1 4 ‘

(3.10) X z aj > c, N Z ":lj < C,
(oo 8% .

(3.11) PH\ES —h(—xi—)-— S]_E) 21 -=46",

Then there exist positive numbers b, B, B, and By depending only on c, C,

§, 8" and € such that for |t| < bN3/2,

=1

s e b2y 312,504 2, (8% _ \4}
(3.12) lp(t) = p (B)] < B[eXP{ B e (N 7T 4N |t|){‘ N EH\h(Xl) l
-B,logN
+ N 2 } -

PROOF. In this proof we again use 0 symbols that are uniform for fixed ¢, C,

§, 8" and €. Note that EH{g(Xl)/h(xl)} =1, so that (3.11) and Markov's in-

equality ensure that min(A,1-1) = e(1-8").

2

Take a number §" ¢ (§',min(1/2,8/2,c C_]/A) and define the event E by

E = {e < Pj <1 - ¢ for at least (1-6")N indices j} =
rg(X.)
= {e < 'ﬁ??;%_ <1 -¢ for at least (1-8")N indices j} .
“j

Applying an exponential bound for binomial probabilities (c.f. Okamoto (1958))
we find that (3.11) implies

i

(3.13) PH(E) > 1 - exp{- 2N(6"—6')2} .
1
Because A and (1-)) are bounded away from 0, the same is true for N? BN n()\).
1 )
Also, (2.10) and (2.11) imply that |v(t,p)| < 27N? for all t and p.

Hence application of lemma 3.1 shows that

-1
. 2
EHv(t,P)exp{ltN. ZajPi}X

(3.14) o(t) = E 4 0Cexp{-N(s"-3")}) ,

T
2
27N BN’n(A)

where Xg denotes the indicator of E.
Since §" < §/2, (2.62) ensures the validity of (2.22) on the set E

with § replaced by § - 28". If Z' denotes summation over those indices j
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for which Pj ¢ [e,1-¢] and k denotes the number of these indices, then

k < 8"N on E and as a result

~ [ N '
@) 2 S0 T @ ae)? - T (a.—E(P))Z]
Li=1 J . J ;
> elze) § 2 nEEt- 27 a? - 2k(a@))?]
NooLE j ]

I\

2028) rew - af I alH 2 c(1-e)le - 20873 5 0

[

on E, because §" < min(%,c20—1/4).
We have shown that on the set E, a and P satisfy the conditions on a

and p in lemmas 2.3 and 3.2. Combining (3.14), (2.31) and (3.6) we obtain

* -1

E. v (t,P)exp{itN 2Za.P.}X -B.,logN

(3.15)  p(t) = - . 137E, o 2
2
2mN BN’n(A)

+ expl- 8, L3N 2w 4 e b+ aE (Pj—x)a}

-3/2 4

N E,{) (-1
3/2

for |t| < bN , where b, Bl and 62 depend on ¢, C, 6§, &' and € only.
Because of (3.13) and the fact that v*(t,p) = 0(N), (3.15) remains
valid if we delete X+ Using

! 2
] L L T E 0 S -2
2By o) = 5=y x)} ' T 1ma-on) YO

one easily verifies that in (3.15) the first term on the right may be re-

placed by p*(t) without changing the order of the remainder. Since

e x)a o <g<x1) RS

4
L@ = Ey ) \Rh(E)

Ly

g(X ) \ 4 3A4N2E
E. 1) (Pj—x)} = ' { ) \h(x 5 1/}
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the proof of the lemma is complete. O

Define

)

(3.16) ﬂj =E_P., T = (ﬂl;...,ﬂN

H 3
In the remaining part of this section we obtain a further expansion for
o (t) and convert this expansion into one for the d.f. of T. Although we
still do not assume contiguity, we shall be guided in what terms we include
in the remainder by the fact that under contiguous alternatives we expect

-1
(P.-m.) to behave roughly like 0_ (N ). Let
iy ghty Py

5
(3.17) R(x) = ¢(x) - ¢(x) | o H (),
k=0

where ® and ¢ denote the standard normal d.f. and its density, the Hermite

polynomials H, are given by (2.43) and

K
Y a.m.
(3.18) o, = 1J ,
0 7.1
{(x(1-1)) aj} N
2 2 2 2 2 2
. OH(Zaij)—ZajEH(Pj 2) +(1—2>\)Zaj(11j A) ) (1-2)) {Zéjﬁj} . L
I 7 7 77t oW
ZA(I-X)Zaj 227 (1-)) NZaj
[A(I—A)(1—2A)Za§+(1—6X+6A2)Za§(nj—k)-3(I—ZA)ZN_IZa§Zajnj]
a, = , R
2 6{A(I—A)Za§}3/2
x(l-x)(1—6x+6x2)2a?-3x(1—x)(1—zx)ZN“{za§}2+3(1-2x)2{2a§(nj—x)}2i
OL3= J 22 3
2601 (1-0)Ta;)
(1—2A)22a§Za§(ﬂj—A)
a, = s
& IZ{A(I—A)}3/2{Za§}5/2
(I-ZA)Z{Za?}Z
— J
(15—

72A(]—A){Za§}3

THEOREM 3.1. Suppose that (3.1) holds and that positive numbers c, C, § and
e exist such that (3.10) and (2.62) are satisfied and
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(3.19) e <A<l =-¢ .,

Then there exists B > 0 depending only on c, C, § and e such that

\ rYa.m.
(3.20) sup P( T 5T < \_ K(X - J ] 5 >l
x {A(I—A)Zaj}z {A(I—A)Zaj}

NI—W

—sia o a/e (8D N\ 3 |
= B{N e EH(h(Xi) i ‘) * N [Z{Eﬂlpj'"j| }4/9}9/4} '

PROOF. In this proof Bi andABi denote appropriately chosen positive numbers

depending only on ¢, C, § and €. We shall have to consider the r.v.
-4
3.21 U =N a.(P.-m.
( ) ) J( ; J)

and we note that

IN

3,1/3]3
|~} ]

3 _  =3/2 _
(3.22) E,|U] N [Zlajl{EHIPj ™

IN

3/4. -3/4] -3 4/9}9/4
c’’'N LZ{EH[Pj nj] } .

Since supx(l+]K(x)[) < Bl(1+E U2) < B1(2+EH!UI3) we may assume without

H

loss of generality that E IUI3 < 1, because otherwise (3.20) is satisfied

H
trivially for B = 33103 4. Hence supg(1+|K(x)[) < 3B1 and similar bounds

{ak] < B (1+EHU2) < 3B2 and supXIK'(X)I < 3B, hold for a ané for

9 3 0°" 2%
the derivative K' of K.
Take §' = min(1/4,6/4,c2C—1/8).‘In view of 1 + |K]| < 3B1 it is again

6'54/16, because

IA

no loss of generality to assume that EH(g(Xl)/h(Xl)—l)4
otherwise (3.22) with B = 48B1/(5'€4) is trivially true. Hence by (3.19)

and Markov's inequality

P

Nof—

rg(X.) ' g(X.)
L i /I 1

T ———— P 2Pl |l——x-1] <1} =1 -4
© T RE) 28) = Pyl R l %) ’

so that the conditions of lemma 3.3 are satisfied and (3.12) holds.

The proof hinges on the expansion
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. _ R 2 3
exp{itN Zaij} = exp{itN Zajﬂj}[1+1tU+§(1tU) 1+ 0(|tu]

and its truncation to fewer terms. We apply this expansion to (3.9) and in
the resulting expression we replace P by m wherever this is possible without
giving rise to remainder terms that would be awkward to handle at this point.
Using elementary inequalities to seperate out and bound those parts of the

remainder that depend on the (Pj-x) rather than on the (Pj—ﬂj), we arrive

at

P - 2.[ -3/2 172 (8%))
(3.23) lo" (t)-p(t)]| < B4|t|exp{—83t }[N 2z, N / H(h(X 5 ) +E |U|

+ N IE |UZa (P -, )| + N B {Za (P -, )} ]

|

6 A(1-A)za’\ ik
_ [. -} .2 A(l A) 21[ \ k]
_ 1+ t
(3.24) p(t) explltN ZajﬂJ Yas ifl z @k N ) (it)
1
Because max[ajl < (CN)* we find by the same reasoning as in (3.22),

-1 2. =2 v.2, .2 _ _ =5/4 _ 2
N EH]UZaj(Pj nj)| + N EH{Zaj(Pj nj)} < BN EH{Zlaj(Pj nj)l}

IN

-5/4 B 3
BN VUL + EH{ZIaJ.(Pj nj)l} ]

IA

B, N

-5/4 -1/2] . 3,4/919/4
N + B LZ{EH|Pj njl } | .

Together with (3.22) this shows that (3.23) may be reduced to

£ ) o2 fesia 172, (8% 8
(3.25) le"(t) - 5(e)| = B, |tfexp{- B,t }{N P Ry T

-1/2[ . 13,4/9109/4
R N R

L

1
As 02 e qs0g are bounded and N 2| ) a.m. lls C*N

o' (v)] < B8N2 for all t. Since |p'(t)] < N 2E|T| < C*N? for all t and
p(0) =5(0) =

, we have
1 1
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1
(3.26) lo(t) - B(t)| < B9N2|t| for all t.

Combining lemma 3.3, (3.25) and (3.26) we find

| /2 | |
(3.27) J 'eiflzéizlldt c 32, J Ip(t)—ﬁ(t)idt
3/2 t -2 3/2 t
-bN N “<|t|<bN
f =576 3/6 (8% NF g 3 4/9]9/4}

Now p(t) is the Fourier-Stieltjes transform of K({N%x—Zajﬂj}{A(]—A)Zag}—%)
as a function of x. This is a function of bounded variation assuming the
values 0 and 1 at -« and +» and having a derivative that is bounded by
3B c_-%{xz(l—e:)}ml in absolute value. It follows from the smoothing lemma

3
(ESSEEN (1945)) that

Nl

~Sa.T.
AT

O
sup|P(N “T<sx) - K T
x \{A(I—A)Zaﬁ};/

is bounded above by the right-hand side of (3.20). A change of scale com-
pletes the proof. [

Theorem 3.1 provides the basic expansion for the distribution of T
under contiguous alternatives. Only first and second moments of functions
of order statistics remain to be determined. In section 4 we shall be con-
cerned with a further simplification of the expansion and a precise evalua-
tion of the order of the remainder. With regard to this remainder we are in
a seemingly less favorable position than we were at the same stage in the
one~-sample problem (c.f. ABZ (1976), theorem 2.3), because the third re-
mainder term in (3.20) is larger than the corresponding term in the one-
sample case by a factor N%. This is due to the appearance of the remainder
term N_]EH[U Z a?(Pj~nj)| that does not occur for the one-sample statistic.
It will turn out, however, that we shall need only a slightly stronger con-

—5/4).

The conditions of theorem 3.1 concern only the sample ratio XA and the

dition than before to show that the remainder is still O(N

scores a. There are no assumptions about the underlying densities f and g
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but this is merely a trick; obviously something like contiguity is needed

to make the expansion meaningful in the sense that the remainder is at all
small. With regard to the conditions on the scores, (3.10) acts as a safe-
guard against too rapid growth and (2.62) ensures that the a., do not cluster
too much around too few points, thus preventing a too pronounced lattice
character of the distribution of T, as was pointed out in ABZ (1976). It
was also noted there that in the important case of exact scores a. = EJ(Uj
with U <U < el < :

I:N 2:N UN:N
on (0,1), both (3.10) and (2.62) will be satisfied for all N with fixed c,

)
order statistics from the uniform distribution

C and 6 if J is a continously differentiable, non-constant function on (0,1)
with [ J4 < =, The same is true for approximate scores aj = J(j/(N+1))

provided that J is monotone near 0 and 1.
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4., CONTIGUOUS LOCATION ALTERNATIVES

The analysis in this section will be carried out for contiguous loca-
tion alternatives rather than for contiguous alternatives in general. The
general case can be treated in much the same way-asvthe location cases but
the conditions as well as the results become more involved.

We recall some assumptions and notation from section 3 of ABZ (1976).
Let F be a d.f. with a density f that is positive on Rl and four times dif-

(1)

ferentiable with derivatives f , 1=1,...,4. Define

(D)
(4.1) b= s i=1,...,4,

1

and suppose that positive numbers €' and C' exist such that for

- -4 =
, m, = 3, m3 =3 W, 1,

6
(4.2) °° m,
sup{ I |¢i(x+y)| t f(x)dx: ]yl < a'} <cC', i=1,...,4

So far, we have studied the distribution of T under the assumption that

Xl""’XN are independent, X "’Xm having common d.f. F and Xm+l""’XN

1°°
having d.f. G. We now add the assumptions that

(4.3) G(x) = F(x-9) *

for all x and that

IA

D

IA

=
Nl—

(4.4) 0

for some D > 0. Probabilities under this particular model will still be de-
noted by P. Note that (4.2), (4.3) and (4.4) together imply contiguity.

In section 3 we also introduced an auxiliary model where Xl""’XN are
supposed to be i.i.d. with common d.f. H = (I1-A)F + AG. In view of (4.3)
this common d.f. now becomes H(x) = (I-A)F(x) + MAF(x-6). Probabilities,

expectations and variances under this model will be denoted by P and

1 “n

.. 2 . . s
Gé as before. Similarly, PF’ EF and Op will indicate probabilities,
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expectations and variances under a third model where'X],...,XN are i.i.d.
with common d.f. F. Note that for 6 = 0 these three models coincide.
Define

5 ,
o(x) - ¢(x) ) §H (%),
Lo Kk

(4.5) K(x)

where

Q2
]
| —

o
o))

. .

A(-0)\? 2 -1

(4.6) (’%;;Tl> [B(I—ZA)G ) 8B, (2,) - 6N o ) a B, (Z5)
j

3 2 .
& ZajEF{(1—3A+3x )¢3(zj) - 6x(1—x)¢](zj)¢2(zj;

+

3x(1-x)¢?(zj)}J ,

~ _ 1 | _ 2 2,27 2
a, = - | 4(1 ZA)GZajEle(Zj) + 2(1-2)) %0 ZajEF¢2<zj)
h]

2¢ 2 2 2 2
- 43 (1-1)8 ZajEle(zj) + 4r(1-1)8 oF(Zajwl(zj))
2. -12 2
- 4(1-2))°N 6 {ZajEle(zj)}

2 4 2 1
+ A(1=-1) (1-21)“p {ZajEsz(Zj)} ] g

1
IZ{A(]—A)}%(Za

Q1
]

3 2,.v.3
7372 [Z(I—ZA)Zaj - 2(1-61+6) )eZajEFw](Zj)

j

2 -1 v 2
+ 6(1-20)“N eZajZajEle(zj)

_ 112,372 ]
- 3x(1-1) (1-2)) 9’ZajEle(Zj)ZajEsz(Zj)J ,

S
]

1 [ 2.v_ 4 2.2, v 2 2
(1-63+617))a. + 3A(1-1) (1-2A) “6“{)a%E_v, (Z.)}
24A(I-K)(Za§)2 I j ITFY1

2
2,273 - _(1=2))
+ 2X(1-2) (1-2))7® ZajzajEFwZ(zj)] S (I-V)N °
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- (1-2A)292a§2a§Ele(zj)
4 12{A(1—x)}]/2(2a§)5/2 ’

. (1—2A)2(Za§)2

s 72A(1—A)(Za§ 37
and let

| ;
(4.7) n=- (ﬁ{ij%l> 6 ) aEpy (2.
J

~ -1
We shall show that K(x-n) is an expansion for the d.f. of {A(]-A)z a?} 2T,
The expansion will be established in theorem 4.1 and an evaluation of the
order of the remainder will be given in theorem 4.2.

