stichting
 mathematisch
 centrum

J.M. BUHRMAN

INEQUALITIES IN DISCRETE DISTRIBUTIONS

Preprint

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O).

```
AMS(MOS) subject classification scheme (1970): 60E05, 26A86
```


Inequalities in discrete distributions *)

by

J.M. Buhrman

SUMMARY

In this report sufficient conditions are derived for the implication

$$
F_{1}(x) \leq F_{2}(x) \Rightarrow F_{1}(x-j) \leq F_{2}(x-j) \quad \text { for all } j>0
$$

where F_{1} and F_{2} are discrete distribution functions with jumps on \mathbb{Z}. Results are given for pairs of - possibly shifted - distribution functions of binomial, Poisson, hypergeometric and negative binomial type.

KEY WORDS \& PHRASES: discrete distribution functions, inequalities

[^0]
1. INTRODUCTION

In the search for a test concerning the ratio of two Poisson means, the question arose whether two binomial distribution functions F and G have the property (x and y integer)

$$
\begin{equation*}
F(x) \leq G(x+y) \Rightarrow F(x-1) \leq G(x+y-1) \tag{1.1}
\end{equation*}
$$

This was a reason to investigate what conditions are sufficient for this kind of implication, not only when pairs of binomial distributions are involved, but in the case of other types of integer valued distributions as well. Notice, that, with $F_{1}(x) \stackrel{\operatorname{def}}{=} F(x)$ and $F_{2}(x) \stackrel{{ }^{\operatorname{def}}}{=} G(x+y)$, the above implication can be studied by considering

$$
\begin{align*}
& D(x) \stackrel{\operatorname{def}}{=} F_{1}(x)-F_{2}(x) \tag{1.2}\\
& p_{i}(x) \stackrel{\operatorname{def}^{\prime}}{=} F_{i}(x)-F_{i}(x-1) \tag{1.3}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{d}(\mathrm{x}) \stackrel{\operatorname{def}}{=} \mathrm{p}_{1}(\mathrm{x})-\mathrm{p}_{2}(\mathrm{x}) \tag{1.4}
\end{equation*}
$$

A function $\mathrm{f}(\mathrm{x})$ is said to have at least one change of sign on an interval $[a, b](a<b)$ if $f(i) f(j)<0$ for some i, j with $a \leq i<j \leq b *)$.

Some remarks will be made with respect to the relation between changes of sign of $D(x)$ and changes of sign of $d(x)$. We assume that a finite partition $\mathbb{Z}=\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \ldots \mathrm{~T}_{\mathrm{k}}$ exists, with

$$
\begin{equation*}
T_{1}=\{x: d(h) d(j) \geq 0 \text { for all } h, j \leq x\} \tag{1.5}
\end{equation*}
$$

$$
\begin{align*}
T_{i}= & \left\{x: x>\max T_{i-1}, d(h) d(j) \geq 0\right. \tag{1.6}\\
& \text { for } \left.\max T_{i-1}+1 \leq h, j \leq x\right\}
\end{align*}
$$

[^1]The assumption of such a finite partition is a restriction, but in all cases in which we are interested, it is fulfilled.

The maximum number of changes of sign of $D(x)$ is $k-2$, which can be seen as follows. Let
(1.7.a) $\quad b_{i}=\max T_{i}$.

Then
(1.7.b) $\quad T_{1}=\left(-\infty, b_{1}\right]$
(1.7.c) $\quad T_{i}=\left[b_{i-1}+1, b_{i}\right] \quad i=2,3, \ldots, k-1$
(1.7.d) $T_{k}=\left[b_{k-1}+1, \infty\right)$.

