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SUMMARY 

The relative performance of two statistical tests of a hypothesis for 

large sample sizes is often investigated by means of asymptotic relative 

efficiencies in the sense of Pitman or Bahadur. Pitman efficiencies are 

directed at local alternatives, Bahadur efficiencies at fixed (non-local) 

alternatives. The present paper reviews some methods and results on Bahadur 

efficiency with special attention to probabilities of large deviations, 

which play a key role in the computation of Bahadur efficiencies. 
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Let 00 c 0 and suppose H: 8 E 00 is a hypothesis to be tested against 

8 E 0 1 = 0\00 . If n observations ~ 1 ,~2 , .•. ,?En are available and !n is a 

test statistic based on these observations, t = t (s) depends on sonly 
-n n - -

through its first n coordinates. Without essential loss of generality we 

assume that His to be rejected for large values oft. For each real c we 
. -n 

obtain a test of H by considering the critical region {s: t (s) ~ c}. The 
n 

power function of such a test is P8 (t ~c) as a function of 8 and its size 
-n 

is defined by 

For O < S < 1 and 8 E 0 1 let en = c (S,8) be defined by 
n 

(I. 1) P8 (t >c) ~ S ~ P8 (t ~c ). -n n -n n 

Then 

( 1 • 2) a (S,8):= sup {P8 ,(t ~c ): 6 1 E 00} 
n -n n 

is the minimal size of a one-sided test based on t for which the power at 
-n 

6 is at least equal to s. 
So far we have considered a fixed sample size n. Suppose that for each 

n E JN a test statistic t is given. By an appropriate choice of critical 
-n 

values tests of H may be obtained for each sample size at any desired sig~ 

nificance level a. For a given sequence t = {t }, O <a< S < I and e E 0 
· -n 1 

we define 

(1.3) Nt(a,S,8):= min {n: am(S,6) ~ a for all m ~ n}, 

i.e. the minimal required sample size of level-a tests based on {t} with 
-n 

power~ Sate. 

Suppose we have two sequences of test statistics, {t} and {t }, for 
-n -n 

testing H. The relative efficiency of {t} with respect to {t} is then 
-n -n 

defined as 



( I • 4) e,..., (a,S,8):= N (a,B,8)/N~(a,B,8), 
t,t t t 

where O <a< B < 1 and 8 E 01• A value of the relative efficiency (1.4) 

larger than one indicates that, for the given a,B,8, the test statistics 

{t} are to 
-n 

be prefered to {t }, since with {t} fewer observations are 
-n -n 

needed to attain a power Bat 8 for the given level a than with {t }. 
-n 

3 

Although (1.4) is a good measure for comparing the relative merits of 

two sequences of test statistics, it is not very well suited for practical 

use because of its dependence on three arguments. Moreover, it is often 

hard to compute. To avoid these difficulties, various limiting procedures 

have been suggested to obtain more manageable measures. All these limiting 

procedures have in connnon that the sample sizes N appearing in (1.4) tend 

to infinity. We mention three such procedures: 

(i) keeping a and S fixed, let 8 + 00 E 00 ; 

(ii) keeping Band 8 fixed, let a+ O; 
(iii) keeping a and 8 fixed, let St I. 

To each of these limiting procedures corresponds a concept of asymptotic 

relative efficiency. 

DEFINITION I.I. Let {t} and {t} be two sequences of test statistics for 
-n~ -n 

testing H, where t and t are based on n observations (n=l,2, ... ). 
-n -n 

(i) If 00 E 0 is a boundary point of 0 (in some topology on 0), 0 0 

p 
e~ (a,B,8 0) := lim e~ (a,B,8) t,t t,t 

8+80 

(O<a<S<l) 

is the Pitman efficiency of {t} with respect to {t }, 
-n -n 

(ii) 
B 

e~ (8,8):= lime~ (a,8,8) 
t,t a+O t,t 

is called the Bahadur efficiency of {t} with respect to {t }, and 
-n -n 

(iii) 
HL 

e~ (a,8):= lime~ (a,8,8) 
t,t Btl t,t 

is called the Hodges-Lehmann efficiency of {t} with respect to {t }, pro-
-n -n 

vided these limits exist. 
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These asymptotic relative efficiencies are not as difficult to compute 

as the efficiencies defined by (I.4). Since Pitman efficiency usually does 

not depend on a or 8 and Bahadur efficiency as a rule is independent of 8, 

these efficiencies are also easier to interpret. Little experience has been 

had with Hodges-Lehmann efficiency and we will therefore not discuss it 

further. 

Pitman efficiency, introduced by E.J.G. Pitman in 1949 [25], is a 

classical tool for comparison of the power of two tests at near alternatives 

for large sample sizes. On the other hand Bahadur efficiency, first proposed 

by R.R. Bahadur in 1960 [2], can serve as a yardstick to compare the perfor­

mance of two tests at fixed alternatives for large samples (and small sig­

nificance levels). 

There is extensive numerical evidence that in many problems the (asymp­

totic) Pitman efficiency is also a good measure of the behaviour of the res­

pective powers for moderate sample sizes. A less satisfactory feature of 

Pitman efficiency is its insensitivity to small power differences. As a 

result it often happens that two different tests for the same testing prob­

lem have Pitman efficiency one with respect to each other. One way of over­

coming this difficulty is the introduction of deficiencies; in a recent 

paper [I] in this journal W. Albers has given an exposition of this concept 

and some of its results. An alternative approach is to compute Bahadur effi­

ciencies in the hope that they may discriminate between the two tests. 

It is a definite advantage of Bahadur efficiency that it is often more 

sensitive to differences in power than Pitman efficiency. On the other harid, 

since Bahadur efficiency usually is a non-constant function of 8, it is less 

convenient to work with. Another feature of Bahadur efficiency is that it is 

strongly influenced by the extreme tails of the distribution of the test 

statistic. Unfortunately, there is little numerical evidence so far that 

Bahadur efficiency is close to (1.4) for moderate values of a (and hence 

for moderate sample sizes). 

