
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE STATISTIEK
(DEPARTMENT OF MATHEMATICAL STATISTICS)

R. KAAS

SW 52/77

INTERPOLATION SEARCH FOR ORDER STATISTICS OF A
UNIFORM DISTRIBUTION

Preprint

~
MC

OKTOBER

2e boerhaavestraat 49 amsterdam

PJunted a.:t .the Ma.:the.ma..ti.c.ltl Cen:oz.e, 49, 2e BoeJLhaa.ve6:tJr.aa..t, Am-6.teJLdam.

The Ma.:the.ma..ti.c.ltl Cen:oz.e, 6ounded .the 11-.th 06 FeblLu.aJl.Y 1946, .l6 a. non
p1Lo6,lt. ino:ti..tu.Uon cum,i_ng a.:t .the p!Lomo:Uon 06 pull.e ma.:the.ma..ti.c.-6 a.nd .w
a.ppUc.a..ti.ono. 1.t .l6 .6ponootLed by .the Ne.thvr1.and6 GoveJLnment .th/Lough .the
Ne.thvr1.and6 OtLga.n,i,,za..ti.on. oofL .the Adva.nc.e.ment 06 Pull.e Re6eMc.h (Z.W.0).

AMS(MOS) subject classification scheme (1970): 68A20,68A50,62G90

Interpolation search for order statistics of a uniform distributi~n *)

by

R. Kaas

ABSTRACT

This paper contains an analysis of the mean running time of inter

polation search in an ordered file, under the assumption that the items

to be searched have been randomly obtained from a known continuous distri

bution. We prove the 0(log log n) average time bound found, but incor

rectly proved by ITAI and PERL [3].

KEY WORDS & PHRASES: interpolation search3 complexity.

This report will be submitted for publication elsewhere

l • INTRODUCTION

Searching in an indexed ordered file is a very common problem in data

manipulation. The situation considered is that we have an increasing sequence

of real numbers x 1,x2 , ... ,xn and a number y of which we would like to deter

mine whether and with what index it occurs in the row. This situation might

arise when we consider the names of a set of people, punched on cards togeth

er with other relevent variables, as 26-ary numbers.

An efficient tool for obtaining good algorithms is the "divide and

conquer"-technique as described in [l]. We divide the problem into two sub

problems and recursively solve one of these subproblems. In our case this

is achieved by choosing a "cutting-index" c, determining whether x = y
C

(then we are ready), xc > y (then we consider x 1,x2 , ... ,xc-l) or xc < y

(then we consider x 1,x 2, ... ,x). If we do not use the fact that the
c+ c+ n

numbers are ordered and choose for c every time the lowest possible index,

i.e. c = 1,2,3, , we obtain an algorithm that runs in O(n) time*). An

O(log n) (average and worst case) algorithm arises if we choose every time

the median index of the set of possible indices, cf. the binary search algo

rithm in [l] and [4].

Under the extra assumption that the data have been obtained as a

random uniform-(O,1) sample the index of y has a binomial-(n,y) distribution.

We consider the average running time under this assumption of the algorithm

computing the cutting-index every time by linear interpolation, i.e. taking

c = n,,y rounded off. In section 2 we prove that if m 2': 2log2log n, c is the
ID

mth cutting-index obtained in this way, and y = x., Jc - iJ has an expected
l. ID

value of less than 2.636 .•.. ITAI and PERL [3] proved an upper bound of two

for this quantity, but their proof contained some unjustified approximations.

In section 3 we prove that given xc the row x 1,x2 , ... ,xc-l may be treated

as an ordered uniform-(O,x) sample. So with respect to the interpolation
C

search algorithm the subproblems to be solved are isomorphic to the main

problem. Section 4 contains the results of a Monte Carlo investigation of

the algorithm, not only with underlying uniform distribution functions

(d.f. 's), but also with normal, polygonal and other d.f.'s.

*)An al~orithm runs in (average) time O(f(n)) if as n ➔ 00 the (average) num

ber of elementary computing steps (such as addition, division) needed by the

algorithm to come to a solution is O(f(n)-).

