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A strong law of large numbers for linear combinations of order statistics.*) 

by 

R. Helmers 

ABSTRACT 

An elementary proof of a strong law of large numbers for linear 

combinations of order statistics is eiven. The conditions of the theorem 

are easy to check and apply to almost every robust estimator based on linear 

combinations of order statistics which may arise in practice. The relation 

with recent results of BICKEL & LEHMANN (1975) and WELLNER (1977) is 

pointed out. 
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1 • INTRODUCTION 

Linear combinations of order statistics received much attention 

during the last ten years. The main reason for studying these statistics 

is their importance in robust estimation problems. Much is known about 

them including their weak convergence to a normal limit distribution under 

quite general conditions (see e.g. SHORACK (1972) and STIGLER (1974)). 

In this note we shall establish a strong law of large numbers for 

linear combinations of order statistics. The conditions of the theorem are 

easy to check and apply to almost every robust estimator based on linear 

combinations of order statistics which may arise in practice. Let 

T 
n 

= n 
-1 In J( i ) 

i= I n+ 1 

where X. , i = 1,2, ... ,n denotes the i th order statistic of a random 
in 

sample x1, ••• ,Xn of size n from a distribution with.distribution function 

(d.f.) F, J is a bounded measurable weight function on (0,1), 

dln"•··•~ are given constants and the indices i 1, ..• ,iK satisfy 

I < · < · < < · < Th h t · d" t d 1·n our notat1°on the - 1 1 - 12 - ••• - 1K _ n. oug no in 1ca e 

indices ik (I s ks K) may depend on n. We shall assume that all random 

variables are defined on the same probability space (Q, A, P). The inverse 

of a·d.f. will always be the left-continuous one. 

THEOREM. Suppose 

(i) J is bounded on (0,1) and continuous except at possibly finitely 

many points. 

(ii) Elx1 I < 00 

(iii) (K > 0). There 

0 < P1 < ••• < 

for I s k s K. 

determined for 

P(lim T 
\n-+<x> n 

exist ~eal numbers d 1 , .•• ,~ anq numbers 
ik 

pK < I such that dkn + dk and n + pk, as n + 00 , 

The pk th quantile ~ of the d.f. F is uniquely 
pk 

I s ks K. Then 

1 

= J F- I ( s) J( s) ds + l~= 1 dk ~p ) = I • 

O k 



If3 in addition3 J(s) = 0 for O < s < a and B < s < I assumption (ii) 

can be d:t>opped. 
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This result may be used to show that estimators based on linear 

combinations of order statistics are strongly consistent; e.g. it is 

innnediate from our result that synnnetrically trinnned means (K = O) are 

strongly consistent estimators for the centre of any synnnetric population. 

The same is true for synnnetrically Winsorized means (K = 2), with Winsorizing 

percentages p 1 and p2 = l-p 1, provided the p 1
th and (I - p 1) th quantile of 

Fare uniquely determined. 

Related results where strong laws of large numbers for general linear 

combinations of order statistics are established are due to WELLNER (1976). 

His results allow quite weight functions (including some unbounded J's) but 

his moment condition is slightly stronger than ours for some of the statis­

tics we consider. In particular the classical strong law of large numbers 

for the sample mean fails to be a corollary of WELLNER's results. We also 

want to mention that BICKEL & LEHMANN (1975) have given an argument (see 

their remark (A) on p. 1054) which innnediately yields a strong law for 

trinnned linear combinations of order statistics. 

PROOF. 

Let, for each n ~ 1, u1, ... ,Un be independent uniform (0,1) random 

variables and let, for I 5 i 5 n, U. denote the i th order statistic of 
1.n 

u1, ... ,Un. It is well-known that, for each n ~ I, the joint distribution 
-I -I 

of (X 1, ... ,Xn) is the same as that of (F (U 1), ... ,F (Un)) for any 

d.f. F. Since the validity of a strong law depends only on J, F and the 

d 's we may and shall identify X. with F-l(U.) and also X. with F- 1(U. ) 
kn 1. 1. 1.n 1.n 

for I 5 t 5 n. Let rn denote the empirical d.f. of u1, •.. ,Un. XA denotes 

the indicator of a set A. The Lebesgue measure is denoted by A, 
We give the proof first for K = 0. The idea of the proof is to use 

Moore's representation of T in terms of the empirical d.f. r (see MOORE 
n n 

(1968)): 

( I ) 

I 

Tn = I F- 1(s) J (n:l rn(s)) d rn(s). 

0 



Introduce random variables A and B by n n 
l 

(2) f -1 -1 
I~=l F- l (U. ) J (U. ) A = F (s) J (s) d r (s) = n n n 1. 1. 

0 

and 

l 

(3) B = J F- 1(s)(J(n~l rn(s)) - J(s)) d r (s) n n 
0 

so that 

(4) T = A + B . 
n n n 

Since A is the mean of n independent identically distributed random 
n 
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variables and the boundedness of J (see assumption (i)) and assumption (ii) 

imply that E J F= 1 (u 1) J(U 1) J ~ sup I J(s)l. EIX I < 00 we can apply 
O<s< 1 I 

Kolmogorov's strong law of large numbers to find that 

(5) 

I 

P(~-!! An = J F-l (s) J(s)ds) - l. 