Now let us introduce some notation and turn to the actual computation 

of asymptotic relative efficiencies. Throughout this paper~ denotes the 

distribution function (df) of the standard-normal distribution, ~ its dens­

ity function and ~-l the inverse function of~- The indicator function of a 

set A is denoted by IA (i.e. lA(x) = l if x EA and = 0 otherwise). 
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By a~ b we mean that the ratio of a and b tends to one under specified con­

ditions. 

In many testing problems Pitman efficiencies can be found with the aid 

of the following well-known result (cf. PITMAN [25]). 

THEOREM I.I. (Pitman). Let 0 = lR, 00 = (-00 ,00]. Let {!n} be a sequence of 

test statistics such that P8 (t ~a) is non-decreasing in G for each a E JR 
-n 

and 

(I. 5) 
l 

lim P8 (n 2 (t -µ(8 ))/a(e )~x) = ~(x) 
-n n n 

n~ n 

-1 
for x E JR and all en= e0 + kn 2 , k ~ O, where µ(8) is a function with a 

right-hand derivative µ'(e 0) > 0 and a(e) 'is a function continuous from the 

right at e0 • If {!n} is a second sequence of test statistics satisfying the 

same conditions, but withµ and a replaced byµ and;, then 

(1. 6) 

for all O <a< 8 < I. 

Bahadur efficiencies may be derived by way of the next theorem. 

THEOREM 1.2. (Bahadur). If the sequence of test statistics {t} satisfies 
-n 

( I. 7) I lim -- log a (8,8) 
n n n~ 

for some function c! of 8 and e (0<8<1,8E0 1), then 

(1. 8) for a+0. 

Hence, if {!n} satisfies the same condition, but with c! replaced by 

( I. 9) 
B 

e~ (8,8) t,t 

for all O < 8 < I and e E 0 1• 

B 
C~_, 

t 
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PROOF. Since (1.9) is an itllllediate consequence of (1.8), it suffices to 

prove (1.8). Write N = N (a,S,8). We 
-1 a t B 

first show that N ➔ 00 as a+O. By 
.a B 

(1.7) -n log an(S,8) < 2ct(S,8), or equivalently, a (S,8) > exp(-2nc (S,8)) 
n _ B t 

for all sufficiently large n. Hence, for any such n, a< exp(-2nc/S,8)) en-

tails N ~ n and N ➔ 00 follows. 
a a 

The definition of Na implies aN (S,8) 
a 

~a< aN _ 1(S,8) or 
a 

I 
N 

a 
log aN _1(S,8) < 

a 

1 
N log a~ 

I - N log aN (S,8). 
a a a 

B 
By (1.7) the extreme members tend to ct(S,8) as a+O, whence -(1.8). 0 

As an illustration we consider a typical example. 

EXAMPLE I.I. Let x 1,x2 ,.!.3 , ••• be i.i.d. random variables with normal N(8,I) 

distributions and suppose H: 8 ~ 0 is to be tested against 8 > 0. The UMP 

Gauss test based on n observations rejects H for large values of 

x = n-ll~ 1 x .• The Student t-test, which would be employed if the 
-n 1= -1 ~ _ 2 
were unknown, rejects H for large values oft = x /s , wheres is -n -n -n -n 

variance 

the 

sample variance. 

Note that {x} satisfies (1.5) with µ(8) = 8 and 0(8) = I. Since -n 
! ~ - 1 -

n 2 (t -x) = n 2 x (1-s )/s ➔ 0 in P8 -probability for each sequence -n -n -n -n -n 
-1 ~ n 

{8} = {kn 2 } with k ~ O, {t} also satisfies (1.5) for the same functions n -n 
µ and o. Hence, by theorem I.I, the Pitman efficiency is 

p 
e~t _(O) = 1, ,x 

although of course the Gauss test is more powerful than the t-test. 

To find the Bahadur efficiency we first determine c.!(a,e). If 
X 

c satis­
n 

fies p (x ~c) = e -n n a (cf. (I.I)), then lim c = e since x + e 
n➔oo n -n 

bility. Application of 

-1 
1 - ~(y) ~ y ~(y) for y ➔ 00 

yields 

in P -proba-
8 
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po (x ~c ) <P (ni C ) 
-1 -1 ! 

a (8,8) = = I - n 2 8 <P(n 2 c ) 
n -n n n n 

for n + 00. Hence 

(I. 10) B lim -
-1 

log a (8,8) ½82 c.,.:;;(8,8) = n = 
X n n+oo 

Next we turn to the Student test. Again t + 8 in P8-probability. It follows 
-n 

that~, determined by P8(t ~c) = 8, satisfies lim ~ = 8. Writing f (t) n -n n n+oo n n 
for the density of the t-'Jistribution with n degrees of freedom and making 

use of the relation 

we find 

00 

I -1 -1 2 
f (t)dt ~ y (1+n y) f (y) 

n n 
y 

~ (8,8) 
n 

= P0(t ~; ) = 
-n n 

00 

I I . 

n2~ 
n 

for n + 00 • Therefore 

= lim - n-l log~ (8,8) 
n n+oo 

for y + 00 , 

Combining this result with (1.10) we obtain from theorem 1.2 that the 

Bahadur efficiency is equal to 

B -2 2 e~ -(8 8) = 8 log(1+8 ), 
t,x ' 

which is smaller than one for all 8 > 0, but tends to one for 8+0. 

2. BAHADUR SLOPE 

There is an intimate relationship between tail probabilities and Bahadur 

efficiency, which sheds new light on the whole concept of Bahadur efficiency. 

