
stichting 

mathematisch 

centrum 
~ 
MC 

AFDELING MATHEMATISCHE STATISTIEK SW 48/76 OKTOBER 
(DEPARTMENT OF MATHEMATICAL STATISTICS) 

R.D. GILL 

CONSISTENCY OF MAXIMUM LIKELIHOOD ESTIMATORS OF THE FACTOR 
ANALYSIS MODEL, WHEN THE OBSERVATIONS ARE NOT MULTIVARIATE 
NORMALLY DISTRIBUTED 

Prepublication 

2e boerhaavestraat 49 amsterdam 

BIBUOTHE[K 



PJunte.d a.:t .the. Ma.:therna.:ti..c.ai. Ce.ntll.e., 49, 2e. Bovr.haa.vu.tJuw.:t, Am6.teJtd.am. 

The. Ma.therna.:ti..c.ai. Ce.ntll.e., 6ou.nde.d .the. 11-.th 06 Fe.bnu.aJLy 1946, ,L6 a. non­
p11.06U in6.tltutlon a,im,i,ng a.t .the. pll.omotion 06 pMe. ma.therna.:ti..C-6 a.nd w 
a.pp.Uc.a.:ti..on6. I.t ,L6 .6pon6oll.e.d by .the. Ne..theJif.a.nd6 Govvr.nme.n.t .thll.ou.gh the. 
Ne..theJci..a.nd6 011.ga.nizailon 6011. the. Adva.nc.erne.nt 06 PMe. Rue.a.11.c.h (Z.W.0), 
by the. Mu.nic.ipa..u:ty 06 Am6.tvr.dam, by .the. Unive.MUy 06 Am6tvr.dam, by 
.the. Fne.e. Unive.MUy a.t Am6.tvr.dam, a.nd by indu..6:tlue.6. 

AMS(MOS) subject classification scheme (1970): 62H25-02, 62F10-02 



Consistency of maximum likelihood estimators of the factor analysis model, 

when the observations are not multivariate normally distributed*) 

by 

. **) R.D. Gill 

ABSTRACT 

A new proof of the consistency of maximum likelihood factor analysis 

estimation (i.e. maximum likelohood using the assumption of multivariate 

normality) is given which uses only the existence of 2nd moments and the 

uniqueness of the model. 

Special attention is given to the problem of "Heywood Cases". 

The generality of the proof is such as to enable it to be adapted to many 

other situations. 

The proof demonstrates the unsuitability of other much used methods of 

factor analysis, for which the property of consistency does not hold. 

KEY WORDS & PHRASES: Mazirrrum likelihood, Factor analysis, robustness. 

*) 
This report will be submitted for publication elsewhere. 

**) Contributed paper given by the author at the European Meeting of Statis-
ticians, Grenoble, 1976, to appear in the collected papers of the congress. 



Introduction 

ANDERSON & RUBIN (1956) gave a proof of the asymptotic normality of 

maximum likelihood estimators, based on the assumption of asymptotic norm­

ality of the sample covariance matrix and various regularity conditions, of 

which the most important is identification of the model. Here a proof is 

given of a weaker property based on weaker assumptions though retaining 

identification; one which is perhaps clearer than theirs in that we consider 

directly the maximizing problem instead of transforming to a simultaneous 

equation problem obtained by differentiating a log likelihood function. An 

advantage of the procedure applied here is that consistency (both weak and 

strong) is also proved when the true parameters lie on the boundary of their 

permissable region (obviously no nondegenerate normal distribution about the 

true value is possible when the estimates too are constrained to be in this 

region). The procedure of LAWLEY & MAXWELL (1971) for dealing with so called 

Heywood cases (ie. maximum likelihood attained on the boundary) coincides 

with the maximization problem considered here (at least in so far as their 

method correctly recognizes a boundary case, or in general, succeeds in 

finding a global maximum and not just a local one). Their method is moti­

vated by making new assumptions about the model if a Heywood case is indic­

ated; that this is the same as true maximum likelihood is not proved here; 

but consists in observing that as parameters approach the border, so too 

does the likelihood function converge to their new likelihood function de­

fined on the border. 

Our method here is to show that if the model is identified, then the 

function, which when given a sample covariance matrix supplies maximum like-
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lihood estimates, is continuous at the true covariance matrix (where it sup­

plies the true parameter values). Then convergence in probability or almost 

surely of the sample covariance matrix to the true one implies the same kind 

of convergence of the estimates. 