Let m(F,0) denote the power of the one-sided level o test based on T

for the hypothesis F = G against the alternative G(x) = F(x-0). Suppose
that

(4.8) " <a<1-¢e",

for some e¢" > 0. We shall prove that an expansion for n(F,0) is given by

5
(4.9) T(F,6) =1 - (u-n) + ¢(ua_n)k£o B H, (=)

where u, = ®-1(1—a) is the upper a-point of the standard normal distribu-

tion and
- (1—2A)Za§ . 2 N 3 u,
(4.10) B, = o, — (u™=1) + 2a_(2u -5u - —
0 0 6{A(I—A)}1/2(Za§)3/2 o 5 o o 2N
2. 4
_ J'(1"6)\+6>\ )Zaj _ (1_2>\)21(u3—3u) ’
124A(1-A)(Za§)2’ BV (I-MN[ o "o
~ o~ 2 2 (=202 25,37 2
B . =oa +a (u-1)" - —=—=2_08%a.)a.E_¥,.(Z.)(u"~1) .
1 1 5" a 12(Za?)2 i o
J
~ o~ o~ 2
By = @y =, (umh
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v~ ~ 2
83 =a, - 2a5(ua—]) ,
Bk = o for k = 4,5.

THEOREM 4.1. Suppose that (3.1) and (4.3) hold and that positive numbers
c, C, C', D, 8, € and €' exist such that (3.10), (2.62), (3.19), (4.2) and
(4.4) are satisfied. Define

- - 9/4
@iy m=nlhay ’/?63[Z{EFIw]<zj) - Ele(zj>|3}4/9]
2}2/3]3/2
J °

Then there exists B > 0 depending only on c, C, C', D, §, € and ' such that

+ N_3/463[Z{EF(w2(Zj) - Esz(Zj))

(4.12) sgp]P( T 5T < x) - E(x—n) l < BM .
{X(I—A)Zaj}z
If, in addition, (4.8) is satisfied there exists B' > 0 depending only on

c, C, C', D, §, €, €' and €" such that
(4.13) |n(F,0) - 7(F,0)| < B'M.

PROOF. The proof of (4.12) hinges on Taylor expansion with respect to 6 of
the moments under PH of functions of 'P = (Pl""’PN) occurring in expansion
(3.20). Since both H and P depend on 6 the argument is highly technical and
laborious and it is therefore given in the appendix. Theorem 3.1, corollary
A.1, (A.12) and (A.13) immediately yield (4.12).

The one-sided level o test baseﬁ on T rejects the hypothesis if
T{A(1-2) Z a?}-% 2 £ with possible randomization if equality occurs. Using
(4.12) for 6 = 0 (or corollary 2.1), (3.10), (3.19) and (4.8) we easily show
that

(1—2A)2a§ 2 3 ua
(4.14) £ =u + (u”-1) - 28_(2u™=5u ) + —
a o 6{A(1—A)}l/2(2a§)3/2 a 570 T a 2N

2.4
I (1-6>\+6>\ )Zaj (1-2)\)21

2.2 8x(1-0)NJ
J-)

/4

3 -5
(ua—3ua) + O(N )

-+
124)\(1—>\)(Za
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where, in this proof, 0(x) denotes a quantity bounded by Bllxl with B, de-

1
pending only on ¢, C, C', D, §, €, €' and €'". Because of (4.12),

m(F,8) = 1 = K(g -n) + 0()

Using (4.14), (4.8) and the bounds provided by corollary A.l1, we now ex-
pand K(Eu—n) about the point (ua—n) and arrive at (4.13). [

Define

£ @ o)
£F (1))

(4.15) ¥ (6) = wi(F—l(t)) - , = 1,...,4 .

THEOREM 4.2. Let M be defined by (4.11) and suppose that positive numbers D,
Cand S exist such that (4.4) is satisfied and that I‘{’; ()] < C{t(l—t)}_s/4+6 and
I‘P'z(t) | <c{t(1-t) }—3/2+6. Then there exist B > 0 depending only onD, C and § such

that

M < BN"S/L*.

PROOF. The proof is similar to that of corollary A2.1 in ABZ (1976). To
deal with the second term of M we take h = W] and replace 4/3 by 5/4 in the

proof of that corollary. For the third term of M we take h = ¥_, replace

2

4/3 by 3/2, appeal to condition R2 instead of R3 and otherwise proceed as

in the proof of corollary A2.1 of ABZ (1976). [J
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5. EXACT AND APPROXIMATE SCORES

A further simplification of the expansions in section 4 may be obtained
if we make certain smoothness assumptions about the scores aj. Consider a

continuous function J on (0,1) and let U < U

1:N 2.y S v < UN:N denote order
statistics of a sample of size N from the uniform distribution on (0,1).
For N = 1,2,... we define the exact scores generated by J by
= = 1 = N
(5.1) aj aj,N EJ(Uj:N)’ j 1,...,N,

and the approximate scores generated by J by

- - J -
(5.2) aj = aj,N J(N+1)’ i l,...,N.

For exact scores and general J theorem 5.1 will provide expansions for the

d.f. of T under contiguous location alternatives of type F and for the power

of the rank test against these alternatives. In theorem 5.2 we consider the

special case J = —Wl, with ¥, as in (4.15), for exact as well as approximate

scores. Note that the exact ;cores generated by —W] &efine the locally most
powerful rank test.

As in section 4 of ABZ (1976) it is now no longer feasible to keep the
5/4) and we shall be

content with O(N_l). Also as in ABZ (1976) we shall formulate the results

order of the remainder in our expansions down to O(N

in this section for a fixed scores generating function J and a fixed d.f.

F, leaving the construction of uniformity classes to the reader.

DEFINITION 5.1. J is the class of functions J on (0,1) that are twice

continuously differentiable and nonconstant on (0,1) and satisfy

1

(5.3) J J(t)dt = 0,
0

(5.4) lim {e(1-60)377® 378y = 0,
t>0,1

(5.5) lim sup t(l—t)%jtgii < %.,

t>0,1
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F is the class of d.f.'s F on R1 with positive and four times differentiable

densities f and such that, for wi = f(l)/f, Wi = wi(F—l), m = 6, m, = 3,
-4 -
m3 =g oW, = 1,
o mi ‘
(5.6) lim sup J Iwi(x+y)[ f(x)dx < oo, i=1,...,4,
y0
W“(t) 3
(5.7) . lim sup t(l-t) - < 5
t>0,1 Wl(t)

Note that one can argue as in the proof of corollary A2.1 of ABZ (1976)
to show that, in conjunction with (5.5), condition (5.4) is weaker than

the assumption fJ6(t)dt < o, Define

(5.8) T 1—/~4lﬁklll~\i{3(1—2x)N92JJ<t)w (£)dt - 68]I(E)Y, (t)de
0 6 \yri2(eyar/ 2 , !

- NGBJJ(t){(1—3A+3A2)W3(t)—6k(I—A)Wl(t)?z(t)+3k(1—A)W?(t)}dt},

5 o= —1 Taa-aels2ov. (maeea-20 2022 coyv. (0 at
| ] 2

8r7%(e)ae |

—4x(z—x)e2JJ2(t)wf(t)dt

+ AA(l—A)GZJJJ(S)J(t;W;(S)W;(t)[sAt - st]dsdt
- 4(1—2x)2ez{fJ(t)w](t)dt}z

+ A(]wk)(1—ZA)ZNGQ{JJ(t)Wz(t)dt}Z} + E%"

1
1/2

1
Il

P J 3
373 L2(1 2)0) | I (v)dte

12{x(1-2)N} {sz(t)dt}

- 2(1~6A+6A2)6JJ3(t)W](t)dt +



N 6(1—2A)26jJ2<t)dtJJ(t)wl(t)dt
- 3x(1—x>(1—2x)2Ne3fJ2(t)wl(c)dtJJ(t)wz(t)dt] ,

- 1 [(1—6A+6A2)JJ4(t)dt

Il

3 s (-nn2yanr? L
N 3)(1—k)(I—ZA)ZNBZ{JJZ(t)YI(t)dt}z
+ ZA(I-A)(1;2A)2N62JJ3(t)dtJJ(t)Y (tyae| - (-0
2 | 8x(1-M)N °
. 3 2
_ (I—ZA)Ze JI7(t)dt/J (t)wl(t)dt
4 a-on 2 it ae?/?

- =)’ urmary?
57 TN (12 0ya)3

5
o (x) - ¢<x)[ ) @ H (x)
Ko KK

(5.9) ﬁl(x)

} N
+ %/_M_\ 912 z cov(J(szN),‘i’l(Uj:

))
\Nsz(t)dt j=1 N
fJ(t)wl(t)dt N 9 ]
- 2 2, g (J(U'.N))}J s
[3°(e)de j=1 3+
- 5 —
(5.10) Ky(x) = 2(x) - ¢(x)[ ) o, H ()
k=0
. 1N !
L 1 '
" %(—}351—12—) e{z J (¥ (De(-Dat
NSI7(t)dt -1
-1
[3(0)Y, (Bdt I-N ) ]
- 5 J (J'(v)) t(l—t)dt}J ,
JI7(v)dt N—l

(5.11) s o (AU { IOV ()de
\fJZ(t)dt} !
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where all integrals are over (0,1) unless otherwise indicated. We shall

- - _ N -1
show that K](x—ﬁ) and Kz(x—n) are expansions for the d.f. of {A(Ink)la?} 2
for exact scores. Furthermore let
_ - (1-2)) r33(e)ae oy
(5.12) BO = a5 - 72 5 372 (ua—l) + 20 (Zu Su ) T
6{A(1-1)N} {/37(v)dte}
2
) {(1—6A+6A2) rifoae a-a0) TN
4 - — H
24\ (1-X)N U a2 80 MN[ Vo T a
_ _ _ 9 (1- 2A)2 2 fJ (t)dth(t)W (t)dt 9
By =op ¥ as(ua'l) 12 (w1 s
{fJ (t)dt}
- - - 2
By = 0y = % u s~
- - - 2
83 =0y - Zas(ua-l) ,
ék = &k for k = 4,5 ,
- — -— o 5 - - —
(5.13) ﬂi(F,G) =1 - Ki(ua~n) + ¢(ua—n)kzo (Bk-ak)Hk(ua—n), i=1,2,
l.e. ﬂi(F,e) equals 1 - Ki(uu—n) with o replaced by Bk’ k=0,...,3.
THEOREM 5.1. Let F e F, J e J, aJ = EJ(UJ N) for 3 = 1,...,N, G(x) = F(x-9),
!
0<0<DN? e<A<1l-cande' <ac<1l=-c¢" for pogitive D, € and €'.

Then, for every fixed ¥, J, D, € and ', there exist positive numbers B,

15 Op5ene such that 1imN+m S, = 0 and for every N
(5.14) suplP( T T < x) - R](x—ﬁ)[ < 6N N--1 R

(- A)Za }?
(5.15) suplP( L T < x) - ﬁz(x—ﬁ)l < 8y N

{A(I-A)Za }2
1—N"]
- ' 1
+ By /2 J |3 e) [ (]I ()] + |wl<c){){t(1-t)}2dt,

N—l
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(5.16) |n(F,0) - E](F,e)| S8 N,
(5.17) |n(F,6) - EZ(F,e)} < 8y N_}
1N ‘
- . i 1
+ By 32 [ late) [ (|3 ()| + lwl(t)l){t(l—t)}zdt.
~1
N

PROOF . In the first part of the proof we shall not need requirement (5.4)
but only the weaker assumption S J4(t)dt < o, We proceed as in the proof
of theorem 4.1 in ABZ (1976), drawing heavily on the results in appendix 2
of ABZ (1976). Note that these results remain valid in the present context
even though the definition of the functions Wi is slightly different here.
Throughout the proof we shall make use of 0 and ¢ symbols that are uniform
for fixed F, J, D, ¢ and e'.

Because z aj = N/J(t)dt = 0 and in view of the remark made at the end
of section 3, the assumptions of theorem 4.1 are satisfied. The proof of

corollary A2.1 of ABZ (1976) shows that (5.6) and (5.7) imply that

(5.18) ¥i(e) = o({e(1-01 "% for £+ 0,1 .

~-13/6 -1/6

) and ¥ (t) = og({t(1- t)}
on (0,1), £(F ) must

Hence, because of (5. 7), W (t) = o({t(l-t)} )

for t »~ 0,1. Since f(F ) has a summable derivative Yl
have limits at 0 and 1; as f is positive on Rl, these limits must be equal
to 0. It follows that £(F ' (t)) = o({t(l—t)}S/6

facts with the identity W;(t) = WY(t)f(F—l(t)) + BW](t)W;(t), we find that

) for t >~ 0,1. Combining these

4/3

(5.19) Wé(t) = o({t(1-t)} ) for £ ~ 0,1

Thus the assumptions of theorem 4.2 are also satisfied and we can take the
expansions of section 4 as a starting point for proving theorem 5.1.

0" 5? BO"")BS

2 2 -1 _
o and w.(Z.) by E, ¢° and w.(F Uj )) = W.(U. N

thing. Next, argu1ng as in corollary A2.2 of ABZ (1976), we see that for all

In o e e 50

defined by (4.6) and (4.10) we may replace EF,

) without changing any-

sums of the form Zaj and Za Eh(U ) occurring in uO .o 5, BO,...,BS we

may write
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(5.200 1] af = J Fwyae + o1y,
J
1 k k,
(s.21) g [ af ERCU, ) = [ I (Oh(e)de + o(1)
and also
(5.22) % gz(zajqjlem)) - ” T(s)I (0¥, (s)¥] (E)[sAt = stldsdt + 0(1).

O,...,&S, BO,,.. 0° 295> BO,...,85

by replacing every expression of the form (5.20) - (5.22) by the correspond-

We note that & ’éS are obtained from 3

ing integral on the right in (5.20) = (5.22). Since [ Jz(t)dt > 0, we know
’ES that are O(N—l), this substi-

o

0,...,a5, BO,...
tution can only introduce errors that are o(N ).

that for those terms in a

~

The first terms in 50, &1 andla2 as well as the second term in 80 are
generally not O(N_l) but only O(N_i), and here the substitution of integrals
for sums gives rise to more complicated remainder terms. This creates
problems we did not encounter in the one-sample case where certain symmetries

—1
prohibit the occurrence of O(N %) terms. We have

o~
[\)

e DO
I

- J Jz(t)dt—-lli Zoz(J(Uj:N)) ,

|.--
o~
[
i

2
J J3(t)dt"% ECOV(‘J(UJ-:N),JZ(UJ-:N))' %ZEJ(UJ-,N)G (J(Uj:N))’

1 1
5 ZajE\Pz(Uj:N) J J(B)¥, ()t -5 ZCOV(J(Uj:N),‘PZ(Uj:N))

1.2 2.\ 1 2 .
5 ZajE‘Pl(UJ.:N) J 37 ()Y (nde -5 Ycov(J (Uj:N),‘Pl(Uj:N))

1 2
- ﬁ'z Ew](Uj:N)c (J(Uj:N))

- -1
By (AZ.22) in ABZ (1976), N 3/2 Z oZ(J(Uj:N)) = og(N ). It follows that

for k = 0,...,5,

- N~ = -1
(5.23) go-a = o) w00, B - B =0 ) w00,
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(5.24) = (1-20)N 3/2f{7 cov(J(U o 7% W, |

1 :N

2,.