We start by exploring this relationship in some detail. 
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Consider the same setup as in section 1: the hypothesis H: e E e0 is 

to be tested against e E e1 on the basis oft = t (s), where t depends 
-n n -· n 

on the first n coordinates of~= (~1,x2 ,~3 , ••• ), n ~ 1,2, •.• , and His to 

be rejected for large values oft. For n = 1,2, ••• let 
-n 

(2. l) G (t):= inf{P8(t <t): e E e0J, n -n 
t € :m, 

i.e. I - Gn(t) = sup{P8 (~n~t): 0 E e0}. The tail probabili-ty of the test 

based on t is defined as the random variable -n 

(2.2) L = L (s):= 1 - G (t (s)). -n n - n n -

Note that L only depends on x 1, ••• ,x. In practical statistical work tail -n - -n 
probabilities are often computed for the actual values x 1, ••• ,xn realized 

in the experiment. If L (s) is smaller than the given significance level a, 
n 

the hypothesis His rejected. Generally speaking, the smaller the value of 

Ln(s), the more untenable is the hypothesis Hin the light of the observa­

tions. 

Under the hypothesis H the random variable L 
-n 

is often (approximately) 

uniformly distributed on (0,1). Fore E e1 the distribution of L is more 
-n 

concentrated near zero, especially 

true that, for n ➔ 00 and e E e1, 

for large n. In fact, it will often be 

(2.3) n log ~n ➔ c(e) in P8-probability, 

where c(e) is a positive number. If' (2.3) holds true, 2c(8) is called the 

(exact) Bahadur slope of the sequence {t }. The factor 2 has an historical 
-n 

origin going back to K. Pearson and R.A. Fisher: under H the random variable 

-2 log L is often approximately distributed as x22• 
-n 

THEOREM 2.1. (Bahadur). If fore E e1 (2.3) holds for some c(e) > O, 

(2.4) 
-1 

lim - n log a (B,8) = c(e) 
n 

n➔m 

for all O < B < 1. 

PROOF. Fix e E 01 and let (2.3) be satisfied. Suppose (2.4) does not hold 
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for some SE (0,1). Let c be defined by (I.I) for this s. Then there exist 
n 

an increasing subsequence{~} and an E > 0 such that ~ither 

(a) - n.-l log ( ) () K a 8,6 < C 6 - E or 
~ 

(b) - ~l log a (S,8) > c(e) + E for all k. 
~ 

In case (a) 

-1 
P8(- n.k log~~> c(e) - E) > -

-1 
~ log a (S,6)) 

~ 

= P (L < a (S,6)) 
e~ ~ 

= Pe(l - G (t ) < I - G (c )) 
~~ ~~ 

s P8 (t > c ) s s 
-~ ~ 

for all k. But fork ➔ 00 the left hand member of this string of inequalities 

tends to one in contradiction to 0 < S < I. Similarly a contradiction is 

obtained in case (b) and the proof is complete. D 

Consider the 

fied, theorem 2.1 

function c! appearing in theorem 1.2. If (2.3) is satis­
B implies that (1.7) is also satisfied and that 2ct(S,6) 

is the Bahadur slope of the test statistics {t }. Suppose a second sequence 
-n 

of test statistics {t} has Bahadur slope ~(e) > 0. It follows that the 
-n 

Bahadur efficiency of {t} with respect to {t} is the ratio of their -n -n 
Bahadur slopes: 

(2.5) B ~ 
e,,.. (S,8) = c(e)/c(e) 
t,t 

for all SE (O,l). 

Hence, if e~ > l, the tail probability of {t} tends faster to zero than t,t -n 
that of {t} for n ➔ 00 • 

-n 
It remains to find simple ways to compute Bahadur slopes of sequences 

of test statistics {t }. Suppose that the following two conditions are sat­
-n 

isfied: for n + 00 

(2.6) 
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(2.7) 
-I ! 

- n log {l - G (n 2 t)} + f(t) (VtElR), 
n 

where b(8) is an arbitrary real number, G is defined in (2.1) and f is an 
n 

arbitrary nonnegative function continuous at t = b(8). It is not difficult 

to show that conditions (2.6) and (2.7) imply 

(2.8) 

i.e. 

-1 - n log L + f(b(8)) in P8-probability, -n 

the Bahadur slope of {t} is 2f(b(8)). -n 
Condition (2.7) shows that in computing Bahadur slopes we are concerned 

with probabilities of large deviations. In section 3 a survey of some re-

sults in this field will be given. 

In the first papers on Bahadur efficiency attention was focussed on 

approximate Bahadur efficiency. To introduce this concept, suppose that G n 
is a left continuous df converging weakly to a left continuous df G, for 

n + 00 • Define the approximate tail probability oft by -n 

* L := -n - G(t ), 
-n 

n = 1 ,'2, ••• 

(note that in many practical problems such approximate tail probabilities 

are actually computed). In addition suppose that for n + 00 

Then 2c*(e) is called the approximate Bahadur slope of {t }. The approximate 
-n 

Bahad.ur efficiency of {t} with respect to {t} is now defined as the ratio -n -n 
of the respective approximate Bahadur slopes, cf. (2.5). 

It is again easily shown that (2.6) and 

(2. 9) - n-l log{I - G(n½t)} + f(t) (VtEfil.), 

for n ➔ 00 , imply that the approximate Bahadur slope of {t} is 2f(b(8)). 
-n 

Since (2.9) is often trivially satisfied (e.g. if G=~), approximate Bahadur 

slopes are easier to handle than exact slopes, explaining the original 

preference for approximate Bahadur efficiencies. In addition, under condi­

tions slightly stronger than those of theorem I.I ((1.5) must also hold for 
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fixed e E 0 1), the approximate Bahadur efficiency ;*(e)/c*(e) of {t} with 
-n 

respect to {t J exists for ali e E 0 and tends to the Pitman efficiency as 
-n l 

e+e O. This nice property gave further support to the use of approximate 

Bahadur efficiencies. 

However, it is well-known that monotone transformations of {t} and {t} 
-n -n 

may lead to entirely different approximate Bahadur efficiencies (cf. 

BAHADUR [4] and GROENEBOOM et ai. [12]), although of course the correspon­

ding tests remain invariant under such transformations. Hence the whole con­

cept of approximate Bahadur efficiency is of little value and we will not 

consider it any further. 

Incidentally we remark that under appropriate coriditions exact Bahadur 

efficiencies also tend to the Pitman efficiency for alternatives tending to 

the hypothesis, cf. example I.I. Unfortunately, the conditions are more 

severe than in the case of approximate Bahadur efficiencies. 

