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ABSTRACT

A . _
A Berry-Esseen bound of order n ? is established for linear combina-
tions of order statistics with smooth weight functions. The underlying
distribution function must possess a finite absolute third moment. This

improves an earlier result of the author.
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1. INTRODUCTION

Linear combinations of order statistics received much attention during
the last ten years. Much is known about them including their asymptotic nor-
mality under quite general conditions. Berry-Esseen type bounds for the nor-
mal approximation of linear combinations of order statistics were estab-
lished by BJERVE (1977) and HELMERS (1977) (see VAN ZWET (1977) for a re-
view of these results). For the related problem of establishing Edgeworth
expansions for linear combinations of order statistics we refer to the
papers of HELMERS (1976) and VAN ZWET (1977).

BJERVE (1977) obtained the order bound O(n_%) (n being the sample
size) for trimmed linear combinations of order S;atistics. His result
admits quite general weights between the ath and Bth sample percentile
(0<a<B<1) but he does not allow weights to be put on the remaining obser-
vations. In HELMERS (1977) the order bound O(n_%) was established f?r linear
i

)

n+l
i=1,2,...,n, for a smooth function J on (0,1). The underlying distribu-

combinations of order statistics with weights of the form Cin = J(

tion function F must possess a finite absolute third moment. Though we
avoid the assumption fhat there are no weights in the tails the use of a
technique of BICKEL (1974) in the second part of the proof given in HELMERS
(1977) leads to the assumption fé IJ'(s) !dF—l(s) < o (J' being the deriva-
tive of J). In this note we shall show that this assumption is superfluous.
The present theorem will be proved by modifying the proof given in HELMERS
(1977); we shall argue as in CHAN & WIERMAN (1977) and CALLAERT & JANSSEN
(1977), rather than using Bickel's idea (BICKEL (1974)).

2. THE THEOREM

i
th i=1 n+1
denotes the i~ order statistic of a random sample Xl""’Xn of size n from

-1 .
Let, for each n =2 1, Tn =nq z J( ) Xin where Xin’ i=1,2,...,n
a distribution with distribution function (d.f.) F and J is a bounded mea-
surable function on (0,1). The inverse of a d.f. will always be the left-

o * *
continuous one. Let Fn(x) = P(TnSx) for -» < x < », ywhere

*
Tn = (Tn—E(Tn))/G(Tn).



Let ® denote the standard normal distribution function. We prove the follo-

wing theorem.

THEOREM 1. Suppose

(1

(2)

J 4s bounded and continuous on (0,1). The derivative J' exists, except
possibly at a finite number of points; J' satisfies a Lipschitz condi-

tion of order > } on the open intervals where it exist. The inverse Fl

satisfies a Lipschitz condition of order > %} on neighborhoods of the
points where J' does not exist.
E|X1|3 < w,

Then GZ(J,F) > 0, where

o2 (3,F) = JEFE)IEF)) (Flwinti,y)) - F(x)F(y))dxdy

8 ~——8
é‘—-%S

implies that there exists a constant C, depending on J and F but not
on n, such that for all n 2 1

v

Cn °.

IA
Nl

s;pan(x) - o(x) |

As indicated in our introduction the present theorem was obtained

in HELMERS (1977) under the additional requirement Ié IJ'(S)|dF_1(s) < o,

3. THE PROOF

Let, for each n 2 1, U]’UZ""’Un be independent uniform (0,1) random

variables (r.v.'s). For any r.v. X with 0 < o(X) < = we denote by X" the

r.v. (X-E(X))/o(X). Let Xg denote the indicator of a set E. Define, for

eachn =2 1, the r.v. Sn by

(3.1) Sn = Iln,+ I2n
where
1
(3.2) I]n = —n_1 22=] J J(s)(x(o’s](Ui)—s)dF—l(s)

0



and
1 .
_ _ =2 i-1 ' -1
(3.3) L =0 1oy Lo JJ (8 (X (g, 47(Up -9 X (g, 47 (U;)=S)AF  (s).
0 . .
In sectidn 2 of HELMERS (1977) it is proved that under the assumption (1)
of the present theorem and the assumption that E|X1[2+E < = for some € > 0
T: - S: is of negligible order for our purposes; i.e.
x % -1 -1
(3.4) P(|Tn—SnI >n %) =0 %), as n > «,

Hence it suffices to prove that the assumptions of the present theorem
' : -1
. . * .
ensure that the order of the normal approximation for Sn is n 2.

