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Consistency of maximum likelihood estimators of the factor analysis model,

)

) . . 3 . 3 *
when the observations are not multivariate normally distributed

by
R.D. Gill™™
ABSTRACT

A new proof of the consistency of maximum likelihood factor analysis
estimation (i.e. maximum likelohood using the assumption of multivariate
normality) is given which uses only the existence of 2nd moments and the
uniqueness of the model.

Special attention is given to the problem of "Heywood Cases".

The generality of the proof is such as to enable it to be adapted to many
other situations.

The proof demonstrates the unsuitability of other much used methods of

factor analysis, for which the property of consistency does not hold.

KEY WORDS & PHRASES: Maximum likelihood, Factor analysis, robustness.
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This report will be submitted for publication elsewhere.

* %k . . . .
) Contributed paper given by the author at the European Meeting of Statis-

ticians, Grenoble, 1976, to appear in the collected papers of the congress.



Introduction

ANDERSON & RUBIN (1956) gave a proof of the asymptotic normality of
maximum likelihood estimators, based on the assumption of asymptotic norm-—
ality of the sample covariance matrix and various regularity conditions, of
which the most important is identification of the model. Here a proof is
given of a weaker property based on weaker assumptions though retaining
identification; one which is perhaps clearer than theirs in that we consider
directly the maximizing problem instead of transforming to a simultaneous
equation problem obtained by differentiating a log likelihood function. An
advantage of the procedure applied here is that consistency (both weak and
strong) is also proved when the true parameters lie on the boundary of their
permissable region (obviously no nondegenerate normal distribution about the
true value is possible when the estimates too are constrained to be in this
region). The procedure of LAWLEY & MAXWELL (1971) for dealing with so called
Heywood cases (ie. maximum likelihood attained on the boundary) coincides
with the maximization problem considered here (at least in so far as their
method correctly recognizes a boundary case, or in general, succeeds in
finding a global maximum and not just a local one). Their method is moti-
vated by making new assumptions about the model if a Heywood case is indic~-
ated; that this is the same as true maximum likelihood is not proved here;
but consists in observing that as parameters approach the border, so too
does the likelihood function converge to their new likelihood function de-
fined on the border.

Our method here is to show that if the model is identified, then the

function, which when given a sample covariance matrix supplies maximum like-



lihood estimates, is continuous at the true covariance matrix (where it ‘sup-
plies the true parameter values). Then convergence in probability or almost
surely of the sample covariance matrix to the true one implies the same kind

of convergence of the estimates.

Assumptions, basic and simplifying

Independent observations are made of a p-component random vector X
(random variables are underlined) possessing the pxp non-singular covariance

matrix ZO. Then the correlation matrix of x, say FO’ also exists, and the

sample correlation matrix Cn based on n observations of x converges in pro-

bability (and a.s.) to PO.
1
Now under the factor analysis model PO = AOAO + WO, where AO is ap xm

real matrix, and ¥, is diagonal with non-negative diagonal elements. It is

assumed that m < pois known; and what is very important, that given this m,
WO is unique: i.e. if it is also so that FO = AA'+ Y with A p X m etc., then
Yy = WO. A0 can now also be made unique, for instance by requiring the "above
diagonal" elements of A (of which there are im(m-1)) to be zero. (For a dis-
cussion of identific#tion problems, see ANDERSON & RUBIN (1956)).

We consider the maximum likelihood estimation process applied to gn as
if it were a sample covariance matrix. Estimates, say (gn,én), obtained in
this way would have to be scaled to make them correspond to (WO,AO), the

parameters in the model for the correlation matrix T',. However it turns out

that diag (§n§;+gn) = diag(gn)'= I, so the scaling ngver has to be made. We
can accordingly write En = Anén + zn for an M.L. (maximum likelihood) esti-
mate of FO.

A suitable function to be maximized is f(gn;W,A) (by choice of ¥,A),

defined by
- — 7
f(C;¥,N) = logdet (CT ]) - trace (CT 1) +p,and T = AA + V¥,

where A,Y are real matrices; A is p x m, ¥Yis diagonal with Wii > 0 Vi; and
A and y are further restricted so that T' is positive definite. C is sym~
metric and also positive definite. It is easy to prove that Cl“_1 has all
eigenvalues positive; ie. det (CF-I) > 0. Suppose that these eigenvalues

are ¢i’ 1 €1 < p; then



f(Cs¥,0) = 121 (log ¢i—¢i+l)
Now (log ¢—¢+1) <0 0 < ¢ < =
(log ¢—=¢+1) » —» ¢ > 0 or ¢ » =
log ¢—9+1 =0+ ¢ 1.
So f(C;¥,A) =0* ¢, =1V i
=1
«C=7T-= AA' + VY.

We can remove the restriction of T to being positive definite (for in-

stance, I' is singular if more than m Wii's are equal to zero), by noting
that as det(Tl') - 0, smallest eigenvalue (cr’l) + 0, so f > —», f is there-
fore considered as an extended real valued function taking values in [-«,0]
(this doesn't affect the result of the maximization of f). As such it is
continuous, when [-~,0] has the natural topology generated by the usual open
intervals together with the intervals [-«,a) and (a,0].

As remarked before it can be proved that dlag(r ) = dlag(C ) = I. If

AA + ¥ then F z A + ¥..; but ¥., > 0; hence J(A)..l £ 1 and

; ii ii “n’ij

|(En)1JI <1Vi and j.

