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1 . . . d' d' 'b . *) Inequa ities in iscrete istri utions 

by 

J.M. Buhrman 

SUMMARY 

In this report sufficient conditions are derived for the implication 

for all J > 0 

where F 1 and F 2 are discrete distribution functions with jumps on 7l • Re­

sults are given for pairs of - possibly shifted - distribution functions 

of binomial, Poisson, hypergeometric and negative binomial type. 
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1 • INTRODUCTION 

In the search for a test concerning the ratio of two Poisson means, 

the question arose whether two binomial distribution functions F and G 

have the property (x and y integer) 

( 1. 1) F(x) 5 G(x+y) => F(x-1) $ G(x+y-1). 

This was a reason to investigate what conditions are sufficient f-0r this 

kind of implication, not only when pairs of binomial distributions are 

involved, but in the case of other types of integer valued distributions 

as well. Notice, that, with F1(x)d~f F(x) and F2(x)d~fG(x+y), the above 

implication can be studied by considering 

( I. 2) D(x) d~f F (x) 
I 

- F2 (x) 

( 1.3) def - F. (x-1) p.(x) = F.(x) 
i i i 

( I • 4) d(x) 
def 

p I (x) - p2(x) 

A function f(x) is said to have at least one change of sign on an interval 
*) [a,b] (a<b) if f(i)f(j) < 0 for some i,j with a 5 i < j 5 b 

Some remarks will be made with respect to the relation between changes 

of sign of D(x) and changes of sign of d(x). We assume that a finite par­

tition 7l = T1 u T2 u •.• u Tk exists, with 

(1.5) 

( I. 6) 

Tl = { x: d(h)d(j) ~ 0 for all h,j $ x} 

T. = {x: x > max T. 1, d(h)d(j) ~ 0 i i-

for max T. 1 + I $ h,j $ x} i-

All variables indicated by x,y,a,b,c,i,j,h,k,m,n,r,t with or without 
subscripts, will be understood to be integers. 



The assumption of such a finite partition 1.s a restriction, but in all 

cases in which we are interested, it is fulfilled. 

The maximum number of changes of sign of D(x) is k-2, which can be 

seen as follows. Let 

(1.7.a) b. = max T .• 
l. l. 

Then 

(1.7.b) Tl = (-oo 
' bl J 

(1.7.c) T. = [b. l + l b. J l. = 2, 3, ... , k-1 
l. 1.- l. 

( 1. 7. d) T = k [bk-l+l ' 
00) • 

Notice, that D(x) = l·< d(j) and that D(-00 ) = d(-00 ) = O. 
J-X 

Of the two possibilities: d(j) 2 0 for all j ~ b 1 and d(j) ~ 0 for all 

j ~ b 1, the second one is chosen to be considered. Then D(b 1) < 0 and 

D(x) ~ 0 for all x ~ b 1• Now d(j) 2 0 for bl < j ~ b2 , so D(x) = D(b 1) + 

+ Ib 1<j~x d(j) is non-decreasing for b 1 ~ x ~ b2 . Similarly, D(x) is non­

decreasing for b3 ~ x ~ b4 , b5 ~ x ~ b6 , etc. and non-increasing for 
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b2 ~ x ~ b3 , b4 ~ x ~ b5 , etc. So any of these intervals gives at most one 

change of sign of D(x). Since no changes of sign occur for x ~ b 1 and 

x 2 bk-I' the maximum number of changes of sign of D(x) is k-2. Moreover, 

it should be noticed, that if D(x) has no change of sign for b 1 ~ x ~ b2 , 

then D(b 2) ~ 0 and D(x) has no change of sign for b2 ~ x ~ b3 either, etc. 

This means that the number of changes of sign of D(x) equals k-2i for some 

positive integer i. In the following applications k = 3 frequently occurs. 

2. SOME LEMMAS 

First we define 

(2. 1) V. 
l. 

{x: p.(x) > O} (support of F.) 
l. l. 

1. = 1,2 
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(2.2) = inf V.; ci = sup V. ]_ 
,, 

I , 2 a. 
]_ ]_ ]_ 

(2.3) r(x) = pl(x)/p2(x) for X E vi n v2 

(2.4) q(x) = r(x)/r(x-1) for X with x-1, XE VI n v2 

v1 and v2 will be supposed coherent, that is such that x,y E Vi implies 

k .f k *) h. d. . V d . b . 1 1 . 1 d E Vii x $ $ y . Tis con ition on 1 an v2 is o vious y fu file 

in the applications studied below. Now five cases are distinguished. 

I. a2 < al < cl < c2 
2. a2 = al < cl < c2 
3. a2 < al < cl = c2 

4. a = al 2 
< cl = c2 

5. al < a2 < cl < c2 

Any of the remaining cases is reduced to one of the cases I to 5 after in­

terchanging F 1 and F2 . Those cases will not be considered explicitly here, 

but obviously their treatment is similar to the treatment of the cases I 

to 5. 

