stichting mathematisch
 centrum

DEPARTMENT OF MATHEMATICAL STATISTICS SW 45/76 MAY
J.M. BUHRMAN

IESTS AND CONFIDENCE INTERVALS FOR THE DIFFERENCE AND RATIO OF TWO PROBABILITIES

Prepublication

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.w.0), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.

Tests and confidence intervals for the difference and ratio of two probabilities *)
by
J.M. Buhrman

SUMMARY

FISHER's (1925) test can deal with the hypothesis of equal probabili-. ties of success of two experiments A and B. The test requires a fixed number of experiments of both kinds. If the experimental design is changed into randomizing the numbers of experiments A and B, other kinds of hypotheses can be tested and exact confidence intervals can be constructed.

KEY WORDS \& PHRASES: Bernoulli trials, confidence intervals, experimental design, linear hypotheses

[^0]Let the experiments A and B have probabilities of success p_{1} and p_{2} respectively. If A is performed n_{1} times, and $B n_{2}$ times, and X_{1} and X_{2} represent the numbers of successes, then the conditional distribution of X_{1}, given $X_{1}+X_{2}=r$, can be used for testing any hypothesis concerning $\theta=p_{1}\left(1-p_{2}\right) /\left(p_{2}\left(1-p_{1}\right)\right)$, because for a fixed value of θ this conditional distribution is independent of p_{1} and p_{2}. In particular, if $\theta=1$, which is equivalent to $\mathrm{p}_{1}=\mathrm{p}_{2}$, this conditional distribution is the hypergeometric distribution

$$
P\left(X_{1}=x \mid X_{1}+X_{2}=r\right)=\binom{n_{1}}{x}\binom{n_{2}}{r-x} /\binom{n_{1}+n_{2}}{r}
$$

This result was given first by FISHER (1925), and thorough1y discussed by BARNARD (1947).

We now turn to the randomized design. This consists of letting the number of experiments of type A be binomially distributed with parameters n and π. So let us define N_{1} as a random variable with a binomial-(n, π) distribution, and $N_{2}=n-N_{1}$. Then we denote by S_{1} and F_{1} the number of successes and failures among N_{1} A-experiments and with S_{2} and F_{2} the analogous numbers of N_{2} B-experiments. All outcomes are given in table 1.

Table 1. Outcomes with the modified experimental design and four examples to be discussed in section 2 and 3.

S_{1}	F_{1}	N_{1}	12	30	42	20	36	56	22	26	48	2	39	41
S_{2}	F_{2}	N_{2}	30	28	58	25	19	44	38	14	52	10	49	59
S	F	n	42	58	100	45	55	100	60	40	100	12	88	100
				(a)			(b)			(c)			(d)	

It should be noted that $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~F}_{1}, \mathrm{~F}_{2}\right)$ has a multinomial distribution with parameters $n, \pi p_{1},(1-\pi) p_{2}, \pi\left(1-p_{1}\right),(1-\pi)\left(1-p_{2}\right), S_{1}, S_{2}, F_{1}$ and F_{2} can be thought of to be obtained as follows. A total of n times one gambles with probability π whether experiment A must be performed, if not B is performed. Every time one of the four outcomes occurs and S_{1}, S_{2}, F_{1} and F_{2} are the
numbers these outcomes occur.
2. TESTS AND CONFIDENCE INTERVALS WITH RESPECT TO $\mathrm{p}_{1} \pm \mathrm{cp}_{2}$

The marginal distribution of $\mathrm{S}_{1}+\mathrm{F}_{2}$ is binomial with parameters n and $\pi p_{1}+(1-\pi)\left(1-p_{2}\right)=\pi p_{1}-(1-\pi) p_{2}+1-\pi$. The marginal distribution of $S_{1}+F_{1}$ is binomial with parameters n and $\pi p_{1}+(1-\pi) p_{2}$. This means that any test concerning $\pi p_{1} \pm(1-\pi) p_{2}$ can be performed. For a certain hypothesis $p_{1} \pm \mathrm{cp}_{2}=\mathrm{d}$ the experimental design must be determined by means of the choice of $\pi=1 /(1+c)$. Then

$$
\pi p_{1} \pm(1-\pi) p_{2}=\left(p_{1} \pm c p_{2}\right) /(1+c) .
$$

Suppose $H_{0}: p_{1}-\mathrm{cp}_{2}=\mathrm{d}$. Then under $\mathrm{H}_{0} \mathrm{~S}_{1}+\mathrm{F}_{2}$ has a bin($\left.\mathrm{n}, \mathrm{p}^{*}\right)$ distribution in which

$$
p^{*}=\pi p_{1}-(1-\pi) p_{2}+1-\pi=\left(p_{1}-c p_{2}\right) /(1+c)+c /(1+c)=(d+c) /(1+c)
$$

The test for H_{0} rejects if $S_{1}+F_{2}$ falls into the critical region of the $\operatorname{bin}\left(\mathrm{n}, \mathrm{p}^{*}\right)$ distribution.