Assumptions, basic and simplifying 

Independent observations are made of a p-component random vector~ 

(random variables are underlined) possessing the pxp non-singular covariance 

matrix L0 • Then the correlation matrix of~' say r 0 , also exists, and the 

sample correlation matrix C based on n observations of x converges in pro­
-n 

bability (and a.s.) to r 0 • 
I 

Now under the factor analysis model r 0 = A0A0 + '¥0 , where A0 is a p x m 

real matrix, and '¥0 is diagonal with non-negative diagonal elements. It is 

assumed that m <pis known; and what is very important, that given this m, 
' 

'¥0 is unique: i.e. if it is also so that ro = AA+'¥ with A p X m etc., then 

'¥ = '¥0. A0 can now also be made unique, for instance by requiring the "above 

diagonal" elements of A (of which there are !m(m-1)) to be zero. (For a dis-

cussion of identification problems, see ANDERSON & RUBIN (1956)). 

We consider the maximum likelihood estimation process applied to C as 
-n 

if it were a sample covariance matrix. Estimates, say('¥ ,A), obtained in -n -n 
this way would have to be scaled to make them correspond to ('¥0 ,A0), the 

parameters in the model for the correlation matrix r 0 • However it turns out 
I 

that diag (AA+'¥)= diag(C) = I, so the scaling never has to be made. We -n-n -n -n, 
can accordingly writer =AA + '¥ for an M.L. (maximum likelihood) esti­-n -n-n -n 
mate of ro. 

A suitable function to be maximized is f(C ;'¥,A) (by choice of '¥,A), 
-n 

defined by 

f(C;'l',A) 
-1 -1 

= logdet (er ) - trace (er ) + p, and r = AA + 'l'' 

where A,'¥ are real matrices; A is p x m, 

A and'¥ are further restricted so that r 

'l'is diagonal with'¥ .. ?'. 0 Vi~ and 
11 

is positive definite. C is sym-

metric and also positive definite. 1t is easy to prove that cr- 1 has all 
-1 

eigenvalues positive; ie. det (Cr ) > 0. Suppose that these eigenvalues 

are~-, I ~ i ~ p; then 
1 



Now 

So 

f(C;'¥,A) = I 
i=l 

(log cp-cp+l) :s: 0 0 < 

(log cp-cp+l) ➔ -oo cp ➔ 

log cp-cp+l = o~ cp = 

( log cp. -cp. + 1) 
l. l. 

cp < 00 

0 or cp ➔ 00 

I. 

f(C;'¥,A) = 0 ~ cp. = 1 Vi 
l. 

~ cr- 1 = r 
' ~ C = r = AA + '¥. 
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We can remove the restriction of r to being positive definite (for in­

stance, r is singular if more than m '¥ •• 's are equal to zero), by noting 
1.1. -I 

that as det(r) ➔ 0, smallest eigenvalue (Cr ) ➔ 0, so f ➔ - 00 • f is there-

fore considered as an extended real valued function taking values in [-00 ,0] 

(this doesn't affect the result of the maximization off). As such it is 

continuous, when [-00 ,0] has the natural topology generated by the usual open 

intervals together with the intervals [-00 ,a) and (a,O]. 

As remarked before it can be proved that diag(r) = 
' 2 ~ 

diag(C) = -n 
r = AA +'¥then r .. = l A .. +'¥ .. ; but'¥ .. ~ O; hence 

l.l. • l.J l.l. l.l. 

I('¥) .. I :s: 1 Vi and j.J 
-n l.J 

I (A ) .• I :s: 
-n l.J 

I. If 

and 

(LAWLEY & MAXWELL (1971) prove this result essentially for the non-

Heywood case; but the argument can also be repeated for their method when 

some of the diagonal values of an M.L. '¥ are zero.) So we may restrict the 
n 

maximization to taking place over ('¥,A)with '¥ •• :s: 1 and IA .. I :s: I Vi,j, and 
l.l. l.J 

our solution is the same as theirs. 

'¥ and A can now be considered as lying in closed, bounded subspaces of 

their respective Euclidean spaces. It is convenient to do the same for C, 

the remaining argument off, to enable the analytic lemma which we shall 

shortly prove to be directly applied. We already know that C is a correla­

tion matrix, so we can assume C .. = 1, JC .. I :s: 1, C .. = C .. V i,j; we also 
l.l. l.J l.J Jl. 

require C to be positive definite, ie. the smallest eigenvalue of C > 0. 

(C may be nonsingular, in which case the f specified here wasn't defined). -n 
Now r 0 is nonsingular, so suppose smallest eigenvalue (r0) > c > 0. Then by 

continuity of the smallest eigenvalue as a function of C, and by convergence 

(in probability and a.s.) of C to r0 , we only need look at C with smallest -n -n 
eigenvalue (C) ~ c. 

-n 
We collect the ingredients as follows: 



Let 

and 

C = {C I Cap x p real matrix, C .. = 
l.J 

IC .. I $ I, eigenvalues (C) ~ 
l.J 

C .. ,C •. =I, 
Jl. l.l. 

c} 

p = {('!',A) '!' p x p real,'!' .. 
l.J 

= 0 1. f j, 0 $ '!' .. $ I; 
l. l. 