* ., . *_ =
The r.v. s is given by § =J, +J, , where J Imn/o(Sn) for

In
m= 1,2 and all n = 1. For convenience we shall write

1

(3.5) g(Ui) = - [ J(S)(X(O,s](Ui)—S)dF—](S) for 1 <1 <n
0
and
1
' _ _ -1
(3.6) h(Ui’Uj) = - [ J (S)(X(O,S](Ui) S)(X(O,S](Uj) s)dF " (s)

0
for 1 €£i<3j<n

and also o, = O(Sn).-
Using the idea of CHAN & WIERMAN (1977) we introduce r.v.'s

J! and J as follows
2n 2n :
(3.7) o= @y T L)
: 2n n i=1 ’
2 -1 oD i-1
"o o_
(3.8) Jy = (0% ) 21—1+1 Zj=1 h(U.,U.)
3
where I = [n-3 n2 ci 0_2 log n A n], Note that J2n = Jén + Jgn. Since our

proof will depend on characteristic functions (c.f) arguments let us de-

7 1
note by Pln and I the c.f. of Jln and J]n + J2n' The c.f. of a summand



of no_ Jln’ that is of g(U]), will be denoted by p. Clearly we have

n, t
pln(t) = (EE—) for all t and n > 1.

.. n
Following now the pattern of the Chan-Wierman proof we shall first

show that there exist €, > 0 such that

t4

(3.9) f llp]n(t) e ? lel™lae = 0(n™?), as n » .
It!sglnE

Next we show that there exist €, > 0 such that

-1 Tl
(3.10) J Jel(e) = p, (e)|It] dt = O(n" 2), as n > =.
7' n In
|t]<e.n
2
Finally we prove that J;n is of negligible order for our purposes;
i.e.
-1 -1
(3.11) P(IJgnl 2n %) =0(n 2), as n > =,

-1
The Berry-Esseen bound of order n ? for S: then follows from (3.9),(3.10),
(3.11) and the usual argument based on Esseen's smoothing lemma (see e.g.

FELLER (1966)).

LEMMA 3.1. Suppose that the conditions (1) and (2) of theorem 1 are satis-—
fied. Then GZ(J,F) > 0 Zmplies (3.9).

PROOF. See lemma 3.1 of HELMERS (1977). The proof is essentially that of
the classical Berry-Esseen theorem for a properly standarized sum of inde-
" pendent identically distributed random variables with finite absolute third
moment. The main difficulty is that we have standarized I1n by multiplying

- 1
with Gn] rather than with n? ¢ I(J,F). O



Next we shall be concerned with therproblem of showing that (3.10)

holds under appropriate conditions.

LEMMA 3.2. et E|X,|%*

of theorem 1 is satisfied. Then o (J F) > 0 implies (3 10).

< « for some e > 0 and suppose that condition (1)

vPROOF The proof is essentially the Chan & Wlerman proof See CHAN &
WIERMAN (1977), p.137. First note that 0 < ¢ (g(U )) =0 (J F) < « because
o (J F) >0, J 1s bounded and EX < ®, Hence there exists €, > 0 such that
lo(t)] <1 - E_2_£2_22_< exp (- E——q—-g-'z—zz-) for |t| < EZ/G(J,F). Next we

remark that

(3.12) E(J_;_n)2 S 0@y asn o .

To prove this we note first that it follows directly from the proof of

lemma 3.1 (see HELMERS (1977)) that 0 < lim ncz = UZ(J,F) < o and E12 = O(n“2
nyo N 2n

as n -+ @ holds under the assumptions of the present lemma. This implies that

A 2 4,1 ] ,
ﬁ(Jzn) =0(n ") as n » » from which (3.12) follows immediately.
To proceed we remark first that

[ %ng(t) - Dln(t)lltl"ldt =

lt|S€2n

-1
_ . — .
= BN MORSINONE
ItISnerznﬁ
-1
v —
* IJ EMORINOIIL S
n4A52n7<|t|Sezn7
Next we note that
-1
U - =
lon(e) = oy ()] 1] "de

1 1
[tISn"Aezn2

. . \]
ltJln lthg -1
= . | Ee (e -1)|lt] “dt <
ltlgn‘/\ezn§ '