Notice, that $D(x)=\sum_{j \leq x} d(j)$ and that $D(-\infty)=d(-\infty)=0$.
Of the two possibilities: $d(j) \geq 0$ for $a l l j \leq b_{1}$ and $d(j) \leq 0$ for all $j \leq b_{1}$, the second one is chosen to be considered. Then $D\left(b_{1}\right)<0$ and $D(x) \leq 0$ for all $x \leq b_{1}$. Now $d(j) \geq 0$ for $b_{1}<j \leq b_{2}$, so $D(x)=D\left(b_{1}\right)+$ $+\sum_{b_{1}<j \leq x} d(j)$ is non-decreasing for $b_{1} \leq x \leq b_{2}$. Similarly, $D(x)$ is nondecreasing for $\mathrm{b}_{3} \leq \mathrm{x} \leq \mathrm{b}_{4}, \mathrm{~b}_{5} \leq \mathrm{x} \leq \mathrm{b}_{6}$, etc. and non-increasing for $b_{2} \leq x \leq b_{3}, b_{4} \leq x \leq b_{5}$, etc. So any of these intervals gives at most one change of sign of $D(x)$. Since no changes of sign occur for $x \leq b_{1}$ and $x \geq b_{k-1}$, the maximum number of changes of sign of $D(x)$ is $k-2$. Moreover, it should be noticed, that if $D(x)$ has no change of sign for $b_{1} \leq x \leq b_{2}$, then $D\left(b_{2}\right) \leq 0$ and $D(x)$ has no change of sign for $b_{2} \leq x \leq b_{3}$ either, etc. This means that the number of changes of sign of $D(x)$ equals $k-2 i$ for some positive integer i. In the following applications $k=3$ frequently occurs.
2. SOME LEMMAS

First we define

$$
\begin{equation*}
V_{i}=\left\{x: p_{i}(x)>0\right\} \quad\left(\text { support of } F_{i}\right) \quad i=1,2 \tag{2.1}
\end{equation*}
$$

(2.2)

$$
a_{i}=\inf v_{i} ; c_{i}=\sup v_{i} \quad i \leqq 1,2
$$

$$
\begin{equation*}
r(x)=p_{1}(x) / p_{2}(x) \quad \text { for } x \in V_{1} \cap V_{2} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{q}(\mathrm{x})=\mathrm{r}(\mathrm{x}) / \mathrm{r}(\mathrm{x}-1) \quad \text { for } \mathrm{x} \text { with } \mathrm{x}-1, \mathrm{x} \in \mathrm{~V}_{1} \cap \mathrm{~V}_{2} \tag{2.4}
\end{equation*}
$$

V_{1} and V_{2} will be supposed coherent, that is such that $x, y \in V_{i}$ implies $k \in V_{i}$ if $x \leq k \leq y^{*)}$. This condition on V_{1} and V_{2} is obviously fulfilled in the applications studied below. Now five cases are distinguished.

1. $\quad a_{2}<a_{1}<c_{1}<c_{2}$
2. $a_{2}=a_{1}<c_{1}<c_{2}$
3. $a_{2}<a_{1}<c_{1}=c_{2}$
4. $a_{2}=a_{1}<c_{1}=c_{2}$
5. $\quad a_{1}<a_{2}<c_{1}<c_{2}$

Any of the remaining cases is reduced to one of the cases 1 to 5 after interchanging F_{1} and F_{2}. Those cases will not be considered explicitly here, but obviously their treatment is similar to the treatment of the cases 1 to 5 .

The implication in the summary can be studied by considering for all x

$$
\begin{equation*}
F_{1}(x) \leq F_{2}(x) \quad \Rightarrow \quad F_{1}(x-1) \leq F_{2}(x-1) \tag{2.5}
\end{equation*}
$$

LEMMA 2.1. (a) The number of changes of sign of $D(x)$ in case 1 is odd.
(b) The number of changes of sign of $D(x)$ in case 5 is even.

PROOF.
(a) $\mathrm{D}\left(\mathrm{a}_{1}^{-1}\right)<0, \mathrm{D}\left(\mathrm{c}_{1}+1\right)>0$
(b) $\mathrm{D}\left(\mathrm{a}_{2}^{-1)}>0, \mathrm{D}\left(\mathrm{c}_{1}+1\right)>0\right.$.
*)
See note on page 2 .