Consider a sequence of test statistics {t} for testing H: e E 00 • 
-n 

This sequence 1s said to be efficient in the sense of Bahadur if the 

Bahadur slope of {t} is a maximum among all sequences of test statistics. 
-n 

If we could find an upper bound for the Bahadur slope of sequences of test 

statistics for testing H, the sequence {t} is obviously efficient 1n the -n 
sense of Bahadur if its slope is equal to this upper bound. This approach 

will be further explored in the remainder of this section. 

Let the family of distributions {Pe: e E 0} of the observations be 

dominated by a a-finite measureµ and let p8 = dPe/dµ be the density of Pe 

with respect toµ. Define 

(2. 10) 

the Kullback-Leibler information number of Pe with respect to Pe,· Note 

that O:::; K :::; 00 (in view of Jensen's inequality), K = 0 iff Pe= Pe, and K= 00 

if P8 is not absolutely continuous with respect to P8,. Furthermore let 

(2.11) K(8,00):= inf{K(8,8'): 8 1 E 00}. 

First consider the case of a simple hypothesis HO: 8 

denote the minimal size of the most powerful (MP) test of 

+ 
= eO. Let an(S,8) 

HO against a 
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simple alternative 8 based on n observations with power~ Sat 8. C. Stein 

has shown (cf. BAHADUR [5]) that without any condition whatsoever 

-I + 
lim - n log an(S,8) = K(e,e 0) for all SE (0,1). 
n--t-00 

Hence the Bahadur slope of the sequence of MP tests is 2K(e,e0). 

Now let 00 be an arbitrary composite hypothesis. Since the power at 8 

of any test of H can never exceed the power of an MP test of H0 : 8 = e0 
(8 0E00) against the simple alternative e, it immediately follows from the 

preceding result that the Bahadur slope 2c(8) of a sequence of test statis­

tics, if it e~ists, satisfies the inequality 

(2. I 2) 

for all 8 E 0 1• If the Bahadur slope of {t} does not exist, we can replace 
-n 

(2.12) by 

-I 
P8 (limsup - n log ~n ~ K(e,00)) = I, 

n➔oo 

which has been proved by RAGHAVACHARI [28]. 

A general method for testing a composite hypothesis is furnished by 

likelihood ratio tests. It is well-known that for many testing problems 

likelihood ratio tests have satisfactory power properties, especially for. 

large sample sizes. BAHADUR [3], [4] has shown that under certain regularity 

conditions the Bahadur slope of the sequence of likelihood ratio test sta­

tistics exists and attains the upper bound 2K(e,e0) in (2.12) for all 

8 E 0 1. Hence, under these conditions, likelihood ratio tests are efficient 

1.n the sense of Bahadur. 

BROWN [9] has obtained slightly stronger results of the same type for 

appropriately modified likelihood ratio tests. He has also shown that these 

tests are efficient in the sense of Hodges-Lehmann under very general regu­

larity conditions. More detailed results have been obtained by HOEFFDING 

[18] for likelihood ratio tests and chi-squared tests in multinomial fami­

lies of distributions. 
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A quite general framework for obtaining efficient tests in the sense 

of Bahadur is discussed in BAHADUR-RAGHAVACHARI [6]. In this paper it is 

also investigated what sort of conditioning is helpful in making condition­

al tests. 

3. PROBABILITIES OF LARGE DEVIATIONS 

In this section some limit theorems on probabilities of large devia­

tions are reviewed. 

Let {t} be a sequence of real-valued statistics defined on a probabil­
-n 

ity space (~,T,P) and let {t} be a sequence of real numbers. If 
n 

I= lim n-l log P(t ~t) 
-n n 

n--+= 

exists and - 00 <I< O, the events {t ~ t} with n large will be called 
-n n 

large deviations. Thus probabilities of large deviations deal with the ex-

treme (right-hand) tail of the distribution oft . In view of (2.7) such 
-n 

extreme tail probabilities are needed to determine Bahadur slopes of tests 

based on the statistics {t }. 
-n 

In example 1.1 asymptotic expressions for probabilities of large dev-

iations were derived in two particular cases. Here we describe subsequently 

two general approaches to obtain asymptotic expressions for probabilities 

of large deviations: the moment generating function approach and the empir­

ical distribution function approach. A third method based on probability 

densities will not be discussed here; we refer to KILLEEN et al. [21] and 

SIEVERS [ 3 I ] • 

3.1. The moment generating function approach 

The best known result on the relationship between probabilities of 

large deviations and moment generating functions is the following theorem 

of CHERNOFF [10]. 

THEOREM 3.1. (Chernoff). Let ~ 1,~2 .~3 , ... be real-valued i.i.d. random 

variables. Then~ for each t E JR~ 
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(3. I) 
-1 -I n 

limn log P(n l x.2t) 
n-+«> i=I-1 

T~l 
= inf {log(Ee ) - Tt}. 

T20 

Note that this theorem holds without any conditions at all. If 

E exp(T~1) = 00 for all T > O, the infimum in the right-hand member is obvi­

ously assumed for T = 0 and is equal to zero. However, the generality of 

the theorem is counterbalanced by the weakness of the statement (3.1) which 
-I ,n 

gives rise to approximations of the probability of the event {n lJ~i 2 t} 

up to factors exp(o(n)) only. 

Proofs of theorem 3.1 have been given by CHERNOFF [10], BAHADUR & 

RANGA RAO [7], BAHADUR [5] and HAf.fr1ERSLEY [15]. These proofs· are all based 

on somewhat different ideas. We present a sketch of a proof in the spirit 

of Chernoff's original proof. 

SKETCH OF PROOF OF THEOREM 3.1. 

By Markov's inequality 

n 
P( l x. 2 nt) 

i=l-1 

n 
= P(exp(T l x.) 2 exp(nTt)) 5 

i=l-1 

n 
5 exp(-nTt)•(E exp(T~1)) 

for T > 0. The inequality is trivially satisfied for T = O. Hence 

-1 n 
limsup n log P( l x.2nt) 

n-+«> i=l-1 

T~l 
5 inf {log(Ee ) - Tt}. 