2

Recently we learned that YAO and YAO [5] have also proved the.same

average time bound. We think our construction of the proof: a row of condi

tionally binomial r.v. 's, each having as expected value the absolute error

of the previous one, is more elegant and transparent than theirs. They were

able to prove the optimality of the interpolation search algorithm, up to

an additive constant. They did not pay attention to the isomorphism of the

main problem and the subproblems. This is, however, not completely trivial,

since conditional distributions are involved with conditions of zero proba

bility.

Throughout the paper all random variables (r.v. 's) will be underlined

and v.v., and all logarithms are to the base 2.

2. THE INTERPOLATION ALGORITHM AND ITS COMPLEXITY

We will start by giving some inequalities necessary to estimate the

complexity of the algorithm. The expectation of an r.v. x will be denoted

by E~ and its variance E(~-E~) 2 by var(~) or a;.

LEMMA 2.1. For every r.v. x the followirl{J inequalities hold:

(2. I) Ex~ lx2 d VE , an

(2.2)

PROOF. 0 ~ E(x-Ex) 2 = E(x2-2x.Ex+(Ex) 2)

Ex ~ /E~2 . A;pl;ing thi~ re~ul; to-the

2 2 2 2
= E~ -(E~) , so (E~) ~ Ex and

r.v. y_ = I~ - E~I one obtains:

□

For convenience we will write tt(n) for 22n. Now n = tt(log log n) and

vn = tt(log log n-1). Let m = rlog log n1 , rti being the smallest integer

not less than t. In our algorithm we will do m iteration steps each reducing

the complexity of the problem considered from x, say, to Vx +½,We want

to prove that after taking m steps with original complexity n the resulting

problem has a bounded complexity. Let us define f by
n

fo(x) = x,

fn+ 1 (x) = Vfn (x) + ½, n=0,1,2,

defined by t = f (tt(n)), n = 0,1,2, .•..
n n

LEMMA 2.2. For n = 0,1, ... and i = O,J, ..• ,n

(2.3)

(2. 4)

f l (x) = f (vx + D, and n+ n

f.(tt(n)) ~ tt(n-i).
i

PROOF. f +l(x) = Vf (x)+½ = 1/f 1(\/x+½)+ ½ = f (v'x+½), n n n- n so (2. 3) follows

by induction. (2.4) holds for i = 0, and f. 1(tt(n)) =
io+

□

-n
LEMMA 2.3. 0 < tn+l - tn ~ 2 /tt(n) for every n.

Vf. Ctt(n))
io

+ l
2

PROOF. t I - t = f 1 (tt(n+l))-f (tt(n)) = f (tt(n)+½)-f (tt(n)). Since n+ n n+ n n n

3

, (1 n n-1 (-½ () . . . f (x) = 2) TT [f. x)J , we see that f x increases monotonically with
n i=O i n

x, but f'(x) decreases. Now the mean value theorem directly yields
n

f (tt(n)+½) - f (tt(n)) ~ l f'(tt(n)) = n n 2 n

n -1 n - I
-n-1 TT -1 -n-1 TT -1

= 2 f.(tt(n)) 2
~ 2 tt(n-i) 2

i = 0 i i = 0

because of (2.4). This product is equal to 2 to the power

n-1
-n-1 - I

i=O

n-i-1
2

n = -n-2 ,

so the lennna is proven. D

CX) -i
Now lim t ~ t + l· 2 /tt(i) =

m+oo m n i=n

~ t + 2-n/tt(n) + 2-(n+I)/tt(n+l)
n

tn + 2-n/tt(n) + l:=n+l 2-i/tt(i)

,
00 2-i = t + 2-n/tt(n) + 2-n/tt(n+I).

li=O n

t 6 , computed by a 48 bits real mantissa computer. is 2.636339126878~·· ,

and the difference between t 6 and lim tm is less than 2-lO + 2- 134 , so we

have the following result:

00

COROLLARY 2.1. If a row of positive real numbers (r.). 0 satisfies r. 1 ~ 1 1= 1+

4

~+½ for every 1, then m ~ rlog log r 0 7 irrrpZies rm~ 2.636339126978 .•.. □

We will now give a formal definition of the algorithm announced in the

introduction. It manipulates a random vector V. having as components the i th
-1

approximation of the index wanted, the lower and the upper index of the part

of the file still under consideration, and the parameters of the conditional

binomial distribution given these bounds, of the index looked for.