LEMMA 2.2. If implication (2.5) holds for all x , then the number of changes of sign of $\mathrm{D}(\mathrm{x})$ is 0 or 1 .

PROOF. If $D(x)$ has two (or more) changes of sign, then there exist i, j and $k(i<j<k)$ with either $D(i), D(k)>0$ and $D(j)<0$, or $D(k), D(k)<0$ and $D(j)>0$. This contradicts (2.5) for at least one x.

COROLLARY 2.1. Implication (2.5) holds for all x in case'5 if and only if $\mathrm{F}_{1}(\mathrm{x})>\mathrm{F}_{2}(\mathrm{x})$ for $a l l \mathrm{x}$.

For this reason case 5 will not be considered any furhter. Therefore we can assume $V_{1} \subset V_{2}$ from now on.

REMARK 2.1. If $\mathrm{F}_{1}(\mathrm{x})>\mathrm{F}_{2}(\mathrm{x})$ for all x , the implication (2.5) holds trivially, the left part not being fulfilled for any x.

REMARK 2.2. In cases 2 to 4 the parity of the number of changes of sign of $D(x)$ depends on the sign of $D\left(b_{1}\right)$ and $D\left(b_{k-1}\right)$. In case $2 D\left(b_{k-1}\right)>0$, in case $3 \mathrm{D}\left(\mathrm{b}_{1}\right)<0$, in case 4 both $\mathrm{D}\left(\mathrm{b}_{1}\right)$ and $\mathrm{D}\left(\mathrm{b}_{\mathrm{k}-1}\right)$ can be positive or negative. Notice, that $D\left(b_{1}\right)$ and $D\left(b_{k-1}\right)$ cannot be zero, since

$$
\begin{aligned}
& D\left(b_{1}\right)=\sum_{j \leq b_{1}} d(j) \\
& D\left(b_{k-1}\right)=\sum_{j \leq b_{k-1}} d(j)=-\sum_{j>b_{k-1}} d(j) .
\end{aligned}
$$

LEMMA 2.3. If there exists an m such that $r(x)$ is monotone non-decreasing for $\mathrm{a}_{1} \leq \mathrm{x} \leq \mathrm{m}$ and monotone non-increasing for $\mathrm{m} \leq \mathrm{x} \leq \mathrm{c}_{1}$, then (2.5) holds vor all x .

PROOF. Notice, that $\underset{c_{1}}{r}(m) \geq 1$, since $F_{1}\left(c_{1}\right)-F_{1}\left(a_{1}-1\right)=1$ and $F_{2}\left(c_{1}\right)+$ $-F_{2}\left(a_{1}-1\right) \leq 1$, so $\sum_{j=a_{1}}^{c} d(j) \geq 0$, and $d(j) \geq 0$ for at least one j, say k. Then $r(m) \geq r(k) \geq 1$. The only case in which $r(m)=1$, is the trivial case that $F_{1}(x)=F_{2}(x)$ for all $x \in V_{1}=V_{2}$. Therefore $r(m)>1$ will be assumed. Three possibilities remain (see definitions (1.5) and (1.6)).
(a) $\mathrm{V}_{2}=\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \mathrm{~T}_{3}, \mathrm{~m} \in \mathrm{~T}_{2}$
(b) $\mathrm{V}_{2}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}, \mathrm{~m} \in \mathrm{~T}_{1}$
(c) $\mathrm{V}_{2}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}, \mathrm{~m} \in \mathrm{~T}_{2}$

In case 1 the only possibility is (a). In case 2 both (a) and (b) are possible, in case 3 both (a) and (c) are possible, and in case 4 no possibility can be excluded in advance. If (a) is the case, we have $d(x) \leq 0$ on T_{1} and T_{3}, and $d(x) \geq 0$ on T_{2}. Thus $D(x)>0$ on $T_{3}, D(x)<0$ on T_{1} and $D(x)$ has exactly one change of sign on T_{2}. If (b) or (c) is the case $D(x)$ has no change of sign, and the set $\{x: D(x) \neq 0\}$ is coherent.