T20 

We still have to show that conversely 

(3. 2) 
-I n 

liminf n log P( l x.2nt) 
n-+«> i=l-1 

T~l 
2 inf {log(Ee ) - Tt}. 

T20 

Suppose the distribution of ~I has finite support: P(~1=aj) = pj > 0 

(j=l, ... ,k), p 1 + ••• +pk= 1. Moreover, let E~1 5 t < max {aj: 5 J 5 k}. 

Define 

T~l 
= log(Ee ) - Tt (T20). 

A little algebra shows that there exists a unique Tl 2 0 satisfying 
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If t < E~1, it is easily seen that both members of (3.2) are equal to 

zero. The particular cases t = max a. and t > max a. can also easily be 
J J 

dealt with directly. 

Thus relation (3.2) is proved for distributions with finite support. 

The general case is proved by approximating the distribution of ~l by dis­

tributions with finite support. D 

EXAMPLE 3.1. Let ~ 1,~2 ,~3 , .•• be i.i.d. random variables with normal N(8,I) 

distributions and consider the testing problem of example I.I. Let x r) -m,n 
denote the sample median of a sample of size n. Now Chernoff's theorem im-

plies 

-I n 
=limn log Po< I I[ oo)(~.)~½n) 

. I t, 1. n~ i.= 

= inf(log{¢(t)+eT(l-¢(t))}-½T) 
T2:0 

- ½log {4¢(t)(l-¢(t))}. 

It is also easily exhibited that ~(n) + 8 in P8-probability for n + 00 • 

Hence (2.6) and (2.7) are satisfied and (2.8) yields that the Bahadur slope 

of the test based on the sample median is equal to 

- log {4¢(8)(1-¢(8))}. 

It follows (cf. example I.I) that the Bahadur efficiency of the test based 

on the sample median with respect to the Gauss test is equal to 

-2 
- 8 log {4¢(8)(1-¢(8))}. 

For 8+0 the efficiency tends to 2/rr (= Pitman efficiency) and for 8 + 00 it 

tends to½. 

Refinements of Chernoff's theorem under additional regularity conditions 

on the underlying distributions have been given by BAHADUR & RANGO RAO [7] 

and PETROV [24]. In these papers only large deviations of sample means are 

treated. 
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Large deviation theorems for more general statistics than the sample 

mean have been obtained by SIEVERS f30], PLACHKY [26] and PLACHKY & 
STEINEBACH [27], who also used the moment generating function technique. We 

mention the most recent - and strongest - result. 

THEOREM 3.2. (Plachky & Steinebach). Let {t} be a sequence of real-valued . -n 
random variables and let m (,) = E exp(Tt) and~ (,)=log m (,). Assume n -n n n 
real numbers T0 and T1 exist, 0 s T0 < T1, such that the following three 

conditions are satisfied: 

(i) mn(,) < 00 for all, E [O,T 1), 

(ii) limn~ ~n(T)/n = c0 (,) E 1R exists for aU, E (T0 ,T 1), 

(iii) co(T) exists, is continuous from the right and strictly monotone for 

aU, E (T0 ,T 1). 

Let {a} be a sequence of real numbers satisfying lim an= a E {c01 (T): n n~ 
TE (T0 ,T 1)}. Then 

-1 
limn log P(t ~na) = -n n n~ 

inf {c0 (T) - Ta}. 
,>O 

3.2. The empirical distribution function approach 

Let ,!1,,!2 ,,!3 , ..• be i.i.d. random variables with df F. Let ~n denote 

the empirical df of .!i•···,~n' i.e. In(x) is the fraction of then random 

variables s x (xEJR). Almost all test statistics which are in common use 

are in fact functions of empirical dfs. Examples of such ·statistics are 

(1..) h 1 - I ,n f dF~ ( ) t e s amp e mean n l i = 1 ~i = JR x -n x , 

(ii) the a-trinnned mean 

(iii) 

(3. 6) 

-I 
(n-2n) 

('! 

n-n 
,ax. = f xJ (F (x))dF (x), 

i=; +l -1.:n n -n -n 
a JR 

where O <a<!, n 1.s the largest integers na, x. 
a -1.:n 

order statistic of x 1, ... ,x and J is defined by J 
- -n n n 

X Ir I I j' L(na+l) n,(n-na) n 
signed rank statistics of the form 

I J (H (x))dF (x), 
n -n -n 

(O,oo) 

is the i-th 
-I = n(n-2n) x 

a 
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where H (x) = F (x) - F (-x-0) for x ~ 0 represents the empirical df of -n -n -n 
1~1 l, .•• ,l~nl and Jn is any score function defined on the interval [0,1]. 

In particular, J (u) = I yields the sign test statistic, J (u) = u yields n n 
the Wilcoxon signed rank test statistic and J (u) = ~-l(½+½nu/(n+I)) leads 

n 
to the test statistic of van der Waerden's test. 

In the sequel statistics of type (iii) will be studied. To this end we 

introduce some further notation. The space of one-dimensional dfs endowed 

with the topology of uniform convergence induced by the supremum metric is 

denoted by V. For F,G EV let f and g represent the densities of F and G, 

respectively, with respect to a a-finite measure v. Then the Kullback­

Leibler information number K(G,F) of G with respect to Fis defined by 

K(G,F) = J g log(g/f)dv 

IR 

(cf. (2.10)). Furthermore for Ac V let K(A,F) = inf {K(G,F): GE A}. 

With this notation we have the following theorem. 

THEOREM 3.3. Let T be a real-valued.continuous function on V and let Q be 
T 

defined by 

Q ={GE V: T(G) ~ -r} 
T 

for each -r E IR. 