)



itJl
< (|Ee  Tar | + [t1E@! ) Dae <
- 1 . 2n 2n -
ItISn“Aezni
. itJ
2 -1 I oi-l 1tJyn
< (n cn) Zi=1 2j=1 Jl IIEe h(Ui,Uj)ldt +
ltISnZAezn§
3 N
+ n E(JZn) <
e (g(U )+ g(U,))
-1 n-2, t non 1 2
<o . ‘I .| h(U,,U,)[dt +
|t]<n%Ae, n?
=1
+ 0 %) <
2 2
< n_20;3 1J lt2 exP(—(n—Z)ELEF%%fgl).
|t]<n*Ae n2 3n"o
2 n
2
. E[(g(U)) + g(U,)) h(U,,U)) |dt
-1
+ 0@ ?) =

O(n_%), as n > o,

In the fourth inequality we have applied (3.12), whereas in the fifth inequa-
lity we use that g(Ul) + g(Uz) and h(Ul’UZ) are uncorrelated. Note also that
El(g(U1)+g(U2))2h(U1,U2)| < o under the assumptions of the lemma.

Finally we remark that

-1
! - <
L f lIon(t) o (O] 1tl de <
n4A52n2<|t|sgzn2
: -I, t -1
<2, 1 J llpn (EE—DIItl dt <
n“A£2n2<|tISe2n2 n
( 2 2
<2, 1) el : exp (- t—(—n-z—%—c—)dt.
n*Ae . n?<|t]<e n? In‘g
2 2 .

But for n sufficiently large this integral is equal to



2, 1 1Itl—1n_1dt = O(n—llog n), as n > «,

1-;/\ §< < 2
néAe,n | t] e,n

Combining all the results we find that (3.10) is proved. [

Finally we prove (3.11). The basic idea of the proof is the same as

that of a lemma of CALLAERT & JANSSEN (1977).

LEMMA 3.3. Suppose that the conditions (1) and (2) of theorem 1 are satis-
fied. Then cz(J,F) > 0 Zmplies (3.11).

zl
1

1
1

PROOF. For i = 1,2,... define gi _
325,..... Hence

h(Ui’Uj)' We have gl = 0 and

E(Ei+1|€1,...,£i) =0 a.s. for i =
I+k _
21—1+1 £, k=1,2,...

is a martingale. Note also that, for fixed i, Z?=] h(Ui’Uj)’ m=1,2,...,1i-1
is also a martingale. Hence the martingale inequality of DHARMADHIKARI,
FABIAN and JOGDEQO (1968) can be applied twice. We obtain, after some elemen-—
tary computations and making again use of the fact that 0 < %ig noi < ®

(see the proof of lemma 3.2), that there exists a number B > 0 such that

for all n 2 1

3
Elay |° /% (1og n)2 Elnc,,u,)]°.

To proceed we shall show that the assumptions of this lemma imply that

Elh(U],Uz)[3 < », We start with an application of the crfinequality:

UlAUZ
E]H(UI,UZ)[3 < 3%E( J |31 (s)|s2ar P s))® +
0
UIVUZ 1
-1, .3 2. -1, .3
+ E( I 137 () |s(1-s)dF ' (8))> + E( J |31 (s)| (1-8)2dF ' ())°7 .
| U, AU, U, v,

. . . . -1 . . ' .
Since J' is bounded on its domain, F is continuous at the points where

J' is not defined, and EIX]I < », we can easily check that



U, vU 1

172
E( |J'(s)Is(l—s)dF_](s))351(J |J'(s)|s(1—s)dF'1(s))3< ©,
0

UIAUZ

Also note that

UIAUZ
E( [ 13 () |s2ar L s))3 =
0
1 t
=2 f (1-t)( J |37 (s) | s2aF " (s)) 3at.
0 0

It is not difficult to verify that the integral on the right is finite

under the assumptions of this lemma. Similarly we can show that also

1
E( f 131 () | (1-9)2aF " (8))% < w.

UIVUZ

Combining all these results we find that Elh(U],U2)|3 < =, so that we can

conclude that

w

EIJEHIB = O(n_9/4(log n)z), as n > ®,

An application of Markov's inequality yields now
3 3

T <n® Elay 2= 0 4o m2),

w

P(|3y | <n
g

as n > »©, which completes our proof of the lemma.
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