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ABSTRACT 

A Berry-Esseen bound of order n-½ is establ:i,shed for linear combina­

tions of order statistics with smooth weight functions. The underlying 

distribution function must possess a finite absolute third moment. This 

improves an earlier result of the author. 
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1. INTRODUCTION 

Linear combinations of order statistics received much attention during 

the last ten years. Much is known about them including·their asymptotic nor­

mality urider quite general conditions. Berry-Esseen type bounds for the nor­

mal approximation of linear combinations of order statistics were estab­

lished by BJERVE (1977) and HELMERS (1977) (see VAN ZWET (1977) for a re­

view of these results). For the related problem of establishing Edgeworth 

expansions for linear combinations of order statistics we refer to the 

papers of HELMERS (1976) and VAN ZWET (1977). 
-1 

BJERVE (1977) obtained the order bound O(n 2 ) (n being the sample 

size) for trinnned linear combinations of order statistics. His result 

admits quite general weights between the ath and Sth sample percentile 

(O<a<S<l) but he does not allow weights to be put on the remaining obser-
_1 

vations. In HELMERS (1977) the order bound O(n 2) was established for linear 
i combinations of order statistics with weights of the form c. = J(-+1), 1.n n 

i = 1,2, .•. ,n, for a smooth function Jon (0,1). The underlying distribu-

tion function F must possess a finite absolute third moment. Though we 

avoid the assumption that there are no weights in the tails the use of a 

technique of BICKEL (1974) in the second part of the proof given in HELMERS 

(1977) leads to the assumption J~ I J' (s) I dF-l (s) < 00 (J' being the deriva­

tive of J). In this note we shall show that this assumption is superfluous. 

The present theorem will be proved by modifying the proof given in HELMERS 

(1977); we shall argue as in CHAN & WIERMAN (1977) and CALLAERT & JANSSEN 

(1977), rather than using Bickel's idea (BICKEL (1974)). 

2. THE THEOREM 

-1 ~n i . 
Let, for each n ~ I, T = n l"-l J(n+l) X. where X. , 1. = 1,2, ... ,n 

th n 1.- 1.n 1.n 
denotes the i order statistic of a random sample x1, ••• ,Xn of size n from 

a distribution with distribution function (d.f.) F and J is a bounded mea­

surable function on (O,l). The inverse of a d.f. will always be the left-

* * continuous one. Let F (x) = P(T ~x) for - 00 < x < 00 , where 
n n 

T* = (T -E(T ))/cr(T ). n n n n 
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Let~ denote the standard normal distribution function. We prove the follo­

wing theorem. 

THEOREM I • Suppose 

(I) J is bounded and continuous on (O,l). The derivative J' exists, except 

possibly at a finite number of points; J' satisfies a Lipschitz condi­

tion of order>½ on the open intervals where it exist. The inverse F-I 

satisfies a Lipschitz condition of order> ½ on neighborhoods of the 

points where J' does not exist. 

(2) Elx1l3 < oo. 

2 Then a (J,F) > 0, where 

2 a (J,F) = J J J(F(x)J(F(y))(F(minLi,y)) - F(x)F(y))dxdy 

-oo -oo 

irrrpZies that there exists a constant c, depending on J and F but not 

on n, such that for all n ~ 

-1 
s; Cn 2 

As indicated in our introduction the present theorem was obtained 

in HELMERS (1977) under the additional requirement/~ IJ'(s)ldF- 1(s) < 00 • 

3. THE PROOF 

Let, for each n ~ l, u1,u2 , •.• ,Un be independent uniform (O,ll random 

variables (r.v.'s). For any r.v. X with O < o(X) < 00 we denote by X the 

r. v. (X-E (X)) /cr (X). Let XE denote the indicator of a set E. Define, for 

each n ~ I, the r.v. S by 
n 

(3. I) s = 1 tn + 12n n 

where 
I 

-1 
I:=l I -I 

(3.2) 1 1n = -n J(s)(x(O,s](Ui)-s)dF (s) 