+ |y BI(U;, )0 (J(Uj:N))I + [} COV(J(Uj:N),WZ(Uj:N))l

+ | cov(IZ(U, ), ¥, (U M|+ |)EY (ﬁ )OZ(J(U ))I]
jeN7? 1Y N 1 j:N jiNTl

By (A2.17), (A2.22) and (A2.23) in ABZ (1976) we have

Vb
A(l ) ) e{z I covaqu, 0, ¥, U, )

~ = - 1
(5.25) no=n+ 2( FY

\NfJ (t)dt

fJ(t)Wl(t)dt 9 1 -1 !
- J oI, D)+ o(N ) = R+o(N 2).
r3%(tyae jin]

Hence, uniformly in x,

5 —
2 (x-1) - ¢<x-5>[<n—ﬁ> + ) aH n>} + o) + 001

K(x-n) Lo i

R, G=) + o) + 004,
and similarly
R(F,0) = 7, (F,0) + o 1y 00M,).

It follows that, in order to prove (5.14) and (5.16), it suffices to show
that M1 = o(N—l). Since (5.15) and (5.17) are immediate consequences of
(5.14) and (5.16) on the one hand and (A2.22) and (A2.23) in ABZ (1976) on
the other, the proof of the theorem will then be complete.

At this point we finally need condition (5.4) rather than the weaker
assumption [ Ja(t)dt < o, Using (5.4), (5.18) and (5.19) and proceeding as
in the prcof of corollary A2.1 in ABZ (1976), we find that each term of M1
is

1-x"! '
(5.26)  o(N /2 [ fe-01 % =0y . 0
N—l
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REMARK. In the above we have stressed the fact that the only reason for re-
quiring (5.4) rather than assuming [ J4(t)dt < o, is that we have to show

that M] = O(N_l). However, there are special cases of interest where

S Ja(t)dt < o guffices. If either X = i, or f is a symmetric density and

J(t) is antisymmetric about t = }, then M, = 0. Less trivially, since

: -5/4

F J*(t)dt < = and (5.5) imply that J'(t) = o({e(1-t)}>/*), we can follow

the reasoning leading to (5.26) while retaining the factor (1-21), to arrive

at
1-N !

(5.27) M, = O(II—ZA]N_3/2 J {t(l—t)}_”4
-1

dt) = o(|1—2xtN'3/4)

1
-1

Hence in the special cases where either A = } + O(N *), or f is a symmetric
density and J is antisymmetric about the point }, the conclusions of theorem
5.1 will hold if condition (5.4) is replaced by the assumption [ J4(t)dt < oo,
Comparison with ABZ (1976) shows that in these special cases the conditions
under which theorem 5.1 holds are essentially the same as the conditions of
the comparable theorem 4.1 in ABZ (1976) for the one-sample problem. This
is not surprising as one may think of the one-sample case under contiguous

: -1
alternatives as a two—sample situation with A =} + OP(N ).

We now turn to the special case J = - W]. For F ¢ F we obtain by partial
integration
(5.28) J y (t)W (t)dt = | W?(t)dt ,
r
J ¥ (t)W (t)dt = %- W?(t)dt ,
[
J Y (t)W (t)dt = 2 W4(t)dt - J Wz(t)dt y
3 ) 71 2
1 4 1 2 2
Y (s)W (t)W (S)W (t)[sAat-stldsdt = " Wl(t)dt - Z( Wl(t)dt) .

Substitution of J = - Yl and application of (5.28) considerably simplifies

the expressions (5.8) and (5.12) for a,_ and Ek' Note that n defined by

k
(5.11) reduces to
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(5.29) n* = 0{x(1-1)N J W?(t)dt}% .

The expressions for o, and ék simplify somewhat further if we express 0 in

k
terms of n* throughout. Finally we rearrange the terms in Z &ka(x—rr) and
Z éka(ua-n*) according to the integrals involved and substitute the ex-—

plicit expressions (2.43) for the Hermite polynomials Hk. In this way we

find after laborious but straightforward calculations that for J = - Wl,
5 -
(5:30)  e(xT) = ¢GW)  aH () = L)
k=0
- 5 - - *
= oCu -n + ¢(ua—n)k£0 B, H, (u -n) = m, (F,8) ,
where
(5.3) Ly = e(xn")
3
CeGen) [ 260-2ny ¥Rt 2 x %2
288 [ 1/2 5 372 {=2(x"-1) -~ 2n'x +n 7}
{A(1=-1)N} {le(t)dt}
4 Y] (0de 2.3 . %, 2. %2
+ NCESSE 5 5 {3(1-6A+617) (x™=3x+n (x ~1))-3(1-51+517)n “x
v (e)de}
2
JY_ (t)de
+ 5(1~3A+3A2)n*3} - A(:fafu ; 5 (1—3x+3x2)n*3
{le(t)dt}
3 2 .
B 2 {/¥y7(t)de} ‘
+ i}lfiiN ‘ 5 (4GO-10:0+15%) + 4n” (x=6x°+3) = 80" (x~3x)

{fw§<c>dt}

x3, 2 x4 5. 144 36
LG I I Tt A (1-)N

{-(1~2A)2(x3—3x+n*x2)

B

n* + (1—5A+5A2)n*2x + (1—3%+3k2)n*3}} s

* *
nO(F,G) =1 - ®(“u'“ ) +
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* . . | S e
L3 and T, are connected only with approximate scores that were not considered

so far.

Nl

THEOREM 5.2. Let F ¢ F, J = - ¥, G(x) = F(x-6), 0 <@ < DN 2, e <A <1 -¢
and €' < a <1 - ¢' for positive D,' € and ¢'. Then, for every fixed F,

D, € and €', there exist positive numbers B, 6], 62,... with 1imN_>O° GN =0
such that the following statements hold for every N.

(i) For exact scores aj = - EW](Uj:N),
T ‘ \ -1
(5.33) sup|9< r<x)-L (x| <8 N,
x {A(I—A)Zai}; / 1 N
T \ -1
(5.34) suplp/ <x)-L(x)| <6, N
X \{A(I—A)Zai}% ) 2 N
-5~ 1
— 1] 1
+ BN 3/2j (Wl(t))z{t(l—t)}zdt ,
-1
N
(5.35) |n(F,0) - WT(F,G)l < 8, Nfl ,
1-N_
- - ' 1
(5.36) |m(F,0) - 5 (E,0)| < 6y N by opy3/2 J (Wl(t))z{t(l—t)}zdt;
5! .
(ii) For approximate scores aj = - Yr(ﬁ%r) s
l T-AZaj \ I _1
(5.37) sup P( r<x;-L(x)| =6 N ,
X {x(l-x)2a§}5 J 3 N
I T-—)\Zaj \ I -1
(5.38) sup P( <xj-L,(x)|] £68_N
x {A(l—k)ia?}% / 2 N
1-N"
- . 1
+ BN 3/2 J (Wl(t))z{t(l-t)}zdt,
-1
N
-1
(5.39) |n(F,8) - m3(F,0)| < 6 N

and (5.36) continues to hold.
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PROOF. For F ¢ F, W] is not constant on (0,1), S Wl(t)dt = 0 and W? is sum-
mable. In view of the remark following definition 5.1, this implies that

J € J. We have already noted that Ki(x—ﬁ) = Li(X) and ;i(F,e) = ﬂ:(F,e) for

i=1,2, if J = - Wl. Part (i) of the theorem is therefore an immediate con-

sequenbe of theorem 5.1.

To prove part (ii) we retrace the proof of theorem 5.1 for J = - Wl

and approximate scores aj = -y (j/(N+1)). The first difficulty we encounter
is that in general Z a # 0. However, lemma A2.3 of ABZ (1976), (5.7) and

(5.18) yield -1
I-N

1
N
Y a, =- J v, (e)dt + O(N_1 [ |W;(t)|dt) = o(N
- 0 N

(5.40)  a, =g 578y,

and one easily verifies that the conditions of theorem 4.1 hold for the
reduced scores aj - a,. Since the assumptions of theorem 4.2 are also
satisfied, we have

T-AZa.
% \

< x) - Raed)| = o >4

)

(5.41) sup[P(

2.1
X {A(I—A)Z(aj—a.) 12

where K and n are obtained from K and n by replacing aj by aj - a, through-

out. Because, by (3.10) and (5.40) ,

(5.42) Z (aj-a_)2 = 2a§(1+0(N_5/3)) s

. . 2
we can change the norming constant Z(aj—a.)2 of T in (5.41) back to Za.

J_
with impunity. As [ W (t)dt = 0, (5.42) also ensures that Iﬁ - nj = ¢g(N 5/3

Finally (A2.16) of ABZ (1976) and (5.18) imply that o (Za v, (z )) = 0(N)

).

for J = - W] and, together with (5.42), (3.10), (5.6) and (5 40), this
yields supxlﬁ(x) - E(x)| = O(N_A/B). Combining these results we find
T-)AZa.
(5.43) suplP( J T < x) - Kx-n)| = 0 5/4)
{(x(1- A)Za 2y2

and similarly

(5.44) |m(F,8) - T(F,08)| = O(N—S/A)
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The remainder of the proof paralléls that of theorem 5.1 for the special

1
priate integrals. The reasoning of .corollary A2.2 of ABZ (1976) shows that

case J = - ¥_. We replace all sums as well as OZ(ZajWI(Uj.N)) by the appro-

for those terms in the expansions that are O(N_]), this substitution will
only lead to errors that are O(N-l). For the O(Nf%) terms the error com-
mitted is O(M]) + O(MZ)’ where M] is given by (5.24) with J = - Tl and MZ
originates from the difference between exact and approximate scores. It

| = O(N_l). With regard to M2,

(5.7), lemma A2.3 of ABZ (1976), (5.18) and (5.19) imply that, uniformly in

was shown in the proof of theorem 5.1 that M

is

(5.45) I{E‘*’l(Uj:N)}k - ¥ (N+1)| o™ + O(N—l{j%:%m—]-k/s)
By, @, 0| = 00 + 0({j§§:j;;)}_1/6> ,
iy -0 Y.

where k = 1,2,3. It follows that M2 is of the form (5.26) and is therefore
-1.
o(N ).
It remains to replace n by n*. Because of (5.7), (5.18) and lemma A2.3
of ABZ (1976), N—1 z OZ(WI(Uj_N)) = o(N—2/3), and in view of (5.45),

2
FLY (N+1)E‘y W) - J ¥l (e)de

- -1 1. 2/3

=-§l Ewl(Uj:N)[wl(Uj (N+1)J o

Ly vt ) - v (t)dt = - = ) [sz(u ( )] - o 23

N N+l 1 N &7 j:N N+17 | :
Hence, for J = - Wl,

*
(5.46) n o= - ——— [ By (U ) - ¥ (N+l)}2 rom 3
N/ (t)de
= n* + O(N_2/3)9

MATISCH CENTRUM

e A MAS TER D AM e
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and a comparison with (5.25) for J = "‘W} shows that {5.37) and {(5.32) will

e * < . * . Z
hold if L and m, can be cbtained from LE and i by replacing ) o (Y (U.
= H PR

by Z E{V (U ,) - Wl(j/(N+1))}2. Since this is true, {(5.37) and (5.39) zre

W

i

proved. The validity of (5.38) and (5.36) for approximate scores is a con=
sequence of (5.37), (5.39) and corollary A2.2 of ABZ (1976). The proof of

the theorem is complete. [J

At this point it is appropriate to repeat some remarks made in ABZ
(i976). The correspondence between expansions (5.34) and (5.38) and the
fact that (5.36) holds for both exact and approximate scores seem to be
typical for the case J = - W]a In the general case where J # - Wl’ expan-
sions (5.15) and (5.17) will not hold for approximate scores even if T is
replaced by T = A Z aj in (5.15). A second remark is that the growth con-
ditions on J' and W; implicit in our assumptions (viz. (5.4) and (5.18})
do not guarantee that the rlght -hand side in (5.15), (5.17), (5.34), (5 36)
and (5.38) is 1ndeed ﬂ(N ) as is our aim. For this we would need
J'(t) = 0({t(l—t)} ) and W (t) = o({t(1-t)} ])a This may explain the pres-
ence of the remaining expanstons 1n theorems 5.1 and 5.2, which are less ex~-
plicit but do have remainder o(N ) under the condltlons stated. Note that
their presence in theorem 5.2 also indicates that even for J = - 1, ex-—
pansions for exact and approximate scores are not necessarily identical to
O(an). Finally we should point ocut that similar expansions with remainder
O(N—l) might have been given in theorem 4.2 of ABZ (1976) where they were
unfortunately omitted.

We conclude this section with a few examples of the power expansions
in theorems 5.1 and 5.2. First we consider the powers WW(Q,S) and ﬂW(A,G)
of Wilcoxon's two-sample test (W) against normal and logistic location
alternatives (0o(x),0(x~08)) and (A(x),A(x~6)) respectively, where A{x) =
= (1+exp{-x})—] and 6 = O(N—%). We find

neQuymmr - 37-217042172 2 (w21
N2 201 (1-)) o

(5.47) . (9,8) =1 - @(ua~ﬁ) +

L1 [/, s1-asmeasn’ |
A(1-2) |6 20 [Ta
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v [, 29-2193+2192% | -2
X(1-x) 16 36 20 n

2
(1-6)+6)A°) 6 arctnv/2 {ui -1 - 2uaﬁ N ﬁ2}:|| N O(N_l),

A(1=X)) m
l
where ﬁ = (éﬁil:ﬁlﬁ\ 6, and
)
* *
) ‘ N n¢Cu -n) [ =141 2 9
(5.48) TTW(A,G) =1 - @(ua—n ) + —-——N—— |_— % - m (ua—l)

1=50+502 % 1-3+32 *2]

-1
o0 (1-0 %" T 2oaaeny 1| O )

* /A(l;A)N)ze.

As a second example we compute expansions for the powers WNS(Q,G) and

where n

NNS(A,G) of the two-sample normal scores test against the normal and logistic
location alternatives described above. One of the integrals occurring in

this computation is

1y o (1-N ")
(5.49) j tfi-t) s dt =2 J @(x)d()z;;b(x)) dx
2, feC@ (e} 0
N

and since its asymptotic evaluation is not entirely trivial, we provide some

details., Let y denote Euler's constant

k

:

- _
(5.50) Y = %ig 1 ; log k 0.577216 ...

j=1
and note that (cf. RYSHIK and GRADSTEIN (1957), p.197)

-u

(5.51) e log u du = -y,

(5.52) ¢(u) logudu=-1%1log 2 - 41vy.

Ot 8 O 8

To evaluate (5.49) we begin by writing for z > O
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z z o
1-0 (x) [ J -1 (y-x) (y+x)
—_— dx = d e d
(5.53) J PYED) X J X y
0 0 X
o 2z+u o
=zuv 1 lu2 zu
= 3 du e dv = J Se 27 (1-e ) du
u 0
It follows from (5.53) and (5.51) that for z » «,
, -1
Z VA 2 o 9
- - 1
(5.54) Jlaq(’—}gi dx = J é(l-e 2Uy 4y + J. L o720 gy + o(1)
0 0 .2
1
z? o
- I, _ -u 1 I -u
= J. u(] e Ydu+ ! J o e du + o(1)
0 -1
1 (2z)
z? oo
=1 log z - j e U log u du + } log(2z) + } I e_uloglldu-+0(])
0 1

(2z)

log z + § log 2 + 5 v + 0(1).

