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ABSTRACT 

A Berry-Esseen bound of order n-½ is establ:i,shed for linear combina

tions of order statistics with smooth weight functions. The underlying 

distribution function must possess a finite absolute third moment. This 

improves an earlier result of the author. 
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1. INTRODUCTION 

Linear combinations of order statistics received much attention during 

the last ten years. Much is known about them including·their asymptotic nor

mality urider quite general conditions. Berry-Esseen type bounds for the nor

mal approximation of linear combinations of order statistics were estab

lished by BJERVE (1977) and HELMERS (1977) (see VAN ZWET (1977) for a re

view of these results). For the related problem of establishing Edgeworth 

expansions for linear combinations of order statistics we refer to the 

papers of HELMERS (1976) and VAN ZWET (1977). 
-1 

BJERVE (1977) obtained the order bound O(n 2 ) (n being the sample 

size) for trinnned linear combinations of order statistics. His result 

admits quite general weights between the ath and Sth sample percentile 

(O<a<S<l) but he does not allow weights to be put on the remaining obser-
_1 

vations. In HELMERS (1977) the order bound O(n 2) was established for linear 
i combinations of order statistics with weights of the form c. = J(-+1), 1.n n 

i = 1,2, .•. ,n, for a smooth function Jon (0,1). The underlying distribu-

tion function F must possess a finite absolute third moment. Though we 

avoid the assumption that there are no weights in the tails the use of a 

technique of BICKEL (1974) in the second part of the proof given in HELMERS 

(1977) leads to the assumption J~ I J' (s) I dF-l (s) < 00 (J' being the deriva

tive of J). In this note we shall show that this assumption is superfluous. 

The present theorem will be proved by modifying the proof given in HELMERS 

(1977); we shall argue as in CHAN & WIERMAN (1977) and CALLAERT & JANSSEN 

(1977), rather than using Bickel's idea (BICKEL (1974)). 

2. THE THEOREM 

-1 ~n i . 
Let, for each n ~ I, T = n l"-l J(n+l) X. where X. , 1. = 1,2, ... ,n 

th n 1.- 1.n 1.n 
denotes the i order statistic of a random sample x1, ••• ,Xn of size n from 

a distribution with distribution function (d.f.) F and J is a bounded mea

surable function on (O,l). The inverse of a d.f. will always be the left-

* * continuous one. Let F (x) = P(T ~x) for - 00 < x < 00 , where 
n n 

T* = (T -E(T ))/cr(T ). n n n n 
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Let~ denote the standard normal distribution function. We prove the follo

wing theorem. 

THEOREM I • Suppose 

(I) J is bounded and continuous on (O,l). The derivative J' exists, except 

possibly at a finite number of points; J' satisfies a Lipschitz condi

tion of order>½ on the open intervals where it exist. The inverse F-I 

satisfies a Lipschitz condition of order> ½ on neighborhoods of the 

points where J' does not exist. 

(2) Elx1l3 < oo. 

2 Then a (J,F) > 0, where 

2 a (J,F) = J J J(F(x)J(F(y))(F(minLi,y)) - F(x)F(y))dxdy 

-oo -oo 

irrrpZies that there exists a constant c, depending on J and F but not 

on n, such that for all n ~ 

-1 
s; Cn 2 

As indicated in our introduction the present theorem was obtained 

in HELMERS (1977) under the additional requirement/~ IJ'(s)ldF- 1(s) < 00 • 

3. THE PROOF 

Let, for each n ~ l, u1,u2 , •.• ,Un be independent uniform (O,ll random 

variables (r.v.'s). For any r.v. X with O < o(X) < 00 we denote by X the 

r. v. (X-E (X)) /cr (X). Let XE denote the indicator of a set E. Define, for 

each n ~ I, the r.v. S by 
n 

(3. I) s = 1 tn + 12n n 

where 
I 

-1 
I:=l I -I 

(3.2) 1 1n = -n J(s)(x(O,s](Ui)-s)dF (s) 