C and Pare compact. 

A p x m real, A •• = 
l.J 

0 j > i, IA .. I $ I} 
l.J 
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Then f: C x P + [-~,OJ is a continuous function on a compact space. Let 

Y be the set function on C defined by 

Y(C) = {('!',A) I f(C;'l',A) = sup f(C;'!',A)} 
('!' ,A)EP 

By compactness of P and continuity off, Y(C) 1.s closed and nonempty as a 

subset of P for each CE C. 
Y(gn) contains the maximum likelihood estimates of ('!'0 ,A0 ) and 

Y(r0 ) = {('!'0 ,A0 )} (uniqueness of '!'0 ). 

We shall show that Y: C + {closed nonempty subsets of P} = F say, is 

continuous, where the suitable metric on Fis the Hausdorff distance 

p(A,B) = sup 
aEA,bEB 

{d(a,b)} and d 1.s the ordinary Euclidean distance on P. 

Hence, as P(C EC)+ 
-n 

I and C 
-n 

ie. the distance of the furthest maximum likelihood estimate of ('!'O,AO) to 

('!'O,AO) itself converges in probability to zero (and by analogous arguments, 

almost surely). 

Some Analysis 

c, cO, c' will be points in C; cO being fixed and playing the role of 

r 0 . Similarly p, p0 , p' E P; z, z0 , z' will be the corresponding points in 

C X P. 
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Cand Pare closed, bounded Euclidean subspaces; instead off we shall equiv­

alently consider 

O~f>- 00 , 

g = -I f = -oo• 

' 

g: C x P ➔ [-1,0] is continuous and hence uniformly continuous. 

Fis the set of closed non-empty subsets of P endowed with the Hausdorff 

metric 

Y: C ➔ Fis defined by 

Y(c) = {p: g(c,p) = sup f(c,p')} 
p' EP 

dis the Euclidean metric on C, P or C x Pas indicated by its arguments. 

In particular note that 

2 2 2 d (z,z') = d (c,c') + d (p,p') 

c0 is such that 

LEMMA. With the above notations and definitions, Y is continuous at c0 • 

i.e. Given£> 0 38: 

and p E Y(c) .. d(p,po) < £, 

PROOF. Choose£> 0. 

because the supremum of g(c0 ,•) outside of a neighbourhood of p0 must be 

strictly less than g(c0 ,p0), p0 being the unique maximizing value in P, and 

g(c0 ,•) being uniformly continuous. 

SloLIOTHEEK M,6,TH[I'-•1;\; 

--Aiv1;;·rcc,'iu,\:v1---· 



3o (n) > O: o < e and 2 
d (z,z') :5 26 • I g(z)-g(z') I :5 'j" 

because g is uniformly continuous. 

Suppose now c is such that d(c,c0) < o. 
If p satisfies d(p,p0) < o, then d((c,p), (c0 ,p0)) < ✓20 • g(c,p) ~ 

~ g(cO,pO) - n/3. 

If p satisfies d(p,pO) ~ e, then d((c,p), (cO,p)) < o • g(c,p):,;; 

:,;; g(cciiP) + n/3:,;; (g(c0 ,p0)-n) + n/3 (d(p,p0)~e) 
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i.e. g(c,•) attains values~ g(c0 ,p0) - n/3 when d(p,p0) < o, but is bounded 

above by g(c0 ,p0) - 2n/3 when d(p,p0) ~ £ > o. 

Sop E Y(c) ... d(p,po) < £. 

Conclusion and some heuristic comments 

The idea of this paper is that the result will be comforting to those 

applying factor analysis with the only technique presently available for it 

which has some statistical justification, i.e. maximum likelihood methods 

applied under the assumption of multivariate normality. Of course, how 

quickly convergence occurs can presumably be as slow as anything one may 
. . . *) suggest; the computational method used need not give an absolute maximum 

also, somewhere along the line, the number of factors must be specified. 

We can see from the above proof that if the model holds with the given 

number of factors, then the maximum likelihood criterion used here will 

converge to zero; otherwise it will presumably converge to some value less 

than zero representing the "closest" m-factor covariance matrix to the 

true covariance matrix. If this closest distance can be given an empirical 

For an approach giving computational and interpretational advantages 
based on a broader specification of the model, see Prins and van Driel 
(1974). 
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relevance - i.e. closer than Eis to all intents and purposes the same as 

exactly zero, and if the closest factor model is essentially unique, then 

the problem of the number of factors is also asymptotically solved. Note too 

that the normal theory likelihood ratio test statistic is basically the 

estimated smallest distance blown up by the number of observations; under 

the full null hypothesis asymptotically x2 distributed. 
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