If the mapping -r + K(Q ,F) is continuous from the right at -r = t, then for 
T 

any sequence {u} of real numbers tending to zero 
n 

(3. 7) lim n-l log P(T(F )~t+u) = - K(nt,F). n-+= -n n 

This theorem has been proved under several additional conditions by 

HOADLEY [17] and also under these additional conditions, but by simpler 

means, by STONE [32]. A proof of the present theorem 3.3 will be given in 

another paper where it will also be shown that theorem 3.3 continues to 

hold for multi-dimensional dfs F. 

In the particular case that u = 0 for all n (3.7) can also be formu­
n 

lated in the more transparent form 



(3.8) lim n-l log P(F EQ) = - K(Q,F), 
-n n--r00 
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where Q =Qt.The relation (3.8) for general Q has a long history in the 

statistical literature. We mention only a few papers. In 1957 SANOV [29] 

proved (3.8) for the first time under very general conditions on Q and F. 

However, his proof contains some obscure points and the conditions are com­

plicated. BOROVKOV [8] proved (3.8) under a very neat set of conditions. He 

required F to be continuous and Q to be an open set of dfs in V satisfying 

K(Q,F) = K(Q,F), where Q is the closure of Qin V. A more precise analysis 

of (3.8) has been given by HOEFFDING [19] in the particular case that the 

x. 's assume only finitely many values. 
-1. 

The proofs of theorem 3.3 and of the results of Hoadley, Stone and 

Sanov are all based on the same idea which we briefly explain. For each 

n E IN a finite partition R = {B 1 , ••• ,B ()}of IR is introduced. Let n n, n,m n 
k. be the number of random variables among x 1, ••• ,x taking a value in B . 
-J - -n n,J 
(j=l,, .. ,m(n)). Then (k 1, ••• ,k ())has a multinomial distribution with 

- -m n 

parameters n and p 1, ••• ,p ()'where p . = P(x 1EB .). Define K (G,F) n, n,m n n,J - n,J n 
for GE V by 

K (G,F) = 
n 

m(n) 
L PG(B .) log {PG(B .)/p .}, 

j=I n,J n,J n,J 

where PG(B) is the probability that a random variable with df G takes a 

value in B. Put K (Q,F) = inf {K (G,F): GE Q}. Since F E Q implies n n -n 
K (F ,F)? K (Q,F), one has 

n -n n 

P(F EQ) ~ P(K (F ,F)? K (Q,F)) ~ 
-n n -n n 

m(n) 
~ L {P(l1=k 1 , ••• ,~m(n)=km(n)): L (k./n) log(k./np .) ? 

j= l J J n,J 
K (Q,F)}. 

n 

Conversely, 

(3. 9) 

for each sequence (k 1, ... ,km(n)) of integers satisfying 
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{GE V: PG(B .) = k./n, j = l, ••• ,m(n)} c n. 
n,J J 

Under suitable conditions on the partitions R and the set Q one has 
n 

K (Q,F) + K(Q,F) for n + 00 • Moreover, under 
n 

additional conditions, the in-

tegers k 1, ••• ,k () in (3.9) can be chosen such that E(k./n) log(k./np. ) 
m n J J J ,n 

approximates K(Q,F) for n+ 00 • The proofs are completed by an application of 

Stirling's formula to the multinomial.coefficients. We omit the rather tech­

nical details. 

Borovkov's approach is quite different. He relates the distribution of 
... 
F to a Poisson process and uses Fourier analysis of random -walks to obtain 
-n 
(3.8). For continuous F theorem 3.3 is a consequence of Borovkov's result. 

As previously noted sample means can be expressed as a function of em­

pirical dfs. Although this function is not contiJ:?-uous, theorem 3.3 together 

with a truncation argument implies that 

-1 1 n 
limn log P(n- l x.~t) = 
n+m i=l-i 

where n: ={GE V: JxdG(x) ~ t}. Since by a simple argument(cf. HOEFFDING[l9]) 

•!.1 
= inf {log(Ee ) - -rt}, 

.~o 

Chernoff's theorem is again obtained. This illustrates the power of the em­

pirical df technique. 

To determine probabilities of large deviations for signed rank statis­

tics theorem 3.3 is very useful. HO [16] proved the following theorem under 

an additional condition on the score functions. 

THEOREM 3.4 (Ho). Let F be a continuous df symmetric about zero (i.e. F(x) = 

= 1-F(-x)). Lett denote the si~ned rank statistic (3.6), n = 1,2, ..• , -n 
where the score functions J satisfy the condition 

n 

n i/n 

(3.10) lim I I I J ci) - J(u)jdu = 0 
i= I n n n+m 

(i-1)/n 

for some limiting score function J. If 



1 

!J J(u)du < t < 

0 

1 

J J(u)l(O,oo)(J(u))du 

0 

and {u} is a sequence of real numbers tending to zero, then 
n 

where 

and"-> 0 

lim n-l log P(t ~t+u) = - I(t), 
-n n n-+oo 

I I 

I(t) = \t - !\ f J(u)du - I log cosh(½\J(u))du 

0 0 

is the unique root of the equation 

I 

f J(u) {I+ exp(-\J(u))}- 1du = t. 

0 
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This theorem has been proved by Ho along the lines of the proof of a 

similar theorem for two-sample problems in WOODWORTH [33], but it can more 

easily be derived from theorem 3.3. 

If the score functions J satisfy the conditions of theorem 3.4, if F 
n 

is a continuous df (not necessarily synnnetric) and H(x) = F(x) - F(-x), 

x ~ O, then 

(3. 1 I) f 
,.. ,.. 

J (H (x)) dF (x) + 
n -n -n I J(H(x))dF(x) 

(O,oo) (Q,oo) 

in probability, for n + 00 • This result together with theorem 3.4 will be 

applied in section 4 to determine Bahadur efficiencies of signed rank sta­

tistics. 

Let 00 ={GE V: G is continuous and synnnetric about zero}. The next 

theorem due to HO [16] yields the signed rank tests with best Bahadur slope 

with respect to a simple alternative. 