0 
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and 

I 

(3.3) 
-2 ,n ,i-1 

I2n = -n li=I lj=l I J' (s) <xco, s] (Ui)-s)(x(O,s] (Uj )-s)dF-1 (s). 
0 

In section 2 of HELMERS (1977) it is proved that under the assumption (I) 

of the present theorem and the assumption that Elx112+e < w for some e > 0 

T* s* is of negligible order for our purposes; i.e. n n 

(3.4) 

Hence it suffices to.prove that the assumptions of the present theorem 

ensure that the order of the normal approximati~n for s* is n-½. 
* * n The r.v. S is given by S = i 1 + J 2 , where J = I /cr(S) for n n .n n mn mn n 

m = 1,2 and all n ~I.For convenience we shall write 

(3.5) 

and 

(3.6) 

and also a n 
Using 

g(U .) = 
1 

h(U., U.) 
1 J 

= cr(Sn). 

the idea 

1 

J -I 
J(s)(x(O,s](Ui)-s)dF (s) for s i s n 

0 

l 

= - f 
0 

for s i < j s n 

of CHAN & WIERMAN (1977) we introduce r.v.'s 

J' 2n and J2n as follows 

(3.7) (n2cr )-1 
I Ii-1 J' = li=l h(U., U.) 

2n n j=l 1 J 

(3.8) (n2cr )-1 n i-1 
J" = li=I+I l- I h(U., U.) 2n n J= 1 J 

3 

where I= [n-3 n2 a! a-2 log n An]. Note that J 2n =Jin+ Jzn• Since our 

proof will depend on characteristic functions (c.f) arguments let us de­

note by pin and p~ the c.f. of Jln and Jin+ Jin• The c.f. of a sunnnand 



of non Jln' that is of g(U 1), will be denoted by p, Clearly we have 
n t 

P 1 (t) = p (-· -) for all t and n ~I. n no 
Following now the pattern of the Chan-Wierman proof we shall first 

show that there exist e: 1 > 0 such that 

t"' 

(3.9) - e- 2 lltl- 1dt = _! 
O(n 2 ), as n ➔ 00 • 

Next we show that there exist e: 2 > 0 such that 

(3.10) 
_! 

O(n 2 ), as n ➔ oo. 

Finally we prove that J2n is of negligible order for our purposes; 

i.e. 

(3. 11) P < I 1" I 2n 

The Berry-Esseen bound of order n-½ for s* then follows from (3.9),(3.10), 
n 

(3.11) and the usual argument based on Esseen's smoothing lemma (see e.g. 

FELLER ( 1966)). 

LEMMA 3.1. Suppose that the conditions (1) and (2) of theorem 1 are satis­

fied. Then o2 (J,F) > 0 irrrplies (3.9). 

4 

PROOF. See lemma 3.1 of HELMERS (1977). The proof is essentially that of 

the classical Berry~Esseen theorem for a properly standarized sum of inde­

pendent identically distributed random variables with finite absolute third 

moment. The main difficulty is that we have standarized r 1n by multiplying 
-1 1 -1 

with o rather than with n 2 a (J,F). D 
n 



Next we shall be concerned with the problem of showing that (3.10) 

holds under appropri:ate conditions. 

I I 2+e: d d. . ( ) LEMMA 3. 2. Let E x1 < 00 for some e: > 0 an suppose .that con 1,,t1,,on I 

of theorem I is satisfied. Then a2 (J,F) > 0 irrrpZies (3.10). 

5 

PROOF. The proof is essentially the Chan & Wierman proof. See CHAN & 

WIERMAN (1977), p.137. First note that O < a 2 (g(U 1)) = cr 2(J,F) < 00 because 

a 2(J,F) > O, J is bounded and EX~< 00 • Hence there exists e: 2 > 0 such that 

lp(t)I ~ I - t2a2f,F) <_ exp(-t2a2f,F)) for I I < / (J F) N t - e: 2 a , . ext we 

remark that 

(3. I 2) as n ➔ 00 • 

To prove this we note first that it follows directly from the proof of 

lemma 3.1 (see HELMERS (1977)) that O < lim ncr2 = a2 (J,F) < co and Er22 = O(n-2) 
n➔oo n n 

as n ➔ 00 holds under the assumptions of the present lemma. This implies that 
. 2 - -1 f::(J Zn) = O'(n ) as n ➔ 00 from which (3. 12) follows immediately. 

