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Inequalities in discrete distributions

by

J.M. Buhrman

SUMMARY
In this report sufficient conditions are derived for the implication
Fl(x) < Fz(x) ='F1(x—j) < Fz(x—j) for all j > 0

where F] and F2 are discrete distribution functions with jumps on Z . Re-
sults are given for pairs of - possibly shifted - distribution functions

of binomial, Poisson, hypergeometric and negative binomial type.
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1. INTRODUCTION

In the search for a test concerning the ratio of two Poisson means,
the question arose whether two binomial distribution functions F and G

have the property (x and y integer)
(1.1) F(x) < G(x+y) = F(x-1) < G(x+y-1).

This was a reason to investigate what conditions are sufficient for this
kind of implication, not only when pairs of binomial distributions are

involved, but in the case of other types of integer valued distributions
as well. Notice, that, with F](x)dSf F(x) and Fz(x)dng(x+y), the above

implication can be studied by considering

(1.2 o Er @ -Fw
(1.3) D, (®) def F (%) - F,(x-1)
1.6 4@ % p @ -,

A function f(x) is said to have at least one change of sign on an interval
[a,b] (a<b) if £(i)E(j) < O for some i, with a < i < j <b *.

Some remarks will be made with respect to the relation between changes
of sign of D(x) and changes of sign of d(x). We assume that a finite par-

tition Z =T, u T, U ... U T, exists, with

1Y 2 k \
(1.5) T] = {x: d(h)d(j) 2 0 for all h,j < x}
(1.6) Ti = {x: x > max Ti—]’ d(h)d(j) = 0

for max Ti—l + 1 < h,j < x}

*) All variables indicated by x,y,a,b,c,i,j,h,k,m,n,r,t with or without

subscripts, will be understood to be integers.



The assumption of such a finite partition is a restriction, but in all
cases in which we are interested, it is fulfilled.
The maximum number of changes of sign of D(x) is k-2, which can be

seen as follows. Let

(1.7.a) bi = max Ti'

Then

(1.7.b) T] = (== , bl]

(1.7.¢) Tl = [b _1+] , bl] i=2,3,...,k=-1
(1.7.4d) Tk = [bk_]+1 , @)

Notice, that D(x) = Zj<x d(j) and that D(—~) = d(-») = 0.

Of the two possibilities: d(j) = O for all j < b] and d(j) < 0 for all
j < b], the second one is chosen to be considered. Then D(bl) < 0 and
D(x) £ 0 for all x < b]. Now d(j) = O for b1 < j < b2’ so D(x) = D(bl) +
+ zb]<ij d(j) is non-decreasing for b] < x < b,y. Similarly, D(x) is non-

decreasing for b3 < x < b4, b5 < x < b6’ etc. and non-increasing for

b2 < x < b3, b4 < x < b5, etc. So any of these intervals gives at most one

change of sign of D(x). Since no changes of sign occur for x < b1 and

X 2 bk-]’ the maximum number of changes of sign of D(x) is k-2. Moreover,

it should be noticed, that if D(x) has no change of sign for b1 < x < b2’

then D(b2) < 0 and D(x) has no change of sign for b, < x < b, either, etc.

3
This means that the number of changes of sign of D(x) equals k-2i for some

positive integer i. In the following applications k = 3 frequently occurs.
2. SOME LEMMAS

First we define

[
]

2.1) Vi = {x: pi(x) > 0} (support of Fi) 1,2



(2.2) a, = inf Vi; c; = sup Vi i=1,2
(2.3) r(x) = p](x)/pz(x) for x € V1 n V2
(2.4) q(x) = r(x)/r(x-1) for x with x-1, x € V1 n V2

V1 and V2 will be supposed coherent, that is such that x,y € Vi implies
*)

k € Vi if x<k <y . This condition on V, and V_, is obviously fulfilled

1 2
in the applications studied below. Now five cases are distinguished.

1. a, <a, <c, <c

2. a, =a, <c, <c

2 1 1 2
3. a2 < a1 < c] = cz
4, a, = a] < c1 =c,
5. a, <a, <c, <c

Any of the remaining cases is reduced to one of the cases 1 to 5 after in-

terchanging Fl and F,. Those cases will not be considered explicitly here,

2
but obviously their treatment is similar to the treatment of the cases 1

to 5.

The implication in the summary can be studied by comsidering for all x
(2.5) F](x) < FZ(X) = F](x—]) < Fz(x—l).

LEMMA 2.1. (a) The number of changes of sign of D(x) in case 1 1s odd.

(b) The number of changes of sign of D(x) im case 5 Zs even.

PROOF.
(a) D(al-]) <0, D(c1+1) >0
(b) D(az—l) > 0, D(c]+]) > 0. g

*)

See note on page 2.



LEMMA 2.2. If Zmplication (2.5) holds for all x, then the number of changes
of sign of D(x) Zs 0 or 1.

PROOF. If D(x) has two (or more) changes of sign, then there exist i,j and
k (i<j<k) with either D(i), D(k) > O and D(j) < 0, or D(k), D(k) < O and
D(j) > 0. This contradicts (2.5) for at least one x. [J

COROLLARY 2.1. Implication (2.5) holds for all x in case’> if and only if
F](X) > FZ(X) for all x.

For this reason case 5 will not be considered any furhter. Therefore

we can assume V1 c V2 from now on.

REMARK 2.1. If FI(X) > FZ(X) for all x, the implication (2.5) holds triv-
ially, the left part not being fulfilled for any x.