THEOREM 3.5 (Ho). Let G i 00 be a dfwith density g with respect to Lebesgue 

measure. Define 

U E (0,1), 
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where H(x) = G(x) - G(-x), x ~ 0, and H- 1(u) = inf {x: H(x) ~ u}. Consider 

the sequence of signed rank statistics {!n} with !n defined by (3.6). If 

the score functions Jn satisfy condition (3.10) with J = JG, then these­

quence {t} attains the best possible Bahadur slope for testing 00 against 
-n 

the simple alternative G. Moreover, this best Bahadur slope is equal to 

(3.12) 2K(G,00) = 2 f g(x) log g(.;)g+~i-x) dx. 

JR 

SKETCH OF PROOF. By (2.12) the Bahadur slopes of tests of 00 against the 

simple alternative G are bounded above by 2K(G,0 ) • To prove· the equality 
0 

(3.12) let FE 00 be arbitrary and let f , g and h be densities of F, G 
V V V 

and H with respect to a a-finite measure v dominating both F and G. The df 

GE 00 is defined by its density gv(x) = ½ {gv(x) + gv(-x)} w.r.t.v. Then 

K(G,F) - K(G,G) = I g log(g /f )dv - I gv log(g /g )dv 
V V V V V 

JR JR 

= I gv log(g /f )dv 
V V 

JR 

= I h log{½h /f )dv ~ 0 
V V V 

(O ,oo) 

since f (x) = f (-x) a.e.(v) and Kullback-Leibler information numbers are 
V V 

nonnegative. Hence K(G,G) = K(G,00) and G is the "least favorable" df for 

testing 00 against G. Since G has a density g w.r.t. Lebesgue measure, 

(3. 12) follows. 

To complete the proof it must be shown that the maximal slope 2K(G,00) 

is actually attained by the sequence {t }" This follows by an application 
-n 

of theorem 3.4 in combination with (3.11). 0 

The property that the best possible slope is attained by signed rank 

statistics is called asymptotic sufficiency in the Bahadur sense of the 

vector of signs and ranks. The concent of asymptotic sufficiency in the 

Pitman sense is treated in HAJEK & SIDAK 1JL;-~ Ch.7. HAJEK [13] introduced 



asymptotic sufficiency in the Bahadur sense and obtained a result similar 

to theorem 3.5 for linear rank statistics in the two-sample problem. An 

analogous result for rank tests for independence has been proved by 

GROENEBOOM et aZ. [11]. 

4. APPLICATIONS: ONE-SAMPLE TESTS FOR LOCATION 
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Let ~ 1,~2 ,~3 , ••• be i.i.d. random variables with df F(x-8), where 8 is 

an unknown location parameter and Fis an unknown continuous df symmetric 

about 0. The hypothesis H: 8 = 0 is to be tested against 8 > 0. Since Fis 

unknown, the hypothesis set of dfs consists of all continuous dfs symmetric 

about 0. Thus the hypothesis of syrronetry is to be tested against a shift 1,11, 

location to the right. Note that a simple alternative is determined by a 

pair (F,8), 8 > 0. 

We consider three well-known rank tests for this testing problem: the 

sign test, Wilcoxon's signed rank test and van der Waerden's signed rank 

+,est. The properly scaled test statistics of these tests - based on n obser­

vations - are 

t (I) 
_! n 

= n 2 I I ( O, 00 ) (~i) ' -n 
i=l 

t(2) -f n + = 11 I r. 1 ( 0 '00) (~i ) and 
-n i=I 

-1. 

t (3) -1 n 
-1 I I +/( )) = n 2 I <P ( 2+2r. n+l I ( 0 • oo) (~i) ' -n i=l 

-1. 

+ 
respectively, where r. is the rank of Jx. I in the sample of absolute values 

-i -1. 

! ~ 1 I , . . . , I !n I . 
If the df Fis known to be normal, the Student t-test 1.s the best test 

for the given testing problem. In this case the hypothesis reduces to a 

much smaller set of dfs. If the variance of Fis also known, the hypothesis 

is simple and the Gauss test is UMP. 

For normally distributed observations with a given variance van der 

Waerden's test 1.s asymptotically most powerful (against a shift in location). 

This is a very strong property, since in this case the hypothesis is restric­

ted to a simple hypothesis but van der Waerden's test is distributionfree 
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and therefore a valid test of the entire hypothesis H. For a detailed expo-
- V -sition of the theory involved we refer to HAJEK & SIDAK [14]. Similarly, 

Wilcoxon's test and the sign test are asymptotically most powerful if the 

observations have logistic or double exponential distributions, respectively 

(recall that the logistic distribution has df F(x) = (l+exp(-x))-l and the 

double exponential distribution density f(x) = ½ exp(-lxl)). 

These properties are reflected in their Pitman efficiencies. These 

efficiencies are complicated expressions depending heavily on F, but the 

following table is informative (cf. HAJEK & SIDA.I< [14] Ch.7). 

TABLE 4.1. Pitman efficiencies of some distribution free tests 

sign test w.r.t, Wilcoxon's test 

sign test w.r.t. v.d. Waerden's test 

Wilcoxon's test w.r.t. v.d. Waerden's test 

normal F 

2 
3 

2 
'IT 

3 
'IT 

logistic F 

3 
4 
'IT 

4 
'IT 

3 

double . exponential F 

4 
3 

'IT 

2 

3TI 
8 

Moreover, for normal distributions the Pitman efficiencies of the sign 

test, Wilcoxon's test and van der Waerden's test with respect to the Student 

t-test (or the Gauss test) are 2/TI, 3/TI and 1, respectively. 

Roughly speaking, these results indicate that van der Waerden's test 

is satisfactory for thin-tailed distributions, that the sign test is ade­

quate for heavy-tailed distributions and that Wilcoxon's test is a good 

choice in intermediate cases. 

However, the preceding points of view take into account power at near 

alternatives only. Since the selection of a test is often motivated by these 

results, it is of some interest to compare asymptotic powers of these tests 

at fixed alternatives by way of their Bahadur efficiencies. In KLOTZ [23] 

these efficiencies were obtained for the first time. With this purpose in 

mind we proceed to determine the Bahadur slopes of the tests involved. In 

the sequel we consider a fixed alternative (F,8) such that 8 > O and F(8) < 1. 