The implication in the summary can be studied by considering for all x 

(2.5) => 

LEMMA 2.1. (a) The number of changes of sign of D(x) in case 

(b) The number of changes of sign of D(x) in case 5 is even. 

PROOF. 

(a) D(a 1-I) < 0, D(c 1+I) > 0 

(b) D(a2-J) > 0, D(c 1+I) > 0. □ 

See note on page 2. 

is odd. 
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LEMMA 2.2. If implication (2.5) holds for all x, then the number of changes 

of sign of D(x) is O or I. 

PROOF. If D(x) has two (or more) changes of sign, then there exist i,j and 

k (i<j<k) with either D(i), D(k) > 0 and D(j) < 0, or D(k), D(k) < 0 and 

D(j) > 0. This contradicts (2.5) for at least one x. D 

COROLLARY 2.1. Implication (2.5) holds for all x in case·5 if and only if 

F 1(x) > F2 (x) for all x. 

For this reason case 5 will not be considered any furhter. Therefore 

we can assume v1 c v2 from now on. 

REMARK 2.1. If F1(x) > F2 (x) for all x, the implication (2.5) holds triv­

ially, the left part not being fulfilled for any x. 

REMARK 2.2. In cases 2 to 4 the parity of the number of changes of sign of 

D(x) depends on the sign of D(b 1) and D(bk_ 1). In case 2 D(bk_ 1) > O, in 

case 3 D(b 1) < 0, in case 4 both D(b 1) and D(bk_ 1) can be positive or nega­

tive. Notice, that D(b 1) and D(bk_ 1) cannot be zero, since 

I 
'<b J- I 

I 

d (j) 

'<b J- k-1 

d (j) = - I d (j) . 

j>bk-1 

LEMMA 2.3. If there exists an m such that r(x) is monotone non-decreasing 

for a 1 $ x $ m and monotone non-increasing form$ x $ c 1, then (2.5) holds 

var aU x. 

PROOF. Notice, that r(m) 2 l, since F1(c 1) - F 1(a 1-1) = 1 and F2 (c 1) + 
CJ 

- F2 (a 1-I) $ I, so 

Then r(m) 2 r(k) 2 

1 d(j) 2 O, and d(j) 2 0 for at least one J0
, say k. lj=a1 

I. The only case in which r(m) 1, is the trivial case 

that F1Cx) = F2 (x) for all x E: v1 = v2 . Therefore r(m) > I will be assumed. 

Three possibilities remain (see definitions (1.5) and (1.6)). 
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(a) v2 = Tl u T2 u T3, m E T2 

(b) v2 = Tl u T2 , IDE Tl 
(c) v2 = Tl u T2, IDE T2 

In case I the only possibility is (a). In case 2 both (a) and (b) are pos­

sible, in case 3 both (a) and (c) are possible, and in case 4 no possibility 

can be excluded in advance. If (a) is the case, we have d(x) s O on T1 and 

T3 , and d(x) ~ 0 on T2 . Thus D(x) > 0 on T3 , D(x) < 0 on T1 and D(x) has 

exactly one change of sign on T2 . If (b) or (c) is the case D(x) has no 

change of sign, and the set {x: D(x) # O} is coherent. D 

LEMMA 2.4. If q(x)/q(x-1) s I for all x with x-2,x E v 1, then (2.5) holds 

for all x. 

PROOF. 

q(x)/q(x-1) s for all x 

is equivalent to 

r(x) s r (x-1) for all r(x-1) r(x-2) X 

which implies 

r (x-1) s r(x-2) =;> r(x) s r (x-1) for all x. 

This means that r(x) has the form as described in lemma 2.3, by which 

then (2.5) holds for all x. D 

The following lenrrna will appear useful in several cases where 

q(x)/q(x-1) s I must be proved. 

LEMMA 2.5. For a,b,c,d > I 

(a) 

(b) 

a-1 b 
----< ~ash a b-1 -
a-I b c- I d a b-1 -c- d-1 s I ~ 

ac a+c-1 
bd s b+d-1 
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(c) Each of the following conditions (2.6) to (2.8) is sufficient for the 

inequalities in (b). 

(2.6) as b and cs d 

(2. 7) ac s bd and b + d s a+ c 

(2 .8) max(O,a-b) s d - c and 

[(cs a-I and d-1 s b) or (cs band d s a)]. 

PROOF. (a) and (b) are obvious. The sufficiency of (2.6) and (2.7) follows 

by application of (a) and (b) respectively. Further, 

a-I b c-1 d 
~ b-1 c d-1 = 

d-c 
I - -c-( d---1-) 

a-b 
I- (a-I)b 

which is s I if d - c ~ 0 and d - c ~ a - band 

[(cs a-I and d-1 s b) or (cs band d s a)]. D 

3. RESULTS IN CLASSES OF EXPONENTIAL FAMILIES 

Let a class, C, of distributions be given by their probability func­

tions. 