Similarly (5.53), (5.51) and (5.52) imply that

oo 2 oo ©
(5.55) j—(i:&—)—)-—- dx = J ¢ (x) dx J ﬁ &7 (1-e7XY) gy
0 0

¢ (x)
0
[ 1f, —iu? [ / -
= J a{%e - (l—é(u))}‘du = J log uléue : "¢(U)} du
0 0

i log 2 + |} f e * log x dx - [ ¢(u) log u du = } log 2.
0 0

] log 2 + 0(1) for N = », (5.49),

Nl—

Since log @ul(l—N— ) = 3 log log N +
(5.54) and (5.55) imply that
1N

(5.56) J { (tf}_t) }2 dt = log log N + log 2 + v + 0(1).
(2 (t))
N—I
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With the aid of (5.56) we find
* *
n ¢(ua—n )

%*
(5.57) g (2:8) = 1= 2(u -n )+~—*~3r*—-[“%EOgiOgN“*élogZ

1
where now n* = {A(1-)1)N}?6, and

né(u_-n)

(5.58) TrNS(A,G) = |- @(ua-a) t— [% log logN+4 log2+ 1}y

3 1-3e3° oty Au-202% 1 sane2n?] -
27 T (-0 o Yo

GA(1-0) 6 12a(1-0)

N 6(1-5)+51%) arctn /7 - /§(I—ZA)2__llﬂ(]—5A+5A2)‘F5-21A+21A2 =2
*(1-1) ZA(1-1) 6A(T-1) oA (i-x) J "

rom b,

- 1
where now n = {A(1-A)N/w}?0. Note that theorem 5.2 ensures that expansion

(5.57) is also valid for van der Waerden's two-sample test which is based

on the approximate scores a.j = <I>—l(j/(N+1)).
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6. THE PERMUTATION TEST BASED ON THE SAMPLE MEANS

In ABZ (1976) two results were, given for permutation tests in the one-
sample problem. The first of these is an asymptotic expansion for the power
of the locally most powerful permutation test against contiguous shift alter-
natives. Secondly it was shown that the difference between the powers of the
permutation test based on the sum of transformed observatlons ) J(X ) and
Student’s test applied to J(X ),.,.,J(X ) is o(N ) for a large class of
alternatives,

In the present paper we shall forego the two-sample analogus of the
first mentioned result; the expansion can be obtained in a straightforward
manner in much the same way as in the one-sample case but the computations
will be extremely tedious. We shall concentrate on the comparison with
Student's test. For simplicity we take j to be the identity, thus comparing
the two-sample permutation test based on the sample means with Student's
two-sample test. Also, we restrict attention to contiguous location alter-
natives.

As before, we assume that Xl"'f’XN are independent, Xl""’Xm having
common d.f. F and Xm+]""’XN having common d.f. G(x) = F(x-6); Z= (Zl""’ZN)
denctes the vector of order statistics of X]""’XN; We wish to test the
hypothesis 6 = 0 against the alternative 8 > 0 at a fixed level o e (0,1).
We denote probabilities and expectations under the alternative by P and E,
and under the hypothesis by PF and EF' Note that we donot assume that F has
a density, as we did in the previous sections.

The permutation test rejects the hypothesis if

N
(6.1) L X 2e,(2),

i=m+]

possibly with randomization if equality occurs. Here Ea(Z) is chosen in

such a way that

o

(6.2) ( g X, > & l z) = a.s.

with an obvious modification if there is randomization. If F is known,

Student's test rejects the hypothesis if
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Da-nne-23 & P-x (M)

=2

(6.3) = T2t ,
BRI R DN S
where '
m ' N
Xfl) 1y x, sz) -1y ox
=1 * P oi=mer ?

Here t, depends on F,N,A and o and is chosen in such a way that the test
has level a. Again there may be randomization. Let nPe(F,e) and nSt(F,e)
denote the power against the alternative (F,F(<-8)) of the tests (6.1) and
(6.3) respectively.

THEOREM 6.1, Suppose that positive wnumbers c,C,D,e,e',§ and r > 8 exist such
that F |

18 differentiable on an interval of length at least § where

d -1
(6.4) ac F (t) = C,
1
and such that [|x| dF(x) < C, 0 <6 < DN 2, e < A < l-e and e' < o < 1-¢'.
Then there exist B > 0 depending only on c,C,D,e,e', and §, and B > 0 depend-
ing only on r such that .

(6.5) Mg (F,8) = mg (F,0) ] < BN~ 7B,

PROOF. We shall draw heavily on the procf of theorem 5.2 in ABZ (1976). The

only essentially new problem is caused again by the occurrence of a term of
1

order N 2 in the expansions. The ( symbols in this proof are uniform for
fixed ¢,C,D,e,e' and &§. Since both tests are location invariant we may
assume without loss of generality that fxdF(x) = 0,

We begin by collecting some results on moments that will be needed

throughout the proof. Define

. [ r-8
(6.6) B = mlnk§;+8,%>

-

N
(6.7) X, =2z =z ) X, =

and note that EXE = E(X]+e)k and that EX1 = 0. Proceeding as in the proof of
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theorem 5.2 in ABZ (1976) we see that

c263

12

< cz(r,

PO

< EX

N

(6.8) < [EX?]

and thét, uniformly on a set of probability 1 - O(N—]_B) under P as well as

under P

F’
1 T .k k -8
(6.9) T L X, = (I-0EX] + 0N ) , k = 1,...,4,
i=1
1Yk K -8
(6.10) 3 Y X; = AEX| + O(N ) , k=1,...,4,
i=m+1
17 k k -8
(6.11) =} (X.=X )" = (1-A\)EX; + O(N 7), k = 2,...,4,
N i21 1. 1
1 q k k -8
(6.12) = ) (X.-X.)© = AEX, + O(N %) , k =2,...,4.
N . 1 1
i=m+]
For k = 1, (6.9) and (6.10) are insufficient for our purposes. Arguing as
in (5.13) in ABZ (1976) for T = N—3/8, we find
m N
1 -3/8 1 -3/8
(6.13) § L X =0, 5 L X =o0w Y,
i=1 i=m+]

uniformly with probability 1 - O(N-]—B) under both P and Pr.
We shall also have to consider the quantity ﬂ{xziilx—xil < ¢} for some
N-'j/2 log N, where £ denotes Lebesgue measure. Borrowing from the proof

=3/2 log N,

C =
of theorem 5.2 in ABZ (1976) again, we find that for g = N

(6.14) E{x:ﬂi Ix—Xii <z} = é%E

with probability 1 - O(N_I_B) both under P and under PF' Let E] be a set on
. . . =1-

which (6.9)-(6.14) hold uniformly, with P(El) = 1-0N B) and PF(E}) =

1-o 178y,

Under the hypothesis PF and conditional on Z the d.f. of

AL ] o)

i=m+1 j=1
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equals R(x,p) defined in (2.9) with pj\= X and aj = Zj for 3 = 1,...,N,
Hence corollary 2.1 provides an expansion for this conditional d.f. that
holds uniformly on any set where the aj = Zj satisfy (2.61) and (2.6Z) for
some fixed positive c¢,C, and §, and(in view of (6.8)-(6.14) such a set is
contained in E,. Since €' < o < 1-¢', this yields an expansion for EG(Z).

1
We find (cf. (4.14))

£, (D)-\]zZ, (1—2x)2(z.—z y3 5
(6.15) I =+ RETE (ul-1)
[A(l—A)Z(zj—z.) 12 6{r(1-1)1}2 [Z(z -2 1?7
2 342
) (1-21) [Z(Zj—z_) ] i ) + Uy
o "o 2N

36A(1—A)[Z(Zj—z.)2]3

2 4
{ (1-60+62](2.-2)" (|5, 1

-5/4
3u )y + O(N )
_ _, 2.2 8\ (- A)Nf a ’
24\ (1 A)[ZC% )]

uniformly on EI'

Next we start to compute under the alternative P. We have

P(El) = 1-O(N_]—B) and on E, we can use (6.8), (6.11) and (6.12) to replace

1
the random terms of order O(N‘]) on the right in (6.15) by constants. In this
way we arrive at

(6.16) 1y (F,0) = B2 130,50 ) + 007D,

where the flrst remainder term depends on Z but may now be taken to be

uniformly O(N 8) and where
N
I X, -Alz.
(6.17) 7 - i=ml ’
- - T s
[A(l—k)[(zj—z°)2]2
. (1-2A)EX3 )
(6.18) E =u + (u™=1)
@ “ s{r(1- A)N}Z(EX 2y3/2 "o
(1-2%) (EX )2 u
- (2u 5u ) e
36X (1- A)N(EX2)3 Yo 2N
A
(1-6)+622)EX
1 (1-2}) _
* { 2 T B A)N}(“ 3uy)s

z4x(1—x)N(Exf)
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_% 3
_U-2) @ —1)[ f(z -z ) NTIER)

(6.19) U
61 (1-1)}? [Z(z -2.)%) 2,372 (x’ 2,3/2]"

The basic problem is now to show that the r.v. U, originating from the

1.

o~ 2) term in (6.15), may be omitted in (6.16). Since U1 is a r.v. of order

N—l, this problem is nontrivial. We shall show that because U, depends only

on Z and is approximately centered, a cancellation occurs whiéh makes its
contribution to (6.16) of negligible order. Several methods of proof are
possible. We choose one that does not require any additional assumptions.

In (6.16), P may be replaced by PF if Xi is replaced by Xi+6 for
i=m+l,...,N, which transforms T* and U1 into T*(e) and Ul(e), say. On
the set E], (6.8)-(6.13) ensure that we can expand T*(e) and U](e) about
T and U, - Replacing r.v.'s by their expected values if the difference is
of negligible order, a simple calculation shows that under PF we have,

uniformly on the set El’

1
(6.200  T"(e) = T*[i BEINCEN Ol I VO VDAL
° 1
2Z(zj—z.)2J [Z(zj—z.)zji
INYRE: 3/22 -1
(xQ A)}ife {x(1- x)} 3/2 rom! 8),
[X(zj—z.) 12 2(EX )
(6.21) U ) = U, + o P,

Another easy calculation where we use (6.8) - (6.13) to bound the terms in
(6.20) and (6.21) and to replace r.v.'s by their expected values whenever
possible and where we note that 5 u + O(N-%), shows that uniformly on
E., tho inequality 7" (8) = : + U (8) + O(N ) is equivalent to

T > £" (8)-UO+-U + 0N 1= B), where

o -6
(6.22) g;(e) - - ﬁg%} 6 , LHa- A)i 0 “2 _ ggl_g%g_ iy
(EX])? (NEXI)Z 2EX]
(6.23) U, = {A(1~A)}%N9{ 1 5T~ 1 1}~
[Z(zj—z.) 17 (NEX))?
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Since PL(E,) = 1-0( '), this implies

(6.24) Moo (F50) = PF(T*(e) > g:+U1(9)+O(N"1"B)) o 7By

PF(T* > g:(e)—UO+Ul+O(N—1-B)) + O(N—]—B),

where the first rema1nder term in the last member depends on X ...,XN but

1=By

Since UO and U1 depend on X1 ...,XN only through Z, we can compute

P (T < E (8)- UO+U +O(N 1= B)) by taking the expectation under P of the

is uniformly O(N

condltlonal d.f. of T* given Z under P
* -1-R
£,(8) UO+-U1+~O(N

ditional d.f. of T given Z under P

F evaluated at the point

). Corollary 2.1 provides an expansion for the con-
v that is valid uniformly on El’ and
PF(EI) = 1—-O(N_1“B). Combining these facts and simplifying as much as
possible with the aid of (6.8) - (6.13) - note that (6.8), (6.11) and (6.12)

- _1_
imply that UO = (N B) and U] = 0(N 2 B) - we find

*
(6.25) Moo (F50) = 1 = EF®(ga(6)—UO+Ul)

+

_ Z(z -7 )
a-20) g [ 737 $ (€, (9)=Uy)H, (€, (8)-U )]

6{x(1—x)}% [Z(Z 2)
4
I(1—6A+6A2) BX) oan?l L«
+ ¢ (g (6})[ & (e) + 124X (1-0)N (Exz 5 SA(I—A)NjH?,(Ea(e))
1)
(1-21)2 (EX?) 1
72X (1-1)N (EX2)3 5(£ (e>)J o By,

Thus we see that the contribution of U1 to the expansion for ﬂPe(F,e)

is restricted to 1ts contribution to -EP,Q(EZ(G)—U +U1). On the set E, we

N 0 1
have Ul = U]*-M, where
2 3 T 2
{1-2X -1 Z.-7 VARV
v { )(ua I)J(F( i L) ) ]> _ §<éigl_~11__ 1)19
1 (;{A(I—A)N}f1 NEX? 2 NEX? J
and
, Z(z.—z.)2 12 ]Z(z.—z,)2 1z —z.)3 \
N'M = O({——“;—*—Z'——— II + —""J—z - 11 3 -1 /,
NEXl NEX i NEX
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uniformly on El; also U0 = O(N_B) uniformly on E;. Let XEI denote the indi-

cator of E]. Then, because PF(EI) = ]—O(N_]_B),

0XE +ﬁl+MXE ) + O(N_I_B)
1

* *
EFQ(Ea(G)—UO+U1) = EF®(€a(6)—U |

* * ~ o -1-8 ~2
EFé(ga(e)—UOXE]) +EF¢(ga(e)—UOXE])U] + 0(N +EF{U]+]MIXE})

1-8

’ * _ * ~ - -8, ~ ~2 . R
EL0(g (8)-Uy) +¢(& (8))ELU, + 0(N +EL (N T IU [+U7+IMIxg 1) .

Noting that Z(Zj—Z.)k = Z(Xi—X.)k, EFXi = 0 and EFIXiIr
one easily verifies that EFﬁl = O(N—3/2), EFG% = 0(N"2) and EFIMIXE = O(N

< C for some r > 8,

—3/2).