In the following n is a natural number; x 1 ,x2 , ••• ,x is a sorted random - - ~

sample from a uniform -(0,1) distribution. The r.v.'s ~ and ~+I are defined

by P(~ = O, X =l)=l
~+I '

the r. V. .!_, the index wanted, 1S defined by:

(2.5) i = max{i Ix. ~ y}.
- -1

Finally mis the smallest integer not less than log log n (m ~ rlog log n7).

The formal definition of the algorithm is given by:

DEFINITION 2.1. For i=O,l, ... ,m let V. = (c., £.., u., n., p.) be a random
-1 -1 -1 -1 -1 -1

vector. With probability one~= (O,O,n+l ,n,y), and for i = 1,2, ... ,m:

(2.6) c. = l. 1 + n. 1.p. rounded off to the nearest integer;
-1 -1- -1- -1-J

(2. 7) if X ~ Y, then L = c. and u. = ~i-1' --e. -1 -1 -1
-1

else and l. L I; u. = c. = -1 -1 -1 -1-

(2.8) n. = u. - L - I ,
-1 -1 -l.

.E.i = (y-~l.) / (~. -~l -) . □
-l. -l. -l.

The following lemma concerns the conditional contribution of i in successive

stages of the execution of the algorithm. In the sequel V will denote a

suitable vector, V = (c,l,u,k,p), with O ~ l ~ c ~ u ~ n+I, k = u - l - I,

either c = u or c = l, and

LEMMA 2.4. Under the condition V. = V the r.v. i - l has a binomial-(k,p)
-1.

distribution, for i = O, 1, ... ,m. For i = 0 this reduces to:

P(i = j)

PROOF. First assume i = O. Now i_ = j is equivalent to the event that of n

independent uniformly-(0,I) distributed r.v.'s exactly j do not exceed y.

This amounts ton independent trials, each with probability y of success.

Now assume i > 0. In the next section it is proved, that under the

condition ~l = xl and~= xu the joint distribution function of ~+I'

x 0 2 , ••• ,x 1 is that of an ordered random sample of size u - l - I from -.{..+ -u-
a uniform-(xl,xu) distribution. But then we have a copy of the situation

with i = 0 after performing the following transformations:

n:=u-l-1;

The following two lenrrna's concern the first reduced absolute moments of 1.

under the condition V. = V = (c, l, u, k, p).
-1.

LEMMA 2 • 5 • E (I i - c . I I V • = V) ~ k • p • (1 -p) •
- -1. -1.

PROOF. Because of (2.7) either c. = l or c. = u. Now
-1. -1.

E(li_-lll V. = V)
-1.

k.p ~ k.p.(1-p), but also

E(li_-ul! V. =V) =k+ 1-E(li_-lll V. =V) =
-1. -1.

= k + I - k.p > k.p.(I-p), so the lemma is proved. D

LEMMA 2. 6. E (l_i - c. I I I V.
-1.+ -1.

V) ~ \lk.p.(1-p) + !.

PROOF. Because of lemma 2.4 var(i_J V. = V) = k.p.(1-p). Defines by
-]._

5

s = l + k.p, thens= E(il V. = V), and
- -1

E(li - c.+ 111 V. = V) = E(li - s + s - c. 1 11 V. = V) :,; - -1 -1 - -1+ -1

:,; E(li - sl I V. = V) + E(ls - c. 1 11 V. = V) :,; -1 -1+ -1

:,; yk.p.(1-p) +½,because of (2.4) and (2.6). D

COROLLARY 2.2. E(Ii. - ~i+I I) :,; v'E(Ii. - ~i I) + ½, for 1 < m.

PROOF. Because of the two preceding lemma's

So

E(li_-~i+I I):,; Ev_v'E(li_-~il l~i) + ½ (using (2.1))
-1

:,; v'E < I i -c . I) + 1 D - -1 2.

THEOREM 2.1. E(Ji-c I) < 2.636339126878 ...
- --m

PROOF. Apply corollary 2. I with r. = E(ji - c. I). r O = Ei:_ = n.y, so
1 - -1

6

. 1 21 2 . . . certain y m ~ og log r 0 , and the relation between successive ri 1s satis-

fied because of corollary 2.2. D

The theorem states, that if after m interpolations we proceed with

cutting-indices c +l, c +2, ... (if x <
--m --m -SU.