0 
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and 

I 

(3.3) 
-2 ,n ,i-1 

I2n = -n li=I lj=l I J' (s) <xco, s] (Ui)-s)(x(O,s] (Uj )-s)dF-1 (s). 
0 

In section 2 of HELMERS (1977) it is proved that under the assumption (I) 

of the present theorem and the assumption that Elx112+e < w for some e > 0 

T* s* is of negligible order for our purposes; i.e. n n 

(3.4) 

Hence it suffices to.prove that the assumptions of the present theorem 

ensure that the order of the normal approximati~n for s* is n-½. 
* * n The r.v. S is given by S = i 1 + J 2 , where J = I /cr(S) for n n .n n mn mn n 

m = 1,2 and all n ~I.For convenience we shall write 

(3.5) 

and 

(3.6) 

and also a n 
Using 

g(U .) = 
1 

h(U., U.) 
1 J 

= cr(Sn). 

the idea 

1 

J -I 
J(s)(x(O,s](Ui)-s)dF (s) for s i s n 

0 

l 

= - f 
0 

for s i < j s n 

of CHAN & WIERMAN (1977) we introduce r.v.'s 

J' 2n and J2n as follows 

(3.7) (n2cr )-1 
I Ii-1 J' = li=l h(U., U.) 

2n n j=l 1 J 

(3.8) (n2cr )-1 n i-1 
J" = li=I+I l- I h(U., U.) 2n n J= 1 J 

3 

where I= [n-3 n2 a! a-2 log n An]. Note that J 2n =Jin+ Jzn• Since our 

proof will depend on characteristic functions (c.f) arguments let us de

note by pin and p~ the c.f. of Jln and Jin+ Jin• The c.f. of a sunnnand 



of non Jln' that is of g(U 1), will be denoted by p, Clearly we have 
n t 

P 1 (t) = p (-· -) for all t and n ~I. n no 
Following now the pattern of the Chan-Wierman proof we shall first 

show that there exist e: 1 > 0 such that 

t"' 

(3.9) - e- 2 lltl- 1dt = _! 
O(n 2 ), as n ➔ 00 • 

Next we show that there exist e: 2 > 0 such that 

(3.10) 
_! 

O(n 2 ), as n ➔ oo. 

Finally we prove that J2n is of negligible order for our purposes; 

i.e. 

(3. 11) P < I 1" I 2n 

The Berry-Esseen bound of order n-½ for s* then follows from (3.9),(3.10), 
n 

(3.11) and the usual argument based on Esseen's smoothing lemma (see e.g. 

FELLER ( 1966)). 

LEMMA 3.1. Suppose that the conditions (1) and (2) of theorem 1 are satis

fied. Then o2 (J,F) > 0 irrrplies (3.9). 

4 

PROOF. See lemma 3.1 of HELMERS (1977). The proof is essentially that of 

the classical Berry~Esseen theorem for a properly standarized sum of inde

pendent identically distributed random variables with finite absolute third 

moment. The main difficulty is that we have standarized r 1n by multiplying 
-1 1 -1 

with o rather than with n 2 a (J,F). D 
n 



Next we shall be concerned with the problem of showing that (3.10) 

holds under appropri:ate conditions. 

I I 2+e: d d. . ( ) LEMMA 3. 2. Let E x1 < 00 for some e: > 0 an suppose .that con 1,,t1,,on I 

of theorem I is satisfied. Then a2 (J,F) > 0 irrrpZies (3.10). 

5 

PROOF. The proof is essentially the Chan & Wierman proof. See CHAN & 

WIERMAN (1977), p.137. First note that O < a 2 (g(U 1)) = cr 2(J,F) < 00 because 

a 2(J,F) > O, J is bounded and EX~< 00 • Hence there exists e: 2 > 0 such that 

lp(t)I ~ I - t2a2f,F) <_ exp(-t2a2f,F)) for I I < / (J F) N t - e: 2 a , . ext we 

remark that 

(3. I 2) as n ➔ 00 • 

To prove this we note first that it follows directly from the proof of 

lemma 3.1 (see HELMERS (1977)) that O < lim ncr2 = a2 (J,F) < co and Er22 = O(n-2) 
n➔oo n n 

as n ➔ 00 holds under the assumptions of the present lemma. This implies that 
. 2 - -1 f::(J Zn) = O'(n ) as n ➔ 00 from which (3. 12) follows immediately. 