It follows that

* * -1-B
(6.26) EFQ(ga(e)—UO+U1) EFQ(EG(G)—UO)4-0(N )

3

and hence U, may be omitted in (6.25) because its contribution is of

1
negligible order. Retracing our steps back to (6.16) we conclude that the
same must be true there, so that

*

6.2 mpg(0) = 2(17 2 £+ 007 w007,

The remainder of the proof parallels that of theorem 5.2 in ABZ (1976).
Let T be Student's statistic as defined in (6.3). The inequality T > a is
~ 1
algebraically equivalent to T 2 a{(N—Z)/(N—aZ)}2 on the set where Z(Xi—X.)z#()

and provided that a2 < N. Since Z(Xi-X.)2 # 0 on E, for sufficiently large

1
N and €' < a £ 1-¢', this implies that

u3—2u
*

(6.28) TTPe(F,e) = P(ff > ga + -—OLTO—L + O(N—]-B)> + O(N—I—B),

In the same way as in the proof of theorem 5.2 in ABZ (1976) we show that

(6.29) sup P(t < T < t+0(n "By = ow '8y
t
and hence
3
(6.30) (F,0) =PIT > ¢ + 39:339\ + O(N_I_B)
: Tpe (F28) = BT = &, 2N ) :
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Now gz depends only on N, A, o and F but not on 6, and arguing as in the
proof of theorem 5.2 in ABZ (1976) we find that this together with

nPe(F,O) = o ensures that

% uz— 2ua “1-8
(6.31) t =¢ +———+ O(N )

o o 2N
with ta defined as in (6.3). Combination of (6.29), (6.30) and (6.31)

completes the proof. [

Although we have conduéted the proof in such a way as to avoid actual-
ly establishing expansions for nPe(F,e) and ﬂSt(F,S), the excursion from
(6.16) to (6.26) and back has, in fact, brought us rather close to obtaining
such expansions. Suppose that the conditions of theorem 6.1 are satisfied
but drop the assumption fxdF(x) = 0 that was made in the proof merely for
convenience. Define

1
~ _ {A(1-))N}?6
(6-32) LT

(6.33) kK, (F) = 3>

where all moments are computed under F since only X] is involved. A rela-

tively straightforward computation starting with (6.25) and (6.26) yields

ﬁ¢(ua-ﬁ)r12(1—2A)K3(F)
(6.34) m (F,8) =1 - 0(u -A) + —(f-2u )
Pe a 72 | 1=V} o
22
(1-2X) "k, (F)
3 b ~3 2.2 34 0a2 -~ 2
+ TI=0ON (-1 +5uan 8uun +4uan+8n 24uan+20ua 10)
3k, (F)
4 2, A2 2 -~ 2, 2
+ m{—(l—3>\+3)\ )(n 3)+3(1 5X+5X )UOLT]—3(1—6>\+6)\ )L.a}
2
18u
_ o -1-B
N J + O(N ) )

where 3 is given by (6.6) and the 0 symbol is uniform for fixed c,C,D,e,e’

and 8. Theorem 6.1 ensures that the same expansion is valid for ﬂst(F,G).
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The case where F is normal is perhaps of most interest because both
tests are then asymptotically efficient. Since & satisfies the stronger

regularity conditions needed to replace B by } we find in this case

/2

(6.35) mo (2,0) = 1 (8,0) + o2

uzn*¢(u -n™)
- ot - 2t oD,

1
where n* = {A(1-))N}?%8.
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7. DEFICIENCIES OF DISTRIBUTIONFREE TESTS

In analogy to the one-sample case we want to compare the distributionfree
tests discussed so far to the best parametric tests for the two-sample problem
when the hypothesis and the alternative are both simple. The situation is more
complicated than in the one-sample case because of the shift invariance of
the distributionfree tests involved. Let X]""’XN be independent and let
(F,G) denote the hypothesis that Xl,...,Xm have common d.f. F and

X -,Xy have common d.f. G. For fixed F and 6 and varying A € R‘, con-

m+1°° "

sider the simple hypothesis H_ and the simple alternative K A where
H

F F,0

Hp = (F,F), KF,S,A = (F(++26),F(--(1-2)8)).

The shift invariance of the distributionfree tests ensures that their power

against K is independent of A, so that it was sufficient to consider

F,0,A
only alternatives with A = 0 in the preceding sections. Note that the form

of the locally most powerful rank test against K is also independent

F,0,A
+ .
of A. However, the envelope power m (F,8,A), i.e. the power of the most

powerful level o test of H_ against KF 5. A does depend on A and the
3Y

F
"right" A against which comparisons should be made is thus the value AO
that minimizes the envelope power. It is given to first order by AO ~ A,
For values of A whose asymptote is different there is not even an asymptotic-—
ally efficient shift invariant test, so that the deficiency of a shift in-
variant test with respect to the best test is not of much interest in this
case. Of course we shall have to provide a more precise asymptotic evalua-
tion of AO because we are concerned with second order terms.

Suppose that F is a fixed d.f. with density f that is positive and

five times differentiable on R]. The most powerful level o test for H

F
against K rejects H_, for large values of the statistic
F,0,0 F _
m f(X.+A6) N f(X.-(1-A)6)
Se A S z 1og-—?%%—7——+ Z log ;(X ) .
’ i=1 i i=m+1 i

This statistic is a sum of independent r.v.'s and we can therefore obtain

an Edgeworth expansion for its d.f. under HF and under KF 5 A and hence for
bl b

the power ﬂ+(F,6,A) by proceeding in the classical manner and expanding the
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cumulants of the statistic. In this expansion for 7 (F,6,A) we minimize with
respect to A. We shall give each of these expansions but we omit the tedious
computations.

Define Wi by (4.15) for i = 1,...,5, and take

(7.1) T (F,0,4) = 1 = 8(u_-n)

ﬁtb(ua—ﬁ)(% T3f‘¥?(t)dt

- et (=2u_+n)
288 Ly {Tzf‘{/?(t)dt}:a/z ¢
4o 2
T, f¥I(t)de . N T, [vo(t)dt
+ § iy (3D + Fu - e
{1,[¥](t)dt} {r,[¥](t)de}
{r.[v3(t)de}? N . I
+ é 3 ; 3 {8(2u§—1)-—4n(u3+3u )+-n2(8u2+1)-5n3u +n4}
{1, [y () de} * * *
T
)
where
1
(7.2) N = [N{(I—A)Az 2 (1-0) %) I wf(t)dt]ze,
(7.3) T, = -85 + 2aa-D%, Kk = 2,3,4.

LEMMA 7.1. Let F satisfy (5.6) for m, = 5/i, i =1,...,5, a;;zcli suppose thafl
positive numbers D, D', € and €' exist such that 0 < 6 < DN 2, |AB] < D'N ?,
€ <A< l-eand €' < a < 1-¢'., Then there exists B > 0 depending only on

F, D, D', € and €' such that

(7.4) In*(F,0,0) - 7 T(F,0,8)1 < BN /2,

PROOF, Under the conditions of the lemma we find that under H_ = (F,F)

F
~2
Sg A*izn
PF(—G’AN— < x) = 0(x)
5 J

3
dt
seof2s T3/ 2 ~ o~
- —T {2(x"=1)=3nx+n"} +
288 Ly {Tszf(t)dt}3/2
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4
T, [¥](£)dt N N ~
+ % . ; 5 {3(x3-3x)-'6n(x2—1)4-5n2X-.2n3}
{Tszl(t)dt} |
2
12 Tafwz(t)dt 3
* N 2 2 {(-n"x+n7}
{rsz](t)dt}
3 2
ENEMC N i
*+ é s ; 3 {4(x5-10x3+15x)— lzn(x4‘6xz+3)*‘13n2(x3-3x)
{TZIW (t)dt}
1
36T N _
- 6n3(x2_1) + n4x}+ 5 {—(X3—3X) . ZH(XZ_]) -HZX}}'!'O(N 3/2)’
Nt
2
whereas under KF,G,A’
~2
Sg,a"2"
P(——Lf:—-—— < X) = o(x)
n
o (x)[ 26 T 1 (D 2 ~
T 288 L 1 2 3732 {2(x7=1) + 3nx + n"}
N? {Tszl(t)dt}
4 .
T, [¥7(t)dt _ _ ~
+ % 4 ; 5 {3(x3—3x)4—6n(x2—1)-+5nzx.p2n3}
12 Tafwg(t)dt vy 3
+ N 2 ) {-n"x-n"}
{t,[¥] (t)dt}
3 2
{1, [¥7(t)de} N X
¥ %I 2 ; 3 [4(x"-10x0+15%) + 127 (x ' =6x2+3) + 1302 (x°-3x)
{t,]¥o(t)de}
271
361
¢ 6003 + T et (=GP0 - 2GR - R | o),
Nt
2

The remainder terms O(N—B/z) are uniform for fixed F, D, D', € and e'.

Together these expansions yield (7.4). O

i + ~
For large values of |A®N?|, both m (F,6,A) and 7 (F,0,A) will come close
to 1 as N » », It follows that an asymptotic expansion for the value AO

. . + . e e e ~ .
that minimizes w (F,6,A) may be obtained by minimizing ﬂ+(F,6,A) instead.
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This yields

3
1
(7.5) Aoy =) f?l(t)dt

0 4N’ {fwfgt)dt}3/2

(-2u +n*) + 0 )

. * . _ . . . ~ .
with n as in (5.29). Since the derivative of n with respect to A vanishes

. .. . ~ ~t
at A = XA, (7.5) is sufficient to determine n and m for A = A, up tc a

0
- -1
3/2). Noting that indeed IAOOI = 0(N ?), we substitute (7.5)

3/2

remainder 0N
for & in (7.1)-(7.3) and neglecting terms thatare o ), we find that

;+(F,6,AO) reduces to

(7.6) TTF,e) =1 - ®(ua—n*)

* * 3
n ¢Cu -n ){ 24 (1-2)) [¥](B)de
288

4=

(-2u_+n*)
Lova-om 2 {IW%(t)dt}3/2 *

4
. s(1-memn?y Y (de

A(I=1)N

2 * *2
{3(u"=1)-3n"u +2n 7}
2 2 o o
{fe](e)de}

2
2, Jes(e)de

3 2
12(1-3A+31%) 2 4 {J¥](v)de}

*

y
(2u —n")*°

- . A —

A(]—A)N {f‘yf(t)dt}z N {f‘i‘?(t)dt}B o

3 2
2 {[y](t)dt} )
* iz;E;;N ; 3 {‘S(ZU§—])-+4n*(u2+3ua)-n* (8u§+1)
(ri(eder”

3 4 2

* 50 ua"”* }‘L‘Q)6(A](—13-AA+)3;\IA ) {—(ui‘l) +n*ua}]

with n* as in (5.29). Summarizing we have

LEMMA 7.2. Let F satisfy (5.6) for m, = 5/i, i = 1,...,5, and suppose that
-1
positive numbers D, € and €' exist such that 0 < 6 < DN ?, e<X<l-e and
1 1]

e' <a £ 1-e'.

such that

Then there exists B > 0 depending only on F, D, € and €'

(7.7) Int(F,0,0 ) -2, 8) | < By /2,

For the same testing problem theorem 5.2 provides an expansion for the

power m(F,0) of the locally most powerful rank test. Together, theovem 5.2
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and lemma 7.2 enable us to find an asymptotic expreséion for the deficiency
dN of the locally most powerful rank test with respect to the most powerful

parametric test for H_ against K To ensure that F satisfies the

F F,8,40"
assumptions of both theorem 5.2 and lemma 7.2, we require that F ¢ F], where

DEFINITION 7.1. Fl is the class of d.f.'s F on R with positive and five

times differentiable densities f and such that (5.6) is satisfied for

=5/3, m

i=1,...,5 withm, =6, m

(5.7) holds.

=3, m 4 = 5/4, mg = 1, and such that

1 2 3

Furthermore, we define

3 1

(7.8) N,0 - 48

[=9)

4f¥ (yde ) §
[———5——-———5 {3(u -1 = 2n"u }
{fW](t)dt} :

*

_4(1-32430%) A
J

A(1-2)

4 2
{fwl(t)dt - 3[¥5(p)de 1«2
¥ (eyaer?

3 2
3{f¥7(t)dt} _
_ 1 (2u —n*y2 - 30-2))

— n
(waey® 0T MY a3

2 {IW?(t)dt}z 2

*

2 *
12{ua4-3- 2n uu}] ,

~ ~ 1 Iy
d =d =) o (¥ (U, ),
N, 1 N,0 fwf(t)dt = 1'73:N
1-§"1
~ ~ 1 2
d d F e J (¥ () "e(1-t)de,
N,2 N,O fW?(t)dt | 1
N !

5 . | N i 2
d R L — E(w .. ) -y (--)) ,
N,3 ~ °N,0 fW%(t)dt 55 145N I\N+T

where Wi and n* are given by (4.15) and (5.29) and U. .. is the j-th order

j:N
statistic of a sample of size N from the uniform distribution on (0,1).

THEOREM 7.1. Let dN be the deficiency of the locally most powerful rank

test with respect to the most powerful test for testing HF against K

F,9,M
on the basis of Xl""’X

N and at level a. Suppose that F e F],
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cN 2 <9 <CN ?, e <A< l-eand e’ <a < l-e' for positive ¢, C, € and €.

Then, for every fixed F, c, C, € and €', there exist positive numbers

B, 61, 62,... with 1lmN+m GN = 0 such that
(7.9) ldN_dN,ll < SN’
-N" !
' ~ -1 2 1
- 2 v - 2
(7.10) ldN dN,Zl < 6N+BN J (\yl(t)) {e(1-t)}? dt.
N !

If in the above the locally most powerful rank test is replaced by the rank

test with the corresponding approximate scores aj = - Wl(j/(N+1)) then

(7.11) IdN—dN’3| < 6N

and (7.10) continues to hold.

PROOF. Let us first consider the locally most powerful rank test and show
that the expansions (5.35) and (7.7) yield (7.9). The conditions of the

* -1 N
theorem ensure that n , {A(1-1)} and u, are bounded. As F] c F, (5.18)

holds and the reasoning leading up to (5.46) gives

N .2
(7.12) L) 02(‘l’l(Uj.N))S Z E{w (v, )'W1(_Ni1>} -on2/3.
j=1 ’ Cj=1

In view of these remarks we find from (5.35), (5.32) and (5.31) that the

power m(F,0) of the locally most powerful rank test satisfies
(7.13) m(F,8) = 1 - @(ua—n*)

fW?(t)dt
3/2

n*¢(ud—n*)
12

(1-2))
T
Da-0NE? (¥ (oae}

2/3

+ (—2ua+n*)4+0(N— ).

From lemma 7.2 and (7.6) it is clear that W+(F 6,A ) also equals the right-
hand side of (7 13) Since d is obtained by replac1ng N and n by (N+d )
and n*(1+dN N )2 in m(F,6) and equating the result to = (F 8,A ), and
1/3

).

since n* is bounded away from zero, we find that dN = o(N
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Having obtained this crude bound for dN we study the effect of the
substitution of (N+d ) and n (1+d N )2 for N and n a bit more carefully.
The effect on ﬂO(F,e) as given in (5.31) is obviously the addition of a term

* * H
n ¢u,n) -7/6

(7.14) B e B

7N N )

to prove that this remains true for HT(F,G) in (5.32) it is clearly suffi-

cient to show that

N N+1
'21 oz(wl(Uj:N))=-—l— _ZI oz(wl(u. ) + o3

1
(7.15) N N+1 j:N+1
j j=

).

Once this has been established, (5.35) and (7.7) imply that an expansion for
dN may be obtained by equating (7.14) to ;+(F,e) - NT(F,G) + O(N_]) and an
easy computation yields (7.9).