LEMMA 2.4. If $\mathrm{q}(\mathrm{x}) / \mathrm{q}(\mathrm{x}-1) \leq 1$ for all x with $\mathrm{x}-2, \mathrm{x} \in \mathrm{V}_{1}$, then (2.5) holds for all x .

PROOF.

$$
q(x) / q(x-1) \leq 1 \quad \text { for all } x
$$

is equivalent to

$$
\frac{r(x)}{r(x-1)} \leq \frac{r(x-1)}{r(x-2)} \quad \text { for all } x
$$

which implies

$$
r(x-1) \leq r(x-2) \Rightarrow r(x) \leq r(x-1) \quad \text { for all } x .
$$

This means that $r(x)$ has the form as described in lemma 2.3, by which then (2.5) holds for all x.

The following lemma will appear useful in several cases where $\mathrm{q}(\mathrm{x}) / \mathrm{q}(\mathrm{x}-1) \leq 1$ must be proved.

LEMMA 2.5. FOr $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}>1$
(a) $\frac{a-1}{a} \frac{b}{b-1} \leq 1 \Leftrightarrow a \leq b$
(b) $\frac{a-1}{a} \frac{b}{b-1} \frac{c-1}{c} \frac{d}{d-1} \leq 1 \Leftrightarrow \frac{a c}{b d} \leq \frac{a+c-1}{b+d-1}$
(c) Each of the following conditions (2.6) to (2.8) is sufficient for the inequalities in (b).

$$
\begin{equation*}
\mathrm{a} \leq \mathrm{b} \quad \text { and } \quad \mathrm{c} \leq \mathrm{d} \tag{2.6}
\end{equation*}
$$

(2.7) $a c \leq b d$ and $b+d \leq a+c$

$$
\begin{align*}
& \max (0, a-b) \leq d-c \text { and } \tag{2.8}\\
& {[(c \leq a-1 \text { and } d-1 \leq b) \text { or }(c \leq b \text { and } d \leq a)] .}
\end{align*}
$$

PROOF. (a) and (b) are obvious. The sufficiency of (2.6) and (2.7) follows by application of (a) and (b) respectively. Further,

$$
\frac{a-1}{a} \frac{b}{b-1} \frac{c-1}{c} \frac{d}{d-1}=\frac{1-\frac{d-c}{c(d-1)}}{1-\frac{a-b}{(a-1) b}}
$$

which is ≤ 1 if $d-c \geq 0$ and $d-c \geq a-b$ and $[(c \leq a-1$ and $d-1 \leq b)$ or $(c \leq b$ and $d \leq a)]$.

3. RESULTS IN CLASSES OF EXPONENTIAL FAMILIES

Let a class, C, of distributions be given by their probability functions.

$$
\begin{equation*}
p_{n, \theta}(x)=f(x, \eta) e^{x v(n, \theta)} g(n, \theta) \quad n \in \mathbb{\pi}, \theta \in \theta \tag{3.1}
\end{equation*}
$$

Any subset $C_{\eta} \subset C$ for fixed η (which may be a vector as may be θ) is an exponential family. Probability functions of binomial, Poisson, hypergeometric and negative binomial distributions have this form, as can be seen in table 3.1. The form (3.1) is useful, because the crucial quantity $q(x) / q(x-1)$ from lemma 2.4 will turn out to depend on $f(x, \eta)$ only. Let

$$
\begin{equation*}
F_{n, \theta}(x)=\sum_{j \leq x} p_{n, \theta}(j) \tag{3.2}
\end{equation*}
$$

Consider the implication

$$
\begin{equation*}
F_{\eta, \theta}(x) \leq F_{\zeta, \xi}(x+y) \Rightarrow F_{\eta, \theta}(x-j) \leq F_{\zeta, \xi}(x+y-j) \text { for a11 } j \geq 0 \tag{3.3}
\end{equation*}
$$

Define
(3.4.a.) $\quad F_{1}(x) \stackrel{\operatorname{def}}{=} F_{\eta, \theta}(x)$
(3.4.b.) $\quad F_{2}(x) \stackrel{\operatorname{def}}{=} F_{\zeta, \xi}(x+y)$.