A confidence interval is constructed as follows. Suppose an observation of $S_{1}+F_{2}$ results in a confidence interval $\left(p_{\ell}^{*}, P_{r}^{*}\right)$ for p^{*}. Then

$$
\mathrm{p}_{\ell}^{*}<\left(\mathrm{p}_{1}-\mathrm{cp} \mathrm{p}_{2}+\mathrm{c}\right) /(1+\mathrm{c})<\mathrm{p}_{\mathrm{r}}^{*}
$$

is equivalent to

$$
(1+c) p_{\ell}^{*}-c<p_{1}-c p_{2}<(1+c) p_{r}^{*}-c .
$$

In particular, a confidence interval for $p_{1}-p_{2}$ is obtained by a choice of $\pi=\frac{1}{2}$ as

$$
\left(2 p_{\ell}^{*}-1,2 p_{r}^{*}-1\right)
$$

The following example shows that this procedure may give a confidence interval which contains 0, notwithstanding the fact that FISHER's test applied to the same outcomes, would reject the hypothesis $p_{1}=p_{2}$; the reason is that the confidence interval is based on another test. In example (a) of table $1 S_{1}+F_{2}=40$, which gives as a 95% confidence interval for $p^{*}:(0.31,0.51)$, as found from the charts in Biometrika Tables (1970). The corresponding interval for $p_{1}-p_{2}$ is ($-0.38,0.02$).

If we apply Fisher's test, disregarding the fact that the numbers of experiments were obtained as random variables, which can easily be shown to be allowed, we have

$$
\mathrm{P}\left(\mathrm{~S}_{1} \leq 12 \mid \mathrm{S}_{1}+\mathrm{S}_{2}=42, \mathrm{~N}_{1}=42\right)=0.0168<0.025
$$

The opposite can occur as we11. The outcomes of table 1 (b) give for $p_{1}-p_{2}$ the 95% confidence interval $(-0.42,-0.02)$. FISHER's test gives

$$
\mathrm{P}\left(\mathrm{~S}_{1} \leq 20 \mid \mathrm{S}_{1}+\mathrm{S}_{2}=45, \mathrm{~N}_{1}=56\right)=0.0284>0.025
$$

and does not reject $p_{1}=p_{2}$.
3. TESTS AND CONFIDENCE INTERVALS WITH RESPECT TO $\mathrm{p}_{1} / \mathrm{p}_{2}$

The distribution of S_{1} conditioned on $S_{1}+S_{2}=s$ is binomial with parameters s and $p^{\prime}=\pi p_{1} /\left(\pi p_{1}+(1-\pi) p_{2}\right)$. Since p^{\prime} depends on p_{1} and p_{2} only through p_{1} / p_{2}, this gives the opportunity to test $p_{1} / p_{2}=c$ for any positive c. Here the choice of π is free. Numerical investigations (BUHRMAN, 1975) show that $\pi=\frac{1}{2}$ is a reasonable value for most c. This consideration is important since for the construction of a confidence interval a test must be available for all values of c. As in section 2 an example shows that 1 may belong to the confidence interval for p_{1} / p_{2}, while FISHER's test rejects $p_{1}=p_{2}$. The outcomes of table 1 (c) give as a 95% confidence interval for $p^{\prime}:(0.25,0.51)$. The corresponding interval for p_{1} / p_{2} is found by

$$
0.25<\frac{\pi p_{1}}{\pi p_{1}+(1-\pi) p_{2}}<0.51
$$

which is, with $\pi=\frac{1}{2}$, equivalent to

$$
0.33<\mathrm{p}_{1} / \mathrm{p}_{2}<1.04
$$

However,

$$
\mathrm{P}\left(\mathrm{~S}_{1} \leq 22 \mid \mathrm{S}_{1}+\mathrm{S}_{2}=60, \mathrm{~N}_{1}=48\right)=0.0049
$$

The opposite occurs in example (d), where the 95% confidence interval for p_{1} / p_{2}, is ($0.04,0.96$). However,

$$
P\left(S_{1} \leq 2 \mid S_{1}+S_{2}=12, N_{1}=41\right)=0.061 .
$$

Although examples like (d) can be found, it should be stressed that for testing $p_{1} / p_{2}=1$ FISHER's method should be preferred, since its power is in general a lot better than that of the method described above.

It should be noted, that with inverse sampling hypotheses concerning $\mathrm{P}_{1} / \mathrm{p}_{2}$ can be tested. Experiment A is repeated until f_{1} failures occurred, B is repeated until f_{2} failures occurred. Now N_{1} and N_{2} have negative binomial distributions and the conditional distribution of N_{1} given $N_{1}+N_{2}$ depends on p_{1} and p_{2} only through p_{1} / p_{2}, but is slightly more complicated than the distribution used above. Moreover, the total number of experiments that can be done, may be limited, so that the investigator may fail to obtain the prescribed numbers of failures.

ACKNOWLEDGEMENT

This paper was written after valuable discussions with Prof.Dr. J. Hemelrijk.

REFERENCES

BARNARD, G.A., (1947), Significance tests for 2×2 tables, Biometrika 34, 123-37.

BUHRMAN, J.M., (1975), Linear hypotheses concerning two probabilities, Report 75-15, Department of Mathematics, University of Amsterdam.

FISHER, R.A., (1925), Statistical Methods for Research Workers.
PEARSON, E.S. \& H.O. HARTLEY, (1970), Biometrika Tables for Statisticians, Volume I.

[^0]: *) This paper is not for review; it is meant for publication elsewhere.