To prove (7.15), we let b. ,, denote the density of Uj*N and we note

J,N

the well-known recurrence relation (N+l)bj,N = ij+l,N+1+'(N—J+])bj,N+l°
We have
o’ (¥, (W, ) =gl (¥ (U, )-EY (U, )}
1'7j:N N+1 j+1:N+1 13N
N-j+1 2
e BUY W) T B W0
- ] 2 N-j+1 2
T O G Une?) * T 0 ¢ U
J(N=j+1) 2
+ ————————-{E[W . ... ) - v (U.. Y1°.
)2 F+1:N+1 175 :N+1
Summation on j gives
N
. 1 2
(7.16) § Lo (w](uj:N))
3=1
N i (N=j+1)
T N+T Z (W (U e z ————{ELY, (U, +1:N+1)—'w1(Uj:N+l

j=1 N(N+1)

132,
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By Fubini's theorem and (5.18)
U

J+1:N+1
- ) §
IE[WI(Uj+]:N+l) wl(Uj:N+1)]! < E J ¥, (e)1de
' Uj:N+1
1 1
N+1 j N+1-3
= [ ENOIRICHNPESS Uj+]:N+1)dt==( ; )J!W;(t)ltj(l-t) Jaz
0 0

. 473
< j (N+1)
B M<N+1)

D im0

where M is a bounded function on (0,1) with lim I M(t) = 0. Hence

t>0,
j(N=-j+1) 2
—— = {ELY (U., .. )-VY. (U., )1}
521 N(N+])2 107 §+1:N+1 1 j:N+1
1-n~!
= o(N_z J {t(]—t)}—4/3 dt) = o(N_S/B).
N-l

Together with (7.16), this proves (7.15) and establishes expansion (7.9).
For the rank test based on the approximate scores the proof that
(5.39) and (7.7) yield expansion (7.11) proceeds in the same way as above,

the only difference being that instead of (7.15) we now show that

|

N . 2
(7.17) ) E(Wl(uj:N)-wl<ﬁ%T>)

|—

j=1
- ﬁ%T ﬁi: E(Wl(Uj:N+1)'-W;<ﬁ%§>>2 L oa™/3y,
j=
Using rthe recurrence relation for bj,N again, we find after some arithmetic
= T ?E:E< (U N+1)"W1<ﬁ%§\\2 ¥
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N+1 . T
2 j (i=1\_N=j+1 (3 \] _y [
TN jZI{W](N+2> N ]\N+1) N WI\N+1)IE(W](Uj:N+1) WI(N+2

N+l (. . N2 . W2
Loy ity ()-y J‘1> k2T g [
N+1 521 N\ 1\N+2 1\N+1 N O\l N+2 1\N+1
Now (5.18) ensures that

lwl(ﬁ‘i?)'wl<%:_}>l

IA
il
N
-
®
™
2
+
-

. . . . -7/6
ﬁ( j \(N—J+2)JJ(N—J+2)} for j
M2/ ne2)2 L (na2)?

. e .o 1=7/6
g( ] ) i fJ(N“J+2)} for ;
M2/ ne2) 2L (we2) 2

1
[
-
-
2
-

_h:e.N
N
=4
+ Jeae
3
—
|
&
/N
7
+ |
N——
iA

where M is a bounded function on (0,1) with 1lim ﬁ(t) = 0, Similarly,

0,1
(5.7), lemma A2.3 in ABZ (1976) and (5.18) imply that

. . 7/6
BV (U, _;_>! < % ( ] ) Nt {;Lﬁ_;:&il for j = 1,...,N+l,
' U ame) ™ W1<N+2 = Mo\§e2 w22 ) ord '

It follows that both the second and third terms on the right in (7.18) are

1-N" !

O(N_2 [ {t(l—t)}-4/3 dt) = o(N—5/3),
Nll .

which proves (7.17) and therefore (7.11).

Finally, the validity of expansion (7.10) for exact as well as
approximate scores is a simple consequence of (7. 9) and (7.11) and the
fact that theorem 5.2 clearly implies that both Zc (W (U )) and

JE(Y, W0 - W<JMNH)» equal

1-N" ! ' j-N" !
1

J (W;(t))zt(l-t)dt4-o(1) + O(N"2 J (W;(t))z{t(l—t)}%dt

N NEk

).
/

This completes the proof of the theorem. [J
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Like theorems 5.1 and 5.2, theorem 7.1 presents us with a choice between
an expansion with remainder 0(1) and one which is more explicit but may have
a remainder of larger order under the conditions of the theorem. If
?;(t) = 0({t(1-t)}~]) for t > 0,1, then dN = EN,2+-0(1) for exact as well
as approximate scores and expansion (7.10) is obviously preferable. This
appears to be the most common case. However, if W;(t) is of exact order

{t(1-£)}"!, then (7.10) yields only
1

1-N~ 5
[ i) ed-nde
-1 :
4 = N s + 0(1) = 0(log N).
IO ¥i(t)de
Finally, if W;(t) ~ {t(l—t)}_l_6 for t - 0,1 and some 0 < 6§ < 1/6, then

(7.10) reduces to dg = O(Nza).

In general, all we can say under the conditions of theorem 7.1 is
that

2 1-N !

Lo (¥ (U, 0) ( D2 1/3

= 5 +0(1) = O\ (Wl(t)) t(l—t)dt) = o(N )

f¥i(B)de : - ‘

N

(7.19) d

N

for exact scores, and that

. \\2
ZE<W1(U. ) - ¥ (—l~)>
_ j:N T\N+1
(7.20) dy = 5 — + 0(1)
[¥](B)de

1-N !

- o<' J (w;(t))zt(l-t)dt> =o'/
N—]
for approximate scores. Even this result, however, is rather surprising
1
because one might have expected these deficiencies to be of the order N?.
1
The reason that they are of smaller order than N? is of course that the

power expansions for the rank tests in theorem 5.2 and for the most power-

ful test in lemma 7.2 agree not only in their leading terms of order 1 but
-1

also in their second order terms of order N ?. It is only in the third

order terms that differences begin to show up. Borrowing a phrase from

PFANZAGL (1977) who noted the same phenomenon in the parametric one-sample
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problem, first order efficiency apparently implies second order efficien—
cy in the cases considered. Note that results very similar to (7.19) and
(7.20) were obtained for one-sample rank tests in ABZ (1976). In that case,
however, there is no cause for surp;ise because certain symmetries that

are present in the nonparametric one-sample problem ensure that there is
1

no term of order N 2 in any of the power expansions. Finally we should
perhaps point out that in the present two-sample case, the fact that we

have evaluated the envelope power for A, as given in (7.5) instead of for

the conventional choice A = X, is of noOconsequence for these considera-
tions. For A = ) the term involving (Zua—n*)2 should simply be omitted
from (7.6) and (7.8) and this doesn't influence the qualitative behavior
of T or EN ..

1

To provide some examples of theorem 7.1 we compute the expansion (7.10)
for the special case where F is the logistic d.f. A(x) = (1+e_x)-_1 or
the normal d.f. ¢. The computations resemble those at the end of section 5.
Suppose that ¢ < GN% < C, € X< l=-¢c and €' € a £ 1-¢' for positive ¢, C,
€ and ¢'. As both examples concern symmetric distributions for which
fW?(t)dt = 0, the second order term in (7.5) vanishes so that we may take
AO = A in both cases. For F = ) we are therefore concerned with the problem
of testing the hypothesis (A,A) against the alternative (A(s+X0),A(==(1~1)6))
and dN denotes the deficiency of Wilcoxon's two-sample test with respect to
the most powerful test for this problem. We find
(7.21) d = —2%[4u§+ l6+l+n*ua+—]—§%}i‘—;%—2- n*z] + 0(1)
with n* = {A(I—A)N/B}%G.In this example dN remains bounded as N » =,

In the second example we consider the testing problem (&,9) versus
(@(=+29),0(=—(1-1)6)). Now dN is the deficiency of the two-sample normal
scores test (or van der Waerden's two-sample test) with respect to the
most powerful test based on the difference of the sample means. We cobtain

(7.22) dy = log log N + %(ui—B) + log2+ v+ 0(1),

where y denotes Eulerfs constant (cf. (5.50)). Now dy ~ loglogN » =

as N » =, Note that there is no dependence on 6 or X in this expansion.
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So far in this section we have compared distributionfree tests to the
most powerful test for a simple hypothesis against a simple alternative.
However, all distributionfree tests occurring in this paper - rank tests as
well as the permutation test discussed in section 6 - are invariant under
changes of location and scale. It would therefore be more realistic to
compare these tests to the uniformly most powerful location and scale in-
variant test, if such a test exists. For the two-sample normal location
problem Student's test answers this description and its power would there-
fore be a more suitable basis for comparison than the envelope power. For
the problem of testing (®,9) against (®(e+A6),0(=(1-1)8)) the power of the
most powerful test equals |- @(ua-n*) with n* = {A(I-A)N}%e. Assuming again
that ¢ < GN% < C, e <A< l-eand €' <o < 1-¢' for positive ¢, C, € and €',
the power of Student's two-sample test is given by (6.35) and its deficiency
with respect to the most powerful test is therefore equal to %uii-o(l). It
follows from (7.22) that the deficiency of the two-sample normal scores
test (or van der Waerden's two-sample test) with respect to Student's two—-

sample test for the normal location problem is given by

(7.23) dN= 1oglogN—-:2i+1og2+y+0(l),
where now the expansion doesn't even depend on o. Since both tests are loca-
tion invariant, (7.23) also denotes the deficiency for testing (®,9) against
(¢,2(--6)). '

We conclude this section by comparing the permutation test discussed
in section 6 to Student's test. Theorem 7.2 is an immediate consequence of

theorem 6.1, expansion (6.34) and (6.8).

THEOREM 7.2. Suppose that positive numbers c,c',C,D,e,e',8 and r > 8 exist

such that the conditions of theorem 6.1 are satisfied and that 6 = ¢'N ?. Let
dy denote the deficiency of the permutation test based on the sample means
with respect to Student's two-sample test for testing (F,F) against
(F,F(~~8)) on the basis of XiseeesXy
depending only on c,c',C,D,e, e’ and §, and B > 0 depending only on r such
that

and at level o. Then there exist B> 0

(7.24) d,. < BN 7.
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The case F = & is of course of most interest bécause then the theorem
assercs that for the normal location problem there exists a distributionfree
test whose deficiency with respect to the best location and scale invariant
test tends to zero. We note that the remark at the end of section 6 implies
that ih this case (7.24) may be replaced by dN S»BN_%.\For F # & the theorem
merely shows how closely the permutation test resembles Student's test with

the correct significance level for F.
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8. EXPANSIONS AND DEFICIENCIES FOR RELATED ESTIMATORS

Let Xl""’XN be independent and let (F,G) denote the hypothesis that

Xl""’xm have common d.f. F and Xm&l”"’

T = T(X],...,XN) be the rank statistic given by (2.2) and suppose that the

Xthmcmmm1&f.&'Mt

scores aj are nondecreasing in j = 1,...,N. Define the statistic M by
(8.1) M(X 500 Xy) = dsuplt s T, 00 X XK =t 000 Xomt) > AZaj}
+ hinfle s TXp,. 000X X =t .. Xp=t) < xZaj}.

Under the model (F,F(e-p)), M was proposed as an estimator of u by HODGES
and LEHMANN [1963]. They showed that the normal approximation to the power
of the level } test based on T for contiguous location alternatives can be
used to establish asymptotic normality of M. In the same way we shall show
that a power expansion yields an expansion for the d.f. of N%(M-u). Note
that we donot make the assumption of HODGES and LEHMANN [1963] that the
distribution of T under (F,F) is symmetric about AZaj, which occurs e.g.
when either A = § or when the scores are antisymmetric. As a result the
power expansion involved will be for the test based on T at levela =} +0(N_%)
rather than at level 3}, but for our deficiency computations this will not
make any difference. We shall restrict attention to the case where T is the
statistic of the locally most powerful rank test or its approximate scores
analogue, so that the aj will be exact or approximate scores generated by
the score function —W], with Tl as in (4.15). To ensure that the scores
are nondecreasing we require that the density f of F is strongly unimodal,
i.e. that log f is concave.

Let F be given by definition 5.1, let m(a,F,06) denote the power of the
level o right-sided test based on T against the alternative (F,F(--8)) and

define

' fW?(t)dt
3/2 °

(8.2) a=pe—2B
6{2m (1-0)N}? {[¥](t)dt}

Furthermore define, with Wi as in (4.15),



‘ 3
(t)dt
= o (x)[ 24(1-2)) f‘”l 2
(8.3) L. (x)=0(x) - . (x“+2)
0 288 L0y (1-nmy? {fwf(t)dt}3/2
. ‘
4 J¥j(D)d ‘ 2.3 2
- Y0¥ 5 5 {5(1-30+31) %" = 3(1-6)+617)x}
{[¥](t)dt} '
2 3 2
48(1-31+312) frs(e)dae 4 . (1-21)2 {fe]()de} St 12m0
A(1-ON p) 7% TAOE0N 7, L 3 T i
{[¥](t)de} {[¥](p)ac}
36 2.3
- m)—N {(1"3)\"‘3)\ )x +X}],
- - x¢ (%) I§ 2
L (x)=L.(x) - —2% c“ Y (U, ),
! 0 2NfW%(t)dt j=1 EER
-y~ !
L,G) =Ly(x) - __@2_(19__ J (e a-adt,
2N[¥] (t)dt

N—l

- s xpG) Y g i )Y’
L,(x) =L,x) - —%—— E{ ¥ w.,)—w(—{».
3 0 ZNIW%(t)dt 5= (N R B3 A AV

Probabilities under the model (F,F(<—-u)) are denoted by PF "
3

THEOREM 8.1. Suppose that F e F, that £ is strongly unimodal and thot

3 = - T = T e —j— 3 =
etther aj EW](Uj:N) for j l,00.,N, OP aj W]<N+])fbr_3 Iy.0. N
Let ¢ and C be positive numbers and suppose that e < A < l-e. Then there
exist positive numbers B,61,62,..., with 1imN_>Oo SN = 0, which depend only
on F, ¢ and C, such that

-1

1 - -1
2(M-p) <€) - {1- —eN"2)}| < 6 N
(8.4) IETECIPF:U(N M-p) £8) {1-7(a,F,-EN ?)}| < -
and such that the following statements hold.
(Z) For exact scores aj = —EW}(Uj:N),
(8.5) sup [P <{)\(1—)\)N J“Pz(t)dt}%(M—u)Sx\—i (x)i <8 N_]
|x|zc' F,u 1 ) NT e

79
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(8.6) sup |P -1
Ix|=<C

F,u<{)\(l—)\)N f_‘{’%(t)dt}%(M-u) < x)— iz(x)] < GNN

-y~ .
1
+ BN 32 f (¥ () e (1-0) e
N-l

. . I
(22) For'approxzmate scores a, WI<N+1>

{Ax(1=-2)N J"P%(t)dt}%(M—u) <x) - i3(x) | <s

(8.7) STP |PF,u

|x]<C

and (8.6) continues to hold.

PROOF. In view of (8.1) we have for 6 = -gN ?,

Nol—

1
PF,U(NZ(M—U)S”E) = PF,G(MSO)’

A

Py e(T<AZa ) S Pp g(MS0) < Py (T AZaj).