Now all definitions (1.2) to (1.7) and (2.1) to (2.4) are meaningful here, and

$$
\begin{align*}
& r(x)=\frac{p_{1}(x)}{p_{2}(x)}=\frac{f(x, \eta) e^{x v(\eta, \theta)} g(\eta, \theta)}{f(x+y, \xi) e^{(x+y) v(\zeta, \xi)} g(\zeta, \xi)} \tag{3.5}\\
& \frac{r(x)}{r(x-1)}=\frac{f(x, \eta) f(x+y-1, \xi) e^{v(\eta, \theta)}}{f(x+y, \xi) f(x-1, \eta) e^{v(\zeta, \xi)}} \tag{3.6}\\
& \frac{q(x)}{q(x-1)}=\frac{f(x, \eta) f(x+y-1, \xi)^{2} f(x-2, \eta)}{f(x+y, \xi) f(x-1, \eta)^{2} f(x+y-2, \xi)}
\end{align*}
$$

In table 3.2 the ratio (3.7) is given for the four classes of table 3.1.

TABLE 3.1. The probability function of the binomial, Poisson, hypergeometric and negative binomial distribution in form (3.1).

$\mathrm{p}_{\mathrm{n}, \theta}(\mathrm{x})$	$f(x, n)$	$e^{x} \mathrm{v}(\mathrm{n}, \theta)$	$g(n, \theta)$	η	θ
$\binom{n}{x} p^{x}(1-p)^{n-x}$	$\binom{n}{\mathrm{x}}$	$e^{x} \ln \frac{p}{T-p}$	$(1-p)^{n}$	n	p
$e^{-\mu} \frac{\mu^{x}}{x!}$	$\frac{1}{x!}$	$e^{x \ln \mu}$	$e^{-\mu}$	-	μ
$\frac{\binom{n}{x}\binom{t-n}{r-x}}{\binom{t}{r}}$	$\frac{\binom{n}{x}\binom{t-n}{r-x}}{\binom{t}{r}}$	1	1	($\mathrm{t}, \mathrm{n}, \mathrm{r}$)	-
$\binom{x-1}{n-1} p^{n}(1-p)^{x-n}$	$\binom{x-1}{n-1}$	$e^{x \ln (1-p)}$	$\left(\frac{p}{1-p}\right)^{n}$	n	p

TABLE 3.2. $q(x) / q(x-1)$ in binomial, Poisson, hypergeometric and negative binomial classes.

class	param- eters	$\frac{q(x)}{q(x-1)}$
binomial	$\begin{aligned} & \mathrm{n}_{1}, \mathrm{p}_{1} \\ & \mathrm{n}_{2}, \mathrm{p}_{2} \end{aligned}$	$\left(\frac{x-1}{x} \frac{x+y}{x+y-1}\right)\left(\frac{n_{1}^{-x+1}}{n_{1}^{-x+2}} \frac{n_{2}^{-x-y+2}}{n_{2}^{-x-y+1}}\right)$
Poisson	$\begin{aligned} & \mu_{1} \\ & \mu_{2} \end{aligned}$	$\frac{x-1}{x} \frac{x+y}{x+y-1}$
Hypergeometric	$\begin{aligned} & \mathrm{t}_{1}, \mathrm{n}_{1}, \mathrm{r}_{1} \\ & \mathrm{t}_{2}, \mathrm{n}_{2}, \mathrm{r}_{2} \end{aligned}$	$\left\{\begin{array}{l} \left(\frac{x-1}{x} \frac{x+y}{x+y-1}\right)\left(\frac{n_{1}^{-x+1}}{n_{1}^{-x+2}} \frac{n_{2}^{-x-y+2}}{n_{2}^{-x-y+1}}\right) \times \\ \times\left(\frac{r_{1}^{-x+1}}{r_{1}^{-x+2}} \frac{r_{2}^{-x-y+2}}{r_{2}^{-x-y+1}}\right)\left(\frac{t_{1}^{-n_{1}-r_{1}+x-1}}{t_{1}^{-n_{1}-r_{1}^{i x}}} \frac{t_{2}^{-n_{2}-r_{2}+x+y}}{t_{2}^{-n_{2}^{-r}} 2^{+x+y-1}}\right) \end{array}\right.$
Negative binomial	$\begin{aligned} & \mathrm{n}_{1}, \mathrm{p}_{1} \\ & \mathrm{n}_{2}, \mathrm{p}_{2} \end{aligned}$	$\frac{x+y-2}{x+y-1} \frac{x-1}{x-2} \frac{x-n_{1}-1}{x-n_{1}} \frac{x+y-n_{2}}{x+y-n_{2}-1}$