(if x > y), 2.636 .•.. steps on an average are
-SU.

y) or with c -1, c -2, ...
--m --m

sufficient to reach i. If

x < y and no x. equals y we must do one more step, since i must satisfy -SU. -1

x. < y < x. 1, so it is necessary to know the value of x. 1. -1 -1+ -1+
We conclude this section with two final remarks about the algorithm.

In the first case its worst case time behaviour is O(n): suppose n•y < !
n and consider all samples with x < y, having total probability y. Now all

-n
cutting-indices will have the value zero, son sequential tail steps are

necessary. This should come as no surprise to us, since our extra assumption

about the underlying distribution is then useless. In the second place it

7

is not necessary that the underlying distribution is uniform-(O,1). If it

is continuous with known d.f. F then F(!,1), F(!,2), ,F(~) are a random

sample from a uniform distribution, since (defining F- 1(y) = inf{zl F(z)~ y})

P(F(!_) ~ x) = P(x ~ F- 1(x)) = F(F- 1(x)) = x.

3. THE ISOMORPHISM OF SUBPROBLEMS

each

In this section y 1,y2, ... ,ln_ will be a sequence of independent r.v.'s

with d.f. F and density function f. The i th smallest of they. is deno
-1.

ted by x .• We first
-1.

give (without proof) a basic theorem on order sattistics.

More details can be found in DAVID [2].

THEOREM 3.1. Suppose we have an increasing row of natural numbers

r 1,r2, •.. ,rk with I ~ r 1 and rk ~ n, and a non-decreasing row of real num

bers x 1,x2, ... ,~ with O ~ x 1 and~~ I. Furthermore let r O = O, rk+I = n+I,

xO = - 00 and ~+I= +00 • Then the joint density of x ,x , ,x in
-r I -r2 -rk

(x 1, ••• ,~) is given by:

f (x 1,. e. ,xk) =
r I ' ... , rk

(3. I)

= n!
k

f(x.)
k

TT
(F(x. 1)-F(x.))

1.+ l.

r. 1-r. - I
1.+ l.

TT
i = l

l. i=O (ri+l-ri-1)!

THEOREM 3.2. The joint density of !_1,!_2, .•.. ,!_j-l under the condition !.j = b

in the point (x 1,x2, •. ~.,xj-I) with O < F(b) and O ~ x 1 ~ x2 ~ ... ~ xj-I ~ b

is given by:

(3. 2)

f I 2 . - I I =b (x I ' • . • • ' x . - I) = ' ' ••• ,J x. J -J

f(x 1)f(x2) ... f(xj-I)
= (j-1)!

F(b)j-l

PROOF. By definition this density is equal to

fl 2 ·-1 .(x1,x2,···•x·_1,b) • ' .•. ,J ,J J

f. (b)
J

The numerator equals

and the denominator equals

. ' n.
F(b)j-l [l-F(b)]n-j

f(b) (j-f)!. (n-j)!

and the quotient is

(j-I)!f(x1)f(x2) •... f(xj-l)

F(b)j-l □

Because of (3.1) the joint density of all order statistics in

(x1,x2 , •.•. ,xn) with x 1 ~ x2 ~ .•. ~ xn is given by:

(3.3) f 1 2 (x 1, •• ,x) = n! f(x 1) f(x 2) •.. f(x). , , •. ,n n n

If u has a uniform-(0,1) distribution and 0 ~ t ~ b ~ 1 ' then

P(~ ~ t & u ~ b) t (3.4) P(~ ~ ti u ~ b) = = b ,
P(u ~ b)

8

so under the condition u ~ b the r.v. u has a uniform-(0,b) distribution.

Now comparing (3.3) and (3.2) for the case, that they. have a uniform-(0,1)
-J

distribution we find, that under the condition x. = b the r.v. 's x 1,
-J -

x2 , •••• ,x. 1 have the joint d.f. of
- -J-

an ordered random sample of size j-1

from a uniform-(0,b) distribution.