For 6 = -EN

N

and €' £ a £ l-¢', the conditions of theorem 5.2 are satis-
fied except, of course, that 6 < 0 if & > 0. However, the theorem remains
valid for |6] < DN—%; it was formulated for positive 8 merely because we
were discussing one-sided tests against one-sided alternatives at that

point. It follows that PF e(T==AZaj) = O(N_l) uniformly for |&| < C, so that
3

(8.8) P (NP QMep) < £)

-1
Fo (T A[aj)w(N )

-1 -
]—TT((X,‘,F,"'EN 2) +0(N ]),

where o is the level of the test that rejects if T > AZa . Notlng that
Zaj - i
a =a+0(N ). In view of (5.35) and (5.39) this yields ﬂ(a,F,—EN 2) =
v(&,F,—&N-%)i-O(N_]) uniformly for |£] < C and together with (8.8) this

0 for exact scores, we find from (5.33) and (5. 37) for x=n -'O that

1

proves (8.4). The remainder of the theorem follows from (8.8) and expansions

(5.33), (5.34), (5.37) and (5.38) with x and n  replaced by O and -x. [J

The natural parametric competitorof M as an estimator of p is of course
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the maximum likelihood estimator M'. Under the model KF ” A S (F(-+Ap),
b 5
F(e=(1-A)u)), M' = MA is the solution of
m N
(8.9) A Y v R M) = (1-8) ) vy, - (1-0)M") =0
: i=1 i=m+]

with'wl = f'/f as in (4.1). Note that, in contrast to M, the estimator MA

as well as its distribution under K

The d.f. of MA under K

F,u,A depend on A.

is connected with the power of the locally
F,u,A

most powerful test for HF = (F,F) against K For 6 > 0, this test

| F,0,A"
rejects HF for large values of the statistic

m N
(8.10) 5, = b Lov &) - a-) ) v, (XD
i=1 1=m+1

Let n(cx,F,0,A) denote the power against K of this right-sided test at

F,0,A
level o. Suppose that F is a fixed d.f. with density f that is positive and

five times differentiable on R] and define

IO N LT

(8.11) T(a,F,0,A) = 1-0(u -n) - = el (-2u_+n)
o 288 LNZ {TZIW?(t)dt}B/Z o
T fWa(t)dt T sz(t)dt
4 T4t 2 ~  ~20 48 T4l%2 ~2
* 5 5 5 {—3(ua-1)*-3nud-5n }'FTT 5 5 N
{rszl(t)dt} {t,[¥](t)dt}
3 2 )
{1, f¥ (£)dt} - - N -
+ % 3 ; 3 {8(2u§—1)-4n(u3+3ua)-+8n2(u§-1)-5n3ua4-n4}
{TZJW](t)dt}
36T
) ~ 2
+— {lu=D-nu -n }]"
NTZ

where ﬁ and T, are given by (7.2) and (7.3).

k

LEMMA 8.1. Let F satisfy (5.6) for m, = 5/i, 1 = 1,...,5,_?nd suppose té?t
positive numbers D, D', € and e' exist such that |6| < DN *, |AB] < D'N ?,
€ <A< l-e and €' < o < 1-¢'. Then there exists B > 0 depending only on
F, D, D', € and €' such that

(8.12) Im(a,F,0,A) - n(a,F,0,0)| < BN /2,
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PROOF. The proof proceeds in the same manner as that of lemma 7.1 and again
we omit the details., Under the conditions of the lemma we find that under

K

F,0,A°
s, S
(8.13) P( 5 T < x) = ¢(x-n)
{NTsz](t)dt}2
3
o~ .Y (t)de L
- ¢(2}238n){—2—£—‘t 321 - (2(x2-1 + 2k = 723
N2 {Tszl(t)dt}
4
T, [¥(t)dt . . g
b {330 + NG -1) - 3k 500}
{rszl(t)dt}
48 T4J"P§(t)dt - ]{T3J"P?(t)dt}2 5 3
TR 5 5 N *tg 5 3{4(x - 10x~ + 15x%)
{1, [¥] (©)dt} {t,[¥](D)de}

47 (P =6x2+3) - 8nZ (x3-3x) - 47 (x2-1) + 57%x - 70}

+

36'[4

2
NTZ

[-(x3=3%) = T (x>=1) + n2x + ?{3}] row 3y,

+

3/

The remainder term is uniformly O(N 2) for fixed F,D,D',e and ¢'. This

expansion yields (8.12). 0O

Note that the expansions (8.12) and (8.13) are valid also for negative values
of 6, but that the right-sided test considered here is not locally most
powerful against these alternatives.

If the conditions of lemma 8.1 are fulfilled and if, moreover, f is
strongly unimcdal so that wl is nonincreasing, then we can establish the

connection between m(a,F,6,A) and the d.f. of MA by arguing as in the proof

of theorem 8.1. Writing P for probabilities under K and taking
~1 F’U’A F,U,A
8 = —=(N % we find that
LI
< — < < <
Pp 0,8 (8p<0) = Pp  ZJNTQLmw) < 8) < Pp g (8,500

In view of (8.12) and (8.13) this implies that uniformly for |&|, |x| < C,
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‘ ! ~ -
816 Py (gm0 = 1-7G,E0,) + 00D,

3
| T, [¥](B)de

6(2mv}? {,[¥2(6)aer’/?

(8.15) o =

DNl—

(8.16) PF,p,A({TZNIW?(t)dt}%(MA-U)S x) = &(x)
3 4
T, [¥7(t)dt T, [¥7(t)dt
_ ﬁéﬁ;{' 24 32 1 - (x2+2)__§ 4 21 ' (553-3x)
N? {1, /¥ (D) dt} {1,[¥] (£)de}

48 14fw§(t)dt 3 {T3IW?(t)dt}2 3

e 5 5 Xty 5 3 (x"=4x"-12x%)
{1,[¥] (©)dt} {1, [y (£)dt)
1

36T
- ;’(x3+x)] + O(N_3/2).

NT2

We have already remarked that the d.f. of (MA—u) under KF depends on A
3

H,A
and thus the same problem arises that we encountered in section 7, viz. to

determine the "right" A for which M and M' should be compared. It is easy
to see from (8.16) that the value A = AO that is least favorable for M' in
1
the sense that it minimizes (maximizes) P A({NA(]—X)IW?(t)dt}Z(Mi—u) < x)
3

F,u
for positive (negative) x is given by

3
J¥](B)de 242

3/2 x

1
p0 - LUV
4N? {J¥](0)de}

+ O(N~‘).

However, we shall not take A = AO as a basis for comparing M and M' but we
shall simply choose A = X instead. We advance three reasons for doing so. The
reader who doesn't find these reasons sufficiently compelling should realize
that we are merely granting the maximum likelihood estimator a slight addi-
tional advantage. |

(1). The second order term of AO depends on x just as the second order term
of AO in (7.5) depends on 6. This didn't deter us from choosing A = AO as

a basis for comparison in section 7, but we feel the situation is slightly

different there. In section 7 we were comparing with envelope power and in
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general this means comparing with a different most powerful test for each
alternative (6,A). This being so, there seems to be little reason not to
choose the least favorable testing problem for each value of 6, i.e. to
take A = AO. All we are doing is loéating a curve (6,A,(8)) of least favor-
able alternatives in the set of all alternatives (6,A) .and comparing with
envelope power on that curve only.

Our attitude would have been different, however, if in section 7 we
would ha&e been comparing with the power of the locally most powerful test
rather than with the envelope power. The locally most powerful test is of
course independent of 6 (c.f. (8.10)) and for every fixed A we would there-
fore be comparing with a single fixed test for all 8. In this case it would
still be reasonable to choose A = ) which is least favorable to first order,
but if fW?(t)dt # 0, it would seem to be rather extreme to compute the power
0= Ao(e) which is

least favorable to second order in this case too. After all, for every

of the locally most powerful test at each 6 for A = A

fixed A there would be a single locally most powerful test that does better
than that for all values of 6 except the one for which AO(G) = A, It is
precisely for such sets of alternatives (A fixed, 6 pnknown) that the
locally most powerful test is designed and it seems &nrealistic to assess
its performance only for a different one-parameter set of alternatives
(8,8,(0)).

The present problem for the maximum likelihood estimator is of course
very similar to the one for the locally most powerful test. Again the choice
A= AO depending on x appears to be rather extreme because for every A the
d.f. of the maximum likelihood estimator is more concentrated around u than

this choice would indicate at all but at most two points.

(ii). Even though, in general, the distribution of MA under KF,u,A is not
symmetric about p, most reasonable measures of dispersion are built around
the distribution Zf ‘MA_BI rather than (Mg-u). It is clear from;§8.l6)‘that
PFsu’A({NA(I—A)IWI(t)dt}2 IMA—u|:£x) is minimized by A = A+ 0(N ); itis also
obvious from (8.16) that it makes no difference for our asymptotic results
if we take A = A instead (c.f. the remark following (7.5)). Hence A = X is
the "right" choice of A for our asymptotic comparison of M and M', provided
that the comparison is made on the basis of the distributions of [M-u| and

[M"=ul.
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(iii). Our final argument is the rather more pedestrian one that any choice
of A other than A = A-&o(N—%) would to a certain extent destroy the simplic-—
ity of the main results in this section. We shall elaborate points (ii)
and (iii) after proving theorem 8.3,

We now substitute A = A in (8.14)-(8.16) and find that & reduces to o

as defined in (8.2) and that the expansion on the right in (8.16) becomes

L _ fW3(t)dt
8.17) L' = @(x)-ﬁéﬁg[ ai-a), — (x%+2)
DNa-0N2 {fy](D)de}
4 2
4s(1-3nemn2y T (Dde 3 TTE Iy VY AN A PY COL L
T TA(I-MN 5 5 (5% =3%) + =575 5 5 X
{[¥](©)dt} {f¥] (©)de}
3 2
2 {f¥7(r)dt} 2
(1-22) 1 3 36(1-33431%) , 3
+ =N (x7-4x"-12%) - (=N (x +x)]°

{fW%(t)dt}3
We have proved

THEOREM 8.2. Suppose that F satisfies (5.6) for m, = 5/i, i =1,...,5 and
that £ is strongly unimodal. Let e and C be positive numbers and suppose
that € < A < l1-e, Then there exists B > 0 depending only on F, € and C,
such that

1 - -1 -
(8.18) lgTEC!PF y A(NZ(Mi_U)S ) - {1-m(a,F,-EN Z,A)}[ < BN 3/2,
1 -
(8.19) lsTpclPF | A({A(]—A)N fW?(t)dt}Z(Mi—u)5:x>-L*(x)| < BN /2
x| < 5 H3

There is no unique natural measure to assess the performance of the
estimators M and Mi on the basis of the expansions (8.5)~(8.7) and (8.19)
and consequently there is no unique natural definition of the deficiency of

M with respect to Mi either. Let us, for a moment, indicate the dependence

on the sample size N in our notation and write and M! for M and M'.
P AN )
5

For any real £ we define the deficiency DN(E) of the sequence of estimators

¥
AN

¥ -
U) and of (MA,N u) under P

{MN} with respect to the estimator M by equating the d.f.'s of

{or P at the point

Fou,A F,

M - under P
( NTDN 1) Fou, A

EN"2, thus
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(8.2 ry G s eavh - e, on wsenh,

with the usual convention that the probability on the left is defined by

linear interpolation for nonintegral values of N+D. Of course, one will

normally not be inclined to judge the performance of {MN} with respect to
Mi,N on the basis of DN(E) for one value of £ only, but rafher on the behav-
ior of DN(a) as a function of £. In our asymptotic study this will not make

any difference because the expansions for DN(E) will be found to be indepen-
dent of £.

Turning to the correspbnding tests, we let dN(u,e) denote the deficien-
cy in the usual sense of the locally most powerful rank test (or its approx-
imate scores version) with respect to the locally most powerful test for the
problem of testing HF = (F,F) against KF,G,A = (F(=+X8),F(-=(1-2)8)) at
level u. Since we shall be concerned with negative as well as positive
values of 6, we note that for positive (negative) 6 the tests involved
reject HF for large (small) values of the statistics given in (2.2) and
(8.10), where the scores in (2.2) are exact or approximate scores generated
by —W].
Let F1 be given by definition 7.1 and define

[¥% () at N
8.21) B =it ] oC(¥, (U, ),
’ {f¥{(e)ac} [¥](©de j=1 3:
' -1
N fW?(t)dt | =N )
Dy o =< %-———§~—————§— %+-——§————— J (Wa(t)) t(1-t)dt,
’ {[¥]()ae} [¥{(e)ae -
N
5 fW?(t)dt | g 52
D, , = — ECy(U” )—W(——>>.
N,3 ¢ {fW?(t)dt}z ¢ fW%(t)dt 551 173N 1\ N+1

THEOREM 8.3. Let dN(a,e) be the deficiency of the locally most powerful
rank test with respect to the locally most powerful test for testing Hy
against KF,S,X at level a. Let DN(E) be the deficiency of the Hodges-
Lehmarn estimator associated with the locally most powerful rank test with

respect to the maximum likelihood estimator for estimating w under Ke LAt
3 3
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_ ~1
(8.27) IDN(E)-dN(l-a,—gN ] = o0(1), for ¢ £ £ £ C.

Note that (8.26) and (8.27) hold for exact as well as approximate scores
and that the remainder terms are uniformly ¢(1) for fixed F, ¢, C and ¢.
Tt remains to show that a may be replaced by }{ in (8.26) and (8.27).

If we take A = X in the power expansion for the locally most powerful test

in lemma 8.1 and compare the result with the power expansion for the most

N

powerful test in lemma 7.2, we see that the terms of orders | and N ? agree
and that in the terms of order N—] only certain coefficients differ. More-
over, for A = )\ the conditions of lemma 8.1 are identical with those of
lemma 7.2, This means that if we replace the most powerful test by the local-
ly most powerful test in theorem 7.1, then the theorem will remain valid if

~

some of the coefficients in dN,O are changed. Thus, under the conditions of
theorem 7.1 there exists, for exact as well as approximate scores, an ex-—
pansion for dN(a,e) with a bounded derivative with respect E? o and a-—I
remainder term 0(1). This statement remains correct for -CN %<6 < —cN *?
because the power expansions in lemma 8.1 and theorem 5.2 are valid for
negative 6 too (c.f. the remark in the proof of theorem 8.1) so that the
only change in the expansion for dN(u,e) is a change of sign of u, to account
for the switch from the right-sided to the left-sided tests. Noting that

c <€ |£] £ C and that a = %1-0(N_%) we find that we may indeed replace a by }
in (8.26) and (8.27) without affecting the right-hand side and its uniform—
ity for fixed F, ¢, C and e. This proves (8.22) and the theorem. [J

A number of comments should be made at this point. First of all we
recall remarks (ii) and (iii) in our discussion earlier in this section
concerning the choice of A for which M and M' should be compared. Suppose

we define deficiencies D&(g) by

_1
- < 2 = 7 - < 2
PF’u(IMN+D& pl < N ), PF,u,A(IMA,N ul < gN %)

for that value of A that minimizes the right-hand side. In view of remark
(ii), theorem 8.3 implies that D&(E) is also asymptotically equivalent to

the DN i

b

those of ABZ (1976) where deficiencies are defined in terms of a positive

Thus our results can be thought of as corresponding exactly to
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quantile of the symmetrically distributed centered estimators in the one-
sample problem. Since the deficiency is asymptotically independent of the
value of £, we obtain the same answers for def1c1enc1es based on reasonable
functionals of the distributions of NZIM—uI and NZIM'—ul, such as the
asymptotic second moment. This agrees with what was found in the one-sample
case in ALBERS (1974).