0 

It remains to show that 

(6) P(lim B = 0) = l. 
n-+<x:> n 

We shall prove (6), by way of an example, for the case that J is discontinuous 

at only one point s 1E(0,I). Now new difficulties will be encountered when 

treating the other cases. 

Remark first that, for any O < o < i min (s 1,I - s 1), we can decompose 

the r.v. B 
n 

(7) 

as follows: 

B = , 5 B 
n lm=l nmo 

where the r.v. 's Bnmo' m = 1,2,3,4,5 are given by the integral on the right 

of (3), provided we restrict the region of integration to the interval 

(O,o],(o,s1- }J,(s 1- {, s 1+ {J,(s 1+ {,1-0]~ and (1-o,I) respectively. We 



s.hall show first.that, given any E > O, there exists a. sufficiently small 

number o(E,F) such that 

(8) sup 
b < s < 1 

for all O<o<o(E,F). To prove this we note first that for any 0 < 0 < 1 

0 

(9) I Bnlol IJ<s)I J 
-1 

s 2 sup IF (s)I d r (s). 
O<s<l n 

0 0 

Because I IF- 1(s)I d r (s) = -1 .... n 
IF- 1(ui)! X(o,o](Ui) and EjF- 1(ui)I . n li=l 

0 
n 
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X(O,o] (Ui) s El x1 I' < 00 by assumption (ii) we can apply Kolmogorov' s strong 

law of large numbers to find that for any O < o < 1 

o o 
(10) P(~ J IF-1(s)I d rn(s) = J jF- 1(s)jdsJ = 1. 

0 0 

Now, it is well-known that (see e.g. HEWITT & STROMBERG [2]. Theorem 12.34 

p. 176) that assumption (ii) implies that given any E > 0 there exists a 

sufficiently small number o(s,F) such that for any measurable set A c(0,1) 

with A(A)<O(e,F) we have I IF-1(s)I ds <£.Application of this with 

A= (O,o] and using also (9) and (10) we see that (8) is proved. 

Next we shall prove that for any O < o < ½ s 1 

( 11 ) P(lim B 2s = 0) = l. 
n-+<:o n v 

To check this we note first that for any O < o <ls 
3 I 

(12) sup s I J(~1 r (s) - J(s) I. 
v n+ n o<sss 1- 2 

l 

f IF- 1(s) jd rn(s). 

0 

Now the Glivenko-Cantelli theorem and the uniform continuity of J 
o o on [2, s 1 - 4] ensures that 



Since relation ( I 0) also holds with o replaced by l we have proved (II). 

To proceed now we remark that the r.v .. 's B3n and B5n can be 

treated in the same manner as we did with Bin' Hence we know that, given 

E > 0, there exist a sufficiently small number o(s,F) such that 

(I 4) P(limsup l n~ m=I ,3,5 
IB ~I ~ 6 E sup IJ(s)I\ = 

nmu O<s<l . / 

for all O<o<o(E,F). Using the arguments leading to (JI) we find that for 

any O < o <} (I-s 1) 

(15) P(lim B 4~ = O) = 1. 
n~ nu 

Combining all these .results we find that 

(16) P(limsup n+oo 
!BJ ~66 sup JJ(s)I\ -1. 

n O<s<l / 

Since J is bounded on (O,l) (assumption (i)) and E > 0 is arbitrary (16) 

proves (6). Hence the proof for K = 0 is complete. 

Suppose now that K > O. In addition to the proof for K = 0 it 

suffices clearly to show that assumption (iii) ensures that for I ~ k ~ K 

(I 8) (.1 • -I -I 1 P limsup dk ,F (U. ) = dk F (pk) = 
\ u~ n ikn 
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This, however, is straightforward from assumption (iii) (which implies 

that F-T is co~tinuo~s at the points p 1, ••• ,pK) and the well-known fact 
ik 

that P(lim U. = p) = 1 as - ➔ p for l ~ k ~ K. This completes the proof 
_n~ . ikn k n k 

for K > O. 

To verify finally that assumption (ii) can be dropped in the case 

that .J is zero on (O,a) and (8, 1) is easy. Of course we need only to 

consider the case K = O. Note that it is immediate from (1) and the 

Glivenko-Cantelli theorem that we may restrict the region of integration 

in (1) to a closed interval [a - n, S + n] for some fixed O < n < min (a,I-S), 
. -I 

Since F is bounded on any such interval we can simply repeat the argument 

of the proof for K = O, provided we replace the interval (0,1) by the 



interval [a - n, 8 + n] everywhere in the proof. This shows that 

S+n 
(19) P(~ T0 = f F-I (s) J(s) ds) = I. 

a-n 
S+n 8 

Because J F-l (s) J (s) ds = J F-l (s) J (s) ds the proof of the theorem 1.s 

. a-n 
complete. 
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