4. NON-UNIFORM UNDERLYING D.F. 1 S

In this section we give some observations of the behaviour of the
14 algorithm under non-ideal circumtances. We generated n = 16384 = 2 pseudo-

9

random numbers in the interval (0,1). Having sorted these into ascending
-I

by looking at F (x1), order we simulated several distinct underlying d.f. 's
-I -I

F (x2), ••.. , F (xn). In

on the centiles (the real

most cases we performed the interpolation search

numbers F- 1(i/100), i = 1,2, •... ,99; these num-

bers did not occur in the file) and also for 100 random elements occurring

in the row.

Taking for F the uniform-(0,1) distribution resulted in an average

of 4.87 interpolation steps for the centiles and 3.98 for the numbers ran

domly taken from the file. We actually did interpolation steps only as long

as these resulted in a cutting-index different from the previous one, after

which we did sequential steps until the required index was d~termined. The

binary search algorithm mentioned in the introduction would have required

15 and 13 steps respectively. Since a lucky hit is possible when searching

numbers in the file in general less searching steps are necessary in this

case.

A distribution that is often treated as being "even", i.e. resembling

the continuous uniform d.f., is the distribution of the family names, con

sidered as 26-ary numbers, in a telephone directory. We approximated the

actual distribution of the names by taking a polygone having constant den

sities over the first letters of the names. We estimated the densities by

counting the number of entries with the corresponding first letter in the

Amsterdam telephone book. The average search-length was about 10.8, not too

much better than the 14 that would have been obtained by binary search.

A situation frequently encountered in practice when dealing with

large files of numbers is a paging environment: by accessing a number we

simultaneously gain access to many other numbers on the same "page". This

situation arises in the telephone-directories already mentioned, in dictio

naries, but also when a computer buffers its input. We simulated this situa

tion by taking for F the discrete uniform distribution over the integers

1,2, ,k fork= 100, 1000, and 10000. This was achieved by multiplying

every number in the file by k, and rounding it to the nearest integer. On

the average there were about 164, 16 and 1.6 numbers on every page. The

average number of pages visited was 1.4, 2.2 and 3.7 respectively. The bi

nary search algorithm would have visited about log 100 ~ 6.6, log 1000 = 10.0

10

and log 10000 = 13.3 pages respectively.

We tried some continuous d.f. 's with non-zero tails, such as the

normal, exponential and logistic d.f., resulting in about 40 steps on an

average. A distribution having thick tails, such as the Cauchy-distribution,

has all quantiles "concentrated in the middle". The first p-value is compu

ted as

-I -I F (y)-F (x1)
p = -1 -1 •

F (xn)-F (x1)

d f d t 1 F-l(y) an or mo era e y-va ues = tg(n(y-!)) is very small compared to

the other two components. So it is not surprising that for y between 0.01

and 0.99 the minimal and maximal p did not differ by more than

Because x 1 had the value 5.7*10-6 and x was 1 - 4.2*10-5 , the
n . +4

tribution considered was truncated to the interval [-5.6*10 ,

0.001 .

first dis
+3

7.6*10].

Because of this asymmetry the p-values ranged in [0.880, 0.881] for

y E [0.01, 0.99], so the first cutting index was almost the same: 14426,

irrespective of the index looked for. The situation resembles a telephone

book with one name aaaa ..•. , one name zzzz •.• , and all the other names

starting with vul ...••

The conclusion seems to be that our algorithm is not suited for all

underlying distributions, since for the Cauchy-distribution a number of

search steps of even 8000 was by no means exceptional.

REFE~NCES

[1] AHO, A.V., J.E. HOPCROPT & J.D. ULLMAN, The Design and Analysis of

Computer Algorithms, Addison Wesley, Reading Mass. (1974).

[2] DAVID, H.A., Order Statistics, John Wiley & Sons Inc., New York (1970).

[3] ITAI, A. & Y. PERL, Interpolation Search: a log log N Search, Preprint

from the Weizmann Institute, Israel (1975).

[4] KNUTH, D.E., The Art of Computer Programming, Vol. 3: Sorting and

Searching, Addison Wesley, Reading, Mass. (1973).

[5] YAO, A.C. & F.F. YAO, The Complexity of Searching an Ordered Random

Table, IEEE, FOCS 17 symposium, Houston (1976) p. 173-177.