THEOREM 3.1. Implication (3.3) holds
a. in the binomial case if $0 \leq y \leq n_{2}-n_{1}$
b. in the Poisson case if $\mathrm{y} \geq 0$
c. in the hypergeometric case if $0 \leq \mathrm{y} \leq \mathrm{n}_{2}-\mathrm{n}_{1}$ and
$\mathrm{t}_{1}-\mathrm{n}_{1}-\mathrm{r}_{1}-\left(\mathrm{t}_{2}-\mathrm{n}_{2}-\mathrm{r}_{2}\right) \leq \mathrm{y} \leq \mathrm{r}_{2}-\mathrm{r}_{1}$
d1. in the negative binomial case if $n_{2}-n_{1} \leq y$ and $n_{2}-n_{1} \leq 0$
d2. in the negative binomial case if $\mathrm{p}_{1}=\mathrm{p}_{2}$ and $\mathrm{n}_{2} \geq \mathrm{n}_{1}$

PROOF. Cases a to c are dealt with by showing that $q(x) / q(x-1) \leq 1$ for all x by lemma 2.5(a). In case $d 1$ we have $q(x) / q(x-1) \leq 1$ for all $x \geq n_{1}+2$ by (2.8) in lemma 2.5 with $a=x+y-1, b=x-1, c=x-n_{1}$, $\mathrm{d}=\mathrm{x}+\mathrm{y}-\mathrm{n}_{2}$. Lemma 2.4 completes the proof in the cases a to d 1 . In case d2 the shape of $r(x)$ is considered.

So

$$
\begin{aligned}
& q(x)=1+\frac{\left(n_{1}-n_{2}\right)(x-1)+y\left(n_{1}-1\right)}{\left(x-n_{1}\right)(x+y-1)} \\
& r(x)>r(x-1) \quad \text { if } x-1<\frac{y\left(n_{1}-1\right)}{n_{2}^{-n_{1}}} \\
& r(x)=r(x-1) \quad \text { if } x-1=\frac{y\left(n_{1}-1\right)}{n_{2}-n_{1}}
\end{aligned}
$$

$$
r(x)<r(x-1) \quad \text { if } x-1>\frac{y\left(n_{1}^{-1}\right)}{n_{2}^{-n_{1}}}
$$

Then lemma 2.3 completes the proof.
4. ACKNOWLEDGEMENT

This report was written after valuable and stimulating discussions with Prof.dr. J. Hemelrijk and Prof.dr. W. Whitt. It was the latter who initially gave the proof of the implication for the binomial case with $p_{1}=p_{2}$. He recognized the importance of the log-concavity of the function $r(x)$ (lemma 2.4). This property turned out to be crucial in most of the proofs.

[^0]: *) This report will be submitted for publication elsewhere.

[^1]: *)
 A11 variables indicated by $x, y, a, b, c, i, j, h, k, m, n, r, t$ with or without subscripts, will be understood to be integers.