L L (l)( .) p ( -½ (1) ) d h . . . . et n t = 0 n !n ~t enote t e tail probability of the sign 

test. By Chernoff's theorem (theorem 3.1) fort E (0,1) 



= - lim n-l log L(l)(t) = 
n n-+«> 

- inf {log(!(I+eT)) - Tt} = 
T~O 

= t log(2t) + (1-t) log(2(1-t)). 
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Since f 1 is continuous on the interval (0,1) and n-½t(l) ➔ F(8) in P -proba-
-n 8 

bility for n ➔ 00 by the weak law of large numbers and the symmetry of F, 

(2.6) and (2.7) are satisfied. Hence, in view of (2.8), the Bahadur slope 

of the sign test is equal to 

2c 1 (8) = 2F(8) log(2F(8)) + 2(1-F(8)) log {2(1-F(.8))}. 

Next we turn to Wilcoxon's signed rank test. The test statistic t( 2) 
-n 

can be written in the form 

/2) 
-n 

_! 
= n 2 

where J (u) = u. Hence theorem 3.4 is applicable (with J(u)=u) and we find 
n 

for t E (LD 

f2 ( t) 
-1 _! (2) 

= - lim n log P (n 2 t ~t) = 0 -n n-+«> 
I 

= >-(t-¼) -I log coshO>-u)du, 

0 

where A> 0 is the unique root of the integral equation 

Ju(l+e-Au)-ldu • t. 

0 

This equation cannot be solved explicitly, but it may be used to simplify 

f 2(t) to 

Thus (2.7) is satisfied and it remains to verify (2.6). Putting 
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00 

b2 (8) = I {F(x-8) - F(-x-8)}dF(x-8), 

0 

application of (3.11) with F(x) replaced by F(x-8) yields that for n + 00 

It follows that the Bahadur slope of Wilcoxon's test is 

Although b2 (8) can be evaluated in particular cases, explicit expressions 

for f 2(b 2(8)) are not available and its computation must be accomplished by 

numerical methods. We mention a few results for b2(8): 

for F = ~ 

½ -
28 28 - 2 

((8-½)e +½)(e -1) for logistic F 

½ - !(8+l)e-28 for double exponential F. 

Now let us consider van der Waerden's test. Proceeding as in the pre­

vious case we find that the Bahadur slope of van der Waerden's test is equal 

to 

where 
I 

-1 I -I f 3 (t) = At - A(2TT) 2 - log cosh(½A ¢ (½+½u))du, 

0 

A> 0 is the unique root of the equation 

I I -1 -I -1 
¢ (½+½u){l + exp(-A¢ (½+½u))} du= t 

0 

and 
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00 

= I -I 
<I> (½+½F(x-6)-½F(-x-6))dF(x-8). 

0 

Simple expressions for b3 (8) do not exist in this case. 

In example I.I we have already seen that for normally distributed ob­

servations the Bahadur slope of the Student test is equal to log(1+6 2). 

However, the Student test has an unfair advantage over the distributionfree 

tests since its hypothesis set of distributions - in the normal case - is 

so much smaller. A better standard of comparison is furnished by the MP test 

of H against simple shift alternatives. In section 3 it was demonstrated 

(theorem 3.5) that for a simple alternative (F,0), where F has a density f, 

the Bahadur slope of the MP test is equal to 

2f(x-6) 
f(x-6) log f(x-e)+f(x+6) dx. 

A little algebra shows that 

I -20x = log 2 - ¢(x-B) log(l+e )dx for F = <I> 

IR 

26 6 26 -] 6 6 -6 
log 2 - log(l+e ) + 2e (e -1) {6e -arctan(½(e -e ))} 

for logistic F 

-20 -e 0 -0 
log 2 - log(l+e ) - e {arctan e -arctan e } 

for double exponential F. 

In the figures 4.1, 4.2 and 4.3 the Bahadur efficiencies of the three 

rank tests with respect to the MP tests of H against simple alternatives 

(F,6) are sketched for standard normal, logistic and double exponential F, 

respectively. The amount by which these efficiencies fall short of one 

describes the loss due to not precisely knowing the alternative. In figure 

4.1 the Bahadur efficiency of the Student test with respect to the MP tests 

of H has also been shown, to facilitate a comparison of the first three 

tests to the Student test in the normal case. 

Note that the efficiency of van der Waerden's test in figure 4.1 is very 

close to one; it is slightly smaller than the efficiency of Wilcoxon's test 

for 6 greater than some constant between I and I.I. 
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Inspection of the figures shows that for fixed alternatives near the 

hypothesis the Bahadur efficiencies with respect to MP tests of H agree 

with the Pitman efficiencies. For large 8 the efficiencies of the rank tests 

tend to one. This is explained by the fact that c.(8) ➔ log 2 for 8 ➔ 00 

1 

(i=I,2,3) for all symmetric F and K(e,00) ➔ log 2 for 8 ➔ 00 for all symmet-

ric F with a density. The rather technical proofs are omitted. Yet it is 

remarkable that for alternatives far from the hypothesis the rank tests 

have such similar asymptotic power properties for all underlying dfs. From 

an overall point of view the Wilcoxon signed rank test does surprisingly 

well for the three distributions considered. A few sma11~sample results are 

reported by KLOTZ [22] for normal shift alternatives. 

To conclude we mention some further results from the literature. 

Bahadur efficiencies of two-sample tests against shift alternatives have 

been studied in WOODWORTH [33]. It turns out that in the case of equal sample 

sizes the two-sample tests of van der Waerden and Wilcoxon and the median 

test have efficiencies identical to the corresponding one-sample tests. 

However, for unequal sample sizes the results are quite different. In the 

same paper the tests of Kendall and Spearman for independence are also com­

pared. In HWANG & KLOTZ [20] two-sample rank tests against normal scale 

alternatives are considered. In BAHADUR [5] Kolmogorov-Smirnov tests and 

some related tests are studied. This monograph also contains an exhaustive 

list of references (up to 1970). 
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