(3. I) 
xv(n 8) 

P. (x) = f(x n)e ' g(n 8) 
n, e ' ' 

Any subset C c C for fixed n (which may be a vector as may be 8) is an 
n 

exponential family. Probability functions of binomial, Poisson, hypergeo-

metric and negative binomial distributions have this form, as can be seen 

in ta.ble 3.1. The form (3.I) is useful, because the crucial quantity 

q(x)/q(x-1) from lennna 2.4 will turn out to depend on f(x,n) only. Let 

(3. 2) F e (x) = l P e (j). n, "< n, J-X 

Consider the implication 
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(3. 3) 

Define 

(3.4.a.) F 1 (x) d~f F 8 (x) 
n, 

(3.4.b.) F2 (x) d~f 
F l;(x+y). 

I';' 

Now all definitions (1.2) to (1.7) and (2.1) to (2.4) are meaningful here, 

and 

(3 .5) 

(3. 6) 

(3. 7) 

r(x) = 
p 1 (x) 

p 2 (x) 

= __ f-'-( x-"-, n.;._;)_e,_xv_(-=-n_,_,,.8_) _g~( n..:...-<-, 8---') __ 

f(x+y,l;) e(x+y)v(r;;,l;) g(r;;,l;) 

r(x) = f(x,n) f(x+y-1,l;) ev(n,B) 

r ( x- 1 ) f ( x+y, l;) f ( x- 1 , 17) e v (I';' l;) 

q(x) 

q (x-1) 

2 f(x,n) f(x+y-1,l;) f(x-2,n) 
2 f(x+y,l;) f(x-1,n) f(x+y-2,l;) 

In table 3.2 the ratio (3.7) is given for the four classes of table 3.1. 

TABLE 3.1. The probability function of the binomial, Poisson, hypergeo­

metric and negative binomial distribution in form (3.1). 

x v(n,e) I 
P e(x) f(x,n) ! g(n,8) 8 e n n, 

(n \ x( 1 )n-x (n\ X ln l~p n 
\x,JP -p \x) e ( 1-p) n p 

X 1 lnµ -µ ]J X -µ 
e x! x! e ' e - ]J 

i 
(nl(t-n\ (n)(t-n\ I 
x) r-x) I 

,x f~)x} I I (t,n,r) -
(!) \r; 

( x- I) n ( 1 _ ) x-n (x-1) X ln( 1-p) ( p )n 
\n-1, p p n-1, e 

\ 1-p, 
n p 

I 
! 



TABLE 3.2. q(x)/q(x-1) in binomial, Poisson, hypergeometric and negative 

binomial classes. 

class param- q(x) 
eters q (x-1) 

binomial nl ,p 1 1x-1 x+y \ (n1-x+l n2-x-y+2) 

,x x+y-1} \n 1-x+2 n -x-y+I n2,P2 2 

Poisson µ 1 x-1 x+y --
µ2 X x+y-1 

Hyper- t 1,n1,r 1 
,x-1 x+y) (n 1-x+l n2-x-y+2) x 

geometric t2,n2,r2 \ X x+y-1 n -x+2 n -x-y+l 1 2 
fr 1-x+l r -x-y+2\ (t -n -r +x-1 2 1 1 1 

Ix '\r -x+2 r -x-y+l) \ t -n -r -i-x 
1 2 l I 1 

Negative nl 'p 1 x+y-2 x-1 x-n -1 x+y-n2 I 
binomial nz,Pz --x+y-1 x-2 x-n 1 x+y-n -1 

2 

THEOREM 3.1. Implication (3.3) holds 

a. &n the binomial case if O ~ y ~ n 2-n1 

b. in the Poisson case if y ~ 0 

c. in the hypergeometric case if O ~ y ~ n 2-n 1 and 

t 1-n 1-r 1-(t2-n2-r2) ~ y ~ r 2-r 1 

t 2-n2-r2+x+y \ 

t -n -r +x+y-1} 2 2 2 

di. in the negative binomial case if n 2-n 1 ~ y and n 2 - n 1 ~ 0 

d2. &n the negative binomial case if p 1 = p 2 and n 2 ~ n 1 
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PROOF. Cases a to care dealt with by showing that q(x)/q(x-1) ~ 1 for all 

x by lennna 2.S(a). In case dl we have q(x)/q(x-1) ~ for all x ~ n 1+2 by 

(2.8) in lennna 2.5 with a= x + y - I, b = x - I, c = x - n 1, 

d = x + y - n2 . Lemma 2.4 completes the proof in the cases a to di. In case 

d2 the shape of r(x) is considered. 

So 

q(x) I + 
(n 1-n2 )(x-l) + y(n 1-I) 

(x-n1)(x+y-1) 

y(n 1-I) 
if X - I < r(x) > r(x-1) 

n2-nl 
y(n 1-J) 

r(x) = r(x-1) ifx-1= 
n2-nl 



r(x) < r(x-1) if X - } > 

y(n 1-I) 

Then lemma 2.3 completes the proof. D 
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