The choice A = X is less obvious in equation (8.20) which defines
DN(€). In remark (iii) we pointed out that if we would not choose A= A+—0(N-%)a
then our results would become essentially more complicated. The first source
of trouble is the difference of the significance levels o and o given by
(8.2) and (8.15). Except in the tr1v1a1 case where IW (t)dt = 0, we find
that (6-a) is of the order of N~ 2(A A) and a change of the order of

2(A—A) in the level of significance of one of the two tests produces a
change of the same order in its power. Unless A- ) = O(N_%) such an effect
is not negligible for our purposes and this means that it would no longer
be true that the deficiency for the estimators is asymptotically equivalent
in the sense of (8.22) to the deficiency of the parent tests at the same
level. In fact a correction term of the order of N%(A—K) would have to be
introduced in (8.22) to ensure its vélidity. Note that there is no contra=-
diction here with the fact that in the proof of theorem 8.3 we could change
o to } with impunity, because there we were concerned with the same change
of level for both tests simultaneously. A second unpleasant consequence of
choosing A = AO (or even A = X*—bN—% with b independent of x) would be
that the expansions for DN(a) would no longer be independent of &. By taking
A = AO, we would therefore destroy at one stroke the two most striking
features of theorem 8.3,

Next we note that upon formal substitution of o = 3 and 6 = 0 the
expansions for dN in theorem 7.1 reduce to the expansions for DN(E) in
theorem 8.3. This shows that for every & # 0, DN(E) is nonnegative for suf-
ficiently large N. ’

In the proof of theorem 8.3 we indicated how one can obtain expansions
for the deficiency of the locally most powerful rank test or its approxi-
mate scores analogue with respect to the locally most powerful test. At

that point there was no need to produce these expansions, but we shall do
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so now because they may be of independent interest. The simplest way to
describe these results is the following. In the formulation of theorem 7.!
change the words "most powerful test" to "locally most powerful test' and

KF,G,AO to KF,S,A; change dN,O in (7.8) to

4
4f¥](t)de

1 2 * 2 *
(8.28)  d {3(ua—])-2n ua}— 12(ua+3—2n ua)].

1
N,o‘Z'S‘[ 2

2
{jw](t)dt}

With these changes theorem 7.1 holds. When comparing the expansions for dN
in (7.8) with those based on (8.28) we see that the expansions in (7.8)
consist of three parts. The term involving (2ua—n*)2 is due to the fact
that comparisons with the mostpowerful test were made for A = AO rather
than A = A (c.f. the discussion following theorem 7.1). The other terms
involving n*2 represent the deficiency of the locally most powerful test
with respect to the mostpowerful test for A = A, The remaining terms are
due to the transition from the locally most powerful test to the two rank
tests. All four tests are efficient to second order, i.e. for each pair
the deficiency is O(N%), and the reason for this is that the terms of
orders 1 and N—% are the same in all four power expansions (c.f. the
discussion following theorem 7.1).

We conclude with one example of theorem 8.3, For estimating p in the
normal location model (®(=+Ap),d(s=(1-2)u)), the deficiency of either one

of the Hodges-Lehmann estimators associated with the normal scores test

and with van der Waerden's test with respect to the difference of the sample

means is given by
(8.29) DN(E) = loglogN - % + log2 + v + 0(1),
where y is Euler's constant as in (5.50). Note that this expansion is the

same as expansion (7.23) for the deficiency of the normal scores test (or

van der Waerden's test) with respect to Student's test for any a.
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(A-S) E(X,O) = A, EO,I(X’O) = -)\(i'l)w](x), ;O,Z(X’O) =>\(1->\)(1‘2>\)1P2(X)s
Po,3:0) = A= L(1-30+33%) 43 ()= (1-0) 1, G ()

+ 3A(l—k)w?(x)} s

- ~ 2.~ 3/2 3
(A.6) lpo,ll < b X, lpo,zl < b, (X,*x)) s |p0,3| < by(xg*xy' *X))

~ 4/3, 2, 4
8,4 = b 05" 0G0

where bl""’b are positive constants.

4

Define w. = E_ P. as in (3.16).
J H j (

THEOREM A.l. Suppose that positive numbers C, C' and e' exist such that
z a;.' < CN, 0 <0 < €' and (4.2) is satisfied. Then there exists B > 0
depending only on C, C' and €' such that

62
(A.7) ) aj(ﬂj—A) = A(1-2){-6 ) ngle(zj)+(1—23)7T ) a By, (2;)

3
0 2 3

]M1| < B>/ %" ;
(A.8) ) aZ(n.-1) = A(1-A){-8 ) ;2E Py (2 )+(1—2A)93-Z a%E y.(Z)) + M
’ it IFT 2 ITFT2] 2’
M, | < B 463
(A.9) J ad(r.-1) = =A(1-A)8 DBy 2 sy
' it JFT] 3
|M3| < py!3/1242 ;
2 2 .2, . 22¢ 2 2
(A.10) ) ajEH(Pj—A) = A7(1-0)%" ) ajEle(Zj) i P

(51453

3

M| <B
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2 2.2 2
a.11)  oyQapo) = 22 (1-1) %% page @)+,

2 24/5 19/5 3 1/3

M| < B{N® CEpl 1 a2 - By, 20)]7]

3 ' b 2 v
+ 870 (Jasw (20)op(Jay, (2)) + 0 op(Jay, (20} 3

{Ag(X ) 4 4
(A.12) . H\h(X ) - )\) < B6 H
9/4 /4
(A.13) {Z{EH]Pj - nj|3}4/9} < 63[Z{E lv, (z )-Eg¥, (2, )13 4/9] /4P,

PROOF. Although the proof is very similar to that of theorem Al.l and the

relevant part of corollary Al.l in ABZ (1976), there are additional compli-

cations due to the fact that now 50 2(x,O) $ 0. We begin by noting that the
9

distribution of g(Xl,t) under F is that of X, under AF(x) + (1-A)F(x-t), so

1
that (4.2) and (A.6) imply the existence of B1 > 0 depending only on C' and
such that

m.
(A.14) sup{E| By ; (X,,v8) | '} 0<v<1}<B

where m, = 6, m, = 3, m, = 4/3, m, = 1.
Using lemma Al.1 of ABZ (1976) together with 2 a? < CN and (A.14), we

find that

5] ~
|M]| <57 sup{) |aj}EF|pO’4(Zj,v9)I: 0<v<1}
: i
14 B.C
CN) *8 ~ 1~ 5/4.4
< (—%}——‘ Sup{NEFlpo-,A(Xl,\)e)lZ 0<v< 1} < _—ZZ_N / e,
63 2~
]MZI < 7;-sup{z ajEF|pO’3(Zj,ve)|: 0 <v <1}
6 (v 8\t N 4/3,3/4 :
<= \Zaj/ sup{[NEF|p0,3(X1,ve)[ 1777 02 v <0}
1)
P18 5743

IA
=
@
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IA

2 :
8 3 4~
3| - sup{) lajl EF[pO,Z(Zj,vQ)I: 0<v<1})

2 gl/3:374
%?'<Z|aj|9/2)2/3(NB])1/3 < 'J‘TE""'N]3/1292

IA

9

6 2 ~
|M4l < 7;-sup{2 ajEF[2|P0,3(Zj’Ve)[
+ 6150,1(2:1,\)8)50’2(2:],\)9)!]: 0 < v < l}
3 1
o [o(2a8)’ 6(7a%) avs )| }(5/4,3
< % | (Xa (NB ) \zaJ/ (NBl)ZJ < (Bz+B e ’
%g(X ) 4
H(h(X y T A) < o” sup{EFﬁg (X[5v8): 0 < v < 1} < B%/3e4 ’

which proves (A.7) - (A.10) and (A.12). To establish (A.13) we note that

lp(zj,e) - EFp(Zj,e>l < elpo,,(zj,o) - EFp0,1<zj,o)l
8 i ~ =
+ TT-J 2(1—v){|po’2(Zj,v8)l + EF|p0’2(Zj,v6)|}dv.
0
Hence
1
383 ~ 3
EHIPj—n |~ < 16 Flw (2B, (z )| +46° { 2(1—v)EF]pO’2(Zj,v6)| dv,
0
Z{EHIPj-nj]3}4/9 4/32{E lv, (Z)-Egb, (z ){3 4/9+2(B]+1)N98/3 ,

and (A.13) follows.

It remains to prove (A.11). We have

PG, = 4+ (=0 E () = -0 (=205, ()
£? ] ~ ~ £3 1 2~
= TZ_J 2(1—v)(p0’2(x,vt) - pOZ(x’O))dV=-?T J 3(1-v) p0’3(x,vt)dv,
0 0

and as a result



U
[¥5)

B = A+ A=, (0 = B (-0 (=207, (0)
1

2 ~ ~ 6/5
< I?T'f 2(l—v)(pO’z(x,vt)—pO’z{x,O))dv|
0
1
3 ~ L5
x l%; J'3(l—v)2p0’3(x,vt)dv§4j“
0
1
24/5

l3

IN

{14]20-9) (B, Gx,vE) =y ,(x,0))dv
0

]

1 .

2~ )
J 3(1-v) p093(x,vt)dv
0

|4/3}

+.
| e

|

1
2 ~ ~ ~ 473.
e A R N e RO T 1SN CRVOY B
0

Similerly,
3G, t) = &+ A= () - ék(l—x)(l-ZA)tzwz(x)|3/2
1 ) .
< ltl2]/5 J {IEO’Z(x,vt)IB + |SO’2(X,O)|3 + IEO 3(x,\)t)
0

14/3}dv@

It follows that
2 ~ * 2
oF(zaj{p<zj,e>+x(1—x)ewl(zj>-%x(1—x><1-zx>e wz(zj>})

<N J a?EF(E(Xl,e)—k+x(1—k)ew1(X])—%A(l—k)(1—2%)82w2(xl))2

1
< 3BICZN2924/5 ,

]covF<Zaj{5(zj,e)+x(1fx)e¢1(zj)—gx(l-x)(1—2x)92¢2(zj)}, Eaj¢1{25%¥

~ 2
< 8] Ja,(3(2,,0)=A41 (1-0) 09, (Z)=BA (1-1) (1-20)8 w2<2j>}l3/212/3

3]1/3 <

< [BGl] a, (b (25) - By, (2,))]
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3/2! /3

J

1
< [(z|a§|>2NEF|5<xl,e)-x+x(1-x>ew,(x,)- A (1-2) (1-21) 6 ¥y (%)) |

1/3

X

[EglD 2y, (2 - Bgu (2, )71

IA

(3m 3 e 0 | ] a2 - B, 20172

, 2
lcov /Za {p(z e)+x(1—x)e¢1(zj -Ix(1-2) (1-2)0)6 wz(zj)L ) ajwz(zj)>|

1/2 1/4 12/5

< (3B)) oF(Zajwz(zj>) .

These inequalities ensure that there exists B, > 0 depending only on B

2 1

and C such that
/ ) < - -1 - - 2 \
|0 Za P. Zaj{k(l A)@wl(Zj) sA(1=2) (1-2))6 wz(Zj)}/I

2 24/5 19/5 1/3

< B,(N6 (E ]za W, (z )-Egb, (z ))I

22/5
+ N6 / GF(zaij(Zj))} .

. 22/5 2 24/5
Since N6 oF(Zajwz(Zj)) < N8 +

mediately and the proof of the theorem is complete. [

4 2 .
8 GF(Zajwz(Zj)), (A.11) follows im—

COROLLARY A.1. Suppose that (3.1) and (4.3) hold and that positive numbers
c, C, C', D, € and €' exist such that (3.10), (3.19), (4.2) and (4.4) are
satisfied. Let K, Gy K, Ei and n be defined by (3.17), (3.18), (4.5), (4.6
and (4.7). Then there exists B > 0 depending only on c, C, C', D, € and €'
such that '

a.m. N -5/4
(A.15) supiK(x - 1 J 5 1> - K(x—n)| < B{N
X (r(1-0)zaj }2

+ N 263[Z{E |¢ (z )-Egb, (z )| 4/9} 9/4

3/2
N34 3[2{E 4y (Z)E 0, (2.) 2/3} } ,
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2
Ta Bty ()] |zalE_y (Z.) )
(A.16) 0 2 sz <t e i Fw;{ i < B2, ——L:iLL—-s BN 2,
(Za )2 ; Zaj (Za )3/2
9 og(Za.wl(Z-)) -1 ~13[ 3 4/9]9/4
(A.17) 8 ] 1 < B{ﬁ + N ‘67 Y{E_|v. (Z,) - E - (z )|} }
Za% ; I. F'h ,J. J
J .

and all other terms occurring in «
-1

0,...,35 are bounded in absolute value by

BN

PROOF. In this proof 0(x) will denote a quantity that is bounded by B]|X|
with Bl depending only on ¢, C, C', D, € and €'.

We begin by noting that (A.16) and the last statement in corollary A.l
are immediate consequences of Holder's inequality, (3.10), (4.2) and (4.4).

Also
(A.18) Za AN )) <1+ 6% /Za v, (2, ))

3
1+ 0B, | ] a; (b (Z,) - EFw1<zj))l3

IA

3[ 3,1/313
1 + 6 LZ |aj]{EF|w1(Zj) Eq¥, (z )7} }

IA

IA

3(v 4\3/4] 3 4/9]9/4

1 + 0 X E Z. E z ,
+ \ZaJ/ [2 { Flwl( J) ¥ ¢ )| |

and in view of (3.10) and (4.4), this implies (A.17). For later use we note

that similarly

1

2 \ o bl ) 2,2/3]3/2
(A.19) oF(Zajwz(zj)} LZ{E (w (z )~ Egv, (Z )) | .

It remains to prove (A.15). Since (A.15) is trivially satisfied for
N < (D/e')z, we may assume that O < 6 < ¢' so that theorem A.l applies.

Because of (3.1), Z a n z a (ﬂ -A). In view of the bounds obtained

above, we can truncate expan51ons (A 7) and (A.8) to
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62
(A.20) y a;ms = A(1-0){- 8 z a;Eph, (2)+(1= 2 & 5 ) a By, (2, )} +0(Ne7)
= =A(1-A\)6 ) ajEle(Zj) + O(Ne ) = 0(NB),
' 2 2 S
(A.21) ) aj(nj-x) = =x(1-\)6 ) aiEpy, (Z)) + 0(1) =0(?).

Using (A.8) - (A.11), (A.20), (A.21), (3.10), (3.19) and (4.4) we expand

o ,a. and find

02+ s
- -5/4_,19/5 1
(A.22) sgpIK(x) - K(x)| = O(N /46197 [EF| Y aj(wl(zj) - Ele(Zj))|3] /3
-1.3 > [ > -1.4 2f ))

+N 6 oF\Zajwl(zj) oF\Zajwz(zj) +N o oF\Zajwz(zj) ,
where
(A.23) Kx) = o(x) - ¢(x) | & H (),

k=0

- - \%

(A.24) o = ( 2°) N 1o ) aEpd) (z )
%3
~ o~ 1 Ny 2.4 2
a =8 3 A(I=2) (1-20) 787 {) ajEsz(Zj)} ,
j
1

Ao {x(a-03¥*  ..2.3 2

a, =T, + 222—7;575— (1-20) %8~ ) aiEpy, (2)) ) aEpb,(Z))

G, =9y - TE?J_E;E (1-202%0% § a Y a. By (25,

Za
&k =5 for k= 4,5,

with ﬁk as given by (4.6). By applying elementary inequalities (A.22) may

be simplified to

4.25)  sw |k - KRG = 0(3‘5/4 Pl I] a0, @) - B @)

+ N_S/4 30§<Za w (Z. )>>
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With the aid of (A.7), (A.20) and the bounds obtained in the first part
~ : -1
of the proof we now expand K(x—Zajwj{A(l—k)Zai} *) about the point (x-n) and

obtain

/ i \ l = / / + : ( j \\

A.26 5/4

( 7) sup]K\x PR %} / K(x n)l O\N N '@ UF ia.wl(Z.)}/
J

PNl

with K as given by (4.5). Combining (A.25), (A.26), (A.18) and (A.19) we
see that (A.15) and corollary A.1 are proved. O
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