(LAWLEY & MAXWELL (1971) prove this result essentially for the non-
Heywood case; but the argument can also be repeated for their method when
some of the diagonal values of an M.L. Wn are zero.) So we may restrict the
maximization to taking place over (¥,A) with Wii < 1 and lAijls 1 Vi,j, and
our solution is the same as theirs.

¥ and A can now be considered as lying in closed, bounded subspaces of
their respective Euclidean spaces. It is convenient to do the same for C,
the remaining argument of £, to enable the analytic lemma which we shall
shortly prove to be directly applied. We already know that C is a correla-
tion matrix, so we can assume Cii =1, ICijI <1, Cij = Cji Y i,j; we also
require C to be positive definite, ie. the smallest eigenvalue of C > 0.

(gn may be nonsingular, in which case the f specified here wasn't defined).

Now FO is nonsingular, so suppose smallest eigenvalue (FO) > ¢ > 0. Then by

continuity of the smallest eigenvalue as a function of C, and by convergence
(in probability and a.s.) of gn to FO’ we only need look at gn with smallest
eigenvalue (gn) >

We collect the ingredients as follows:



Let
C={Cc | Cap x p real matrix, Cij = Cji’ C;; =1
lcij' < 1, eigenvalues (C) = c}
and
P={(‘1’,A)|‘prPreal,‘{’i.=0i5‘j,OS‘i‘iiSI
= 3 1 <
A p x m real, Aij 0j3>1i, lAijl < 1}

C and P are compact.

Then f: C x P » [-»,0] 1s a continuous function on a compact space. Let

Y be the set function on C defined by

y(c) = {(¥,0) | £(Cs5¥,0) = sup £(C;¥,M)}
(Y,A)eP

By compactness of P and continuity of £, Y(C) is closed and nonempty as a
subset of P for each C ¢ C.

V(gn) contains the maximum likelihood estimates of (WO,AO) and
V(FO) = {(WO,AO)} (uniqueness of WO).

We shall show that ¥ : C -+ {closed nonempty subsets of P} = F say, is
continuous, where the suitable metric on F is the Hausdorff distance

p(A,B) = sup {d(a,b)} and d is the ordinary Euclidean distance on P.
acA,beB

Hence, as P(gneC) + 1 and gn 2 FO’

P .
y(gn) > V(I'O) ;

ie. the distance of the furthest maximum likelihood estimate of (WO,AO) to
(WO,AO) itself converges in probability to zero (and by analogous arguments,

almost surely).

Some Analysis

¢, ¢., ¢' will be points in C; c, being fixed and playing the role of

0 0
FO. Similarly p, Pg> p' € P; z, zq> z' will be the corresponding points in

C x P.



Cand P are closed, bounded Euclidean subspaces; instead of f we shall equiv-

alently consider

g=—f—- 0>2f>-o

g: C x P> [-1,0] is continuous and hence uniformly continuous.
F is the set of closed non-empty subsets of P endowed with the Hausdorff

metric

Y: C > F is defined by
Y(c) = {p: glc,p) = sup £(c,p")}
p'eP
d is the Euclidean metric on C, P or C x P as indicated by its arguments.

In particular note that
d*(z,2") = d’(c,e") + d°(p,p")

<o is such that

V(co) = {po}, and g(co,po) =0

LEMMA. With the above notations and definitions, Y is continuous at o

t.e. Given € > 0 38:
d(c,co) <8 and p e Y(c) ='d(p,po) < g.
PROOF. Choose e > 0.
an(e) > 0: d(p,py) 2 € = glc_,p) < glcy,py) = n
because the supremum of g(co,') outside of a neighbourhood of P, must be

strictly less than g(co,po), Py being the unique maximizing value in P, and

g(co,-) being uniformly continuous.

BIBLIOTHEEK MA
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36(n) > 0: § < € and dz(z,z') < 28 = | g(z)-g(z") ] <

w3

because g is uniformly continuous.

Suppose now c¢ is such that d(c,co) < 8.
If p satisfies d(p,po) < §, then d((c,p), (co,po)) < V28 = g(c,p) 2
2 8(C0,P0) - n/3-

If p satisfies d(p,po) > ¢, then d((c,p), (co,p)) <6 = g(c,p) <
< glcgsp) + n/3 < (g(co,po)-n) + n/3 (d(p,po)ZE)

i.e. g(c,p)s g(CO’pO) - 2“/3

i.e. g(c,*) attains values 2 g(co,po) - n/3 when d(p,po) < 6§, but is bounded
above by g(co,po) - 2n/3 when d(p,po) 2 e > 8,

Sope Y()= d(p,po) < e,

Conclusion and some heuristic comments

The idea of this paper is that the result will be comforting to those
applying factor analysis with the only technique presently available for it
which has some statistical justification, i.e. maximum likelihood methods
applied under the assumption of multivariate normality. Of course, how
quickly convergence occurs can presumably be as slow as anything one may
suggest; the computational method used need not give an absolute maximum*);
also, somewhere along the line, the number of factors must be specified.

We can see from the above proof that if the model holds with the given
number of factors, then the maximum likelihood criterion used here will
converge to zero; otherwise it will presumably converge to some value less

than zero representing the '"closest" m—-factor covariance matrix to the

true covariance matrix. If this closest distance can be given an empirical

* o . . . .
) For an approach giving computational and interpretational advantages

based on a broader specification of the model, see Prins and van Driel
(1974).



relevance - i.e. closer than € is to all intents and purposes the same as
exactly zero, and if the closest factor model is essentially unique, then
the problem of the number of factors is also asymptotically solved. Note too
that the normal theory likelihood ratio test statistic is basically the
estimated smallest distance blown up by the number of observations; under

the full null hypothesis asymptotically xz distributed.
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