To proceed we remark first that 

j -1 
- pln(t) ltl dt -

= L 
1

Jfll~(t) - P 1n(t)lltl- 1dt + 

ltl~n4Ae: 2n 2 

I -1 
- pln(t) ltl dt. 

Next we note the~ 

I -I 
- pln~t) ltl dt = 

= 

• I 
itJ2n -

- -I)j ltl 1at ~ 



_! 
+ O(n 2 ) :5: 

-2 -3 :5: n cr 
n 

_! 
+ O(n 2 ) = 

_! 
= O(n 2 ), as n + 00 • 
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J itJln 
!Ee h(U.,U.)!dt + 

I ! l. J 
ltl:5:ni+Ae:2n 2 

2 2 
t cr (J,F)) 

2 2 • 
3n cr 

n 

In the fourth inequality we have applied (3.12), whereas in the fifth inequa

lity we use that g(U1) + g(U2) and h(U 1,u2) are uncorrelated. Note also that 

El (g(U 1)+g(U2)) 2h(U 1,u2) I< 00 under the assumptions of the lennna. 

Finally we remark that 

2 2 
exp(- t (n;I~cr )dt. 

3n cr 
n 

But for n sufficiently large this integral is equal to 



-1 
O(n log n), as n-+ 00 • 

Combining all the results we find that (3.10) is proved. D 

Finally we prove (3.11). The basic idea of the proof is the same as 

that of a lemma of CALLAERT & JANSSEN (1977). 

7 

LEMMA 3.3. Suppose that the aonditions (I) and (2) of theorem 1 are satis

fied. Then o2(J,F) > 0 irrrpZies (3.11). 

Ii-I PROOF. For i = 1,2, ••• defines-= . I h(U.,U.). We have s 1 = 
1 J= 1 J 

E(E. 1ls1,··•,S•) = 0 a.s. for i = 1,2, •...• Hence 
1+ 1 

,I+k 
li=I+I si' k= 1,2, ••. 

0 and 

is a martingale. Note also that, for fixed i, '~ 1 h(U.,U.), m = 1,2, ••• ,i-1 
lJ= i J 

is also a martingale. Hence the martingale inequality of DHARMADHIKARI, 

FABIAN and JOGDEO (1968) can be applied twice. We obtain, after some elemen

tary computations and making again use of the fact that O < lim no2 < 00 
n+oo n 

(see the proof of lemma 3.2), that there exists a number B > 0 such that 

for all n ~ 

3 

EIJ2nl 3 ~ Bn-914 (1og n)2 Elh(U1,u2)1 3• 

To proceed we shall show that the assumptions of this lemma imply that 

Elh(U1,u2)1 3 < 00 • We start with an application of the cr~inequality: 

u1"u2 
Eln(U1,u2)1 3 ~ 32[E( f IJ'(s)ls2dF- 1(s)) 3 + 

0 

I 

IJ' (s) I s(l-s)dF-I (s)) 3 + E( f IJ' (s) I (1-s) 2dF-I (s)) 3J. 

u1vu2 

Since J' is bounded on its domain, F-I is continuous at the points where 

J' is-not defined, and Elx11 < 00 , we can easily check that 



u1vu2 1 

E ( J I J ' ( s ) I s ( I - s ) dF - I ( s )) 3 ~ ( J I J ' ( s ) I s (I - s ) dF - I ( s )) 3 < co • 

U1AU2 0 

Also note that 

U1AU2 

E( I IJ'(s)ls2dF- 1(s)) 3 = 

0 

I t 

= 2 J ( 1-t )( J I J ' ( s) I s 2 dF - I ( s)) 3 d t. 

0 0 

It is not difficult to verify that the integral on the right is finite 

under the assumptions of this lemma. Similarly we can show that also 

I 

E( I IJ'(s)l(I-s)2dF-l(s)) 2 < co. 

u1vu2 

3 Combining all these results we find that Eih(U 1,u2 )1 < co, so that we can 

conclude that 

as n ➔ co, 

An application of Markov's inequality yields now 

3 3 3 

P(IJ2nl ~ n-½) ~ n2 EIJ2nl3 = O(n 4(log n)2), 

as n ➔ co, which completes our proof of the lemma. D 

8 
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