To proceed we remark first that 

j -1 
- pln(t) ltl dt -

= L 
1

Jfll~(t) - P 1n(t)lltl- 1dt + 

ltl~n4Ae: 2n 2 

I -1 
- pln(t) ltl dt. 

Next we note the~ 

I -I 
- pln~t) ltl dt = 

= 

• I 
itJ2n -

- -I)j ltl 1at ~ 



_! 
+ O(n 2 ) :5: 

-2 -3 :5: n cr 
n 

_! 
+ O(n 2 ) = 

_! 
= O(n 2 ), as n + 00 • 
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J itJln 
!Ee h(U.,U.)!dt + 

I ! l. J 
ltl:5:ni+Ae:2n 2 

2 2 
t cr (J,F)) 

2 2 • 
3n cr 

n 

In the fourth inequality we have applied (3.12), whereas in the fifth inequa­

lity we use that g(U1) + g(U2) and h(U 1,u2) are uncorrelated. Note also that 

El (g(U 1)+g(U2)) 2h(U 1,u2) I< 00 under the assumptions of the lennna. 

Finally we remark that 

2 2 
exp(- t (n;I~cr )dt. 

3n cr 
n 

But for n sufficiently large this integral is equal to 



-1 
O(n log n), as n-+ 00 • 

Combining all the results we find that (3.10) is proved. D 

Finally we prove (3.11). The basic idea of the proof is the same as 

that of a lemma of CALLAERT & JANSSEN (1977). 

7 

LEMMA 3.3. Suppose that the aonditions (I) and (2) of theorem 1 are satis­

fied. Then o2(J,F) > 0 irrrpZies (3.11). 

Ii-I PROOF. For i = 1,2, ••• defines-= . I h(U.,U.). We have s 1 = 
1 J= 1 J 

E(E. 1ls1,··•,S•) = 0 a.s. for i = 1,2, •...• Hence 
1+ 1 

,I+k 
li=I+I si' k= 1,2, ••. 

0 and 

is a martingale. Note also that, for fixed i, '~ 1 h(U.,U.), m = 1,2, ••• ,i-1 
lJ= i J 

is also a martingale. Hence the martingale inequality of DHARMADHIKARI, 

FABIAN and JOGDEO (1968) can be applied twice. We obtain, after some elemen­

tary computations and making again use of the fact that O < lim no2 < 00 
n+oo n 

(see the proof of lemma 3.2), that there exists a number B > 0 such that 

for all n ~ 

3 

EIJ2nl 3 ~ Bn-914 (1og n)2 Elh(U1,u2)1 3• 

To proceed we shall show that the assumptions of this lemma imply that 

Elh(U1,u2)1 3 < 00 • We start with an application of the cr~inequality: 

u1"u2 
Eln(U1,u2)1 3 ~ 32[E( f IJ'(s)ls2dF- 1(s)) 3 + 

0 

I 

IJ' (s) I s(l-s)dF-I (s)) 3 + E( f IJ' (s) I (1-s) 2dF-I (s)) 3J. 

u1vu2 

Since J' is bounded on its domain, F-I is continuous at the points where 

J' is-not defined, and Elx11 < 00 , we can easily check that 



u1vu2 1 

E ( J I J ' ( s ) I s ( I - s ) dF - I ( s )) 3 ~ ( J I J ' ( s ) I s (I - s ) dF - I ( s )) 3 < co • 

U1AU2 0 

Also note that 

U1AU2 

E( I IJ'(s)ls2dF- 1(s)) 3 = 

0 

I t 

= 2 J ( 1-t )( J I J ' ( s) I s 2 dF - I ( s)) 3 d t. 

0 0 

It is not difficult to verify that the integral on the right is finite 

under the assumptions of this lemma. Similarly we can show that also 

I 

E( I IJ'(s)l(I-s)2dF-l(s)) 2 < co. 

u1vu2 

3 Combining all these results we find that Eih(U 1,u2 )1 < co, so that we can 

conclude that 

as n ➔ co, 

An application of Markov's inequality yields now 

3 3 3 

P(IJ2nl ~ n-½) ~ n2 EIJ2nl3 = O(n 4(log n)2), 

as n ➔ co, which completes our proof of the lemma. D 

8 
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