REMARK 2.2. In cases 2 to 4 the parity of the number of changes of sign of
D(x) depends on the sign of D(bl) and D(bk—l)' In case 2 D(bk—l) > 0, in
case 3 D(b]) < 0, in case 4 both D(bl) and D(bk_]) can be positive or nega-

tive. Notice, that D(b]) and D(bk-l) cannot be zero, since

p(b) = ) 4P
j<b,

Db, _) = ) A =- ] 4.
I=byy 3Py

LEMMA 2.3. If there exists an m such that r(x) is monotone non-decreasing

for a, < x < m and monotone non-increasing for m < x < c., then (2.5) holds

1
vor all x.

]’

PROOF. Notice, that r(m) = 1, since Fl(cl) - F](al—]) = 1 and FZ(CI) +

c
- Fz(al—l) <1, so Ejlal d(j) 2 0, and d(j) =2 O for at least one j, say k.
Then r(m) = r(k) = 1. The only case in which r(m) = 1, is the trivial case

that F](k) = Fz(x) for all x € V, = V_. Therefore r(m) > | will be assumed.

1 2
Three possibilities remain (see definitions (1.5) and (1.6)).



uT uT3,meT

(@) v, =T v T, 2
(b) V2 = T1 u TZ’ m e T1
() V, =T UT,, meT,

In case 1 the only possibility is (a). In case 2 both (a) and (b) are pos-
sible, in case 3 both (a) and (c) are possible, and in case 4 no possibility
can be excluded in advance. If (a) is the case, we have d(x) < 0 on T] and
T3, and d(x) 2 0 on T,. Thus D(x) > 0 on T,, D(x) < 0 on T, and D(x) has

2 3° 1
exactly one change of sign on T,. If (b) or (c) is the case D(x) has no

2
change of sign, and the set {x: D(x) # 0} is coherent. [J

LEMMA 2.4. If q(x)/q(x-1) < 1 for all x with x-2,x € V_, then (2.5) holds

for all x.

1’

PROOF .

q(x)/q(x-1) <1 for all x

is equivalent to

r(x) - r(x-1)

=1 = T(x=2) for all x

which implies

r(x-1) < r(x-2) = rx) < r(x-1) for all x.

This means that r(x) has the form as described in lemma 2.3, by which

then (2.5) holds for all x. [

The following lemma will appear useful in several cases where

q(x)/q(x-1) < 1 must be proved.

LEMMA 2.5. For a,b,c,d > 1

<1 < a<b

a-1 p c-1 d <] ac _ a+c-1

a b-1 c¢ d-l bd = b+d-1

(b)



(¢) Each of the following conditions (2.6) to (2.8) is sufficient for the

inequalities in (b).

(2.6) a<b and c <d
(2.7) ac <bd and b+d <a+c¢c
(2.8) max(0,a-b) < d - ¢ and

[(c £ a-1 and d-1 < b) or (¢ £ b and d < a)].

PROOF. (a) and (b) are obvious. The sufficiency of (2.6) and (2.7) follows
by application of (a) and (b) respectively. Further,

1- d-c
a=-1 b e-1 d _ c(d-1)
a b1 ¢ d-1 | _ab
(a-1)b

which is €1 if d = c 20 and d - ¢ =2 a - b and

[(c < a-1 and d-1 € b) or (c <band d < a)l. [
3. RESULTS IN CLASSES OF EXPONENTIAL FAMILIES

Let a class, C, of distributions be given by their probability func-

tions.
S}
(3.1) Pn G(X) = f(x,n)exv(n’ )g(n,e) nef, 6 ¢ 0,
3

Any subset Cn c C for fixed n (which may be a vector as may be 8) is an
exponential family. Probability functions of binomial, Poisson, hypergeo-
metric and negative binomial distributions have this form, as can be seen
in table 3.1. The form (3.1) is useful, because the crucial quantity

q(x)/q(x~1) from lemma 2.4 will turn out to depend on f(x,n) only. Let

Consider the implication



3.3 F <F -1) < -1 3
(3.3) n,e(x) c,g(X+y) = Fn’e(x j) < FC,E(X+Y j) for all j > 0.
Define

def
(3.4.a.) Fl(x) = Fn,e(x)

def
(3.4.b.)  F,(x) = Fc’g(x+y).

Now all definitions (1.2) to (1.7) and (2.1) to (2.4) are meaningful here,

and

(3‘5) r(x) = p](X) - f(X,T]) eXV(nge) g(n’e)
P,  EGary,e) e VIVEE) Gy
(3.6) r(x) = f(X,n) f(X+y_l’€) eV(n’e)
r(x-1)  f(x+y,£) f(x-1,n) vV (T,8)
(3.7) a(x) _ _ f(x,n) f(x+y—1,£)2 f(x-2,n)

q(x-1)  f(x+y,§) f(x-l,n)2 f(x+y=2,8)

In table 3.2 the ratio (3.7) is given for the four classes of table 3.1.

TABLE 3.1. The probability function of the binomial, Poisson, hypergeo-

metric and negative binomial distribution in form (3.1).

f
LIS £(x,n) X V(8 o (h6) n 6
- 1n 12
e N I )
X
e_u-%T ;%- e* Loy e ™ - u
(n\ t-n\ (n)/t—n\
x/\r-x x\r-x) . | (
T “'(‘t‘s‘ t,n,r) -
T, r,
x-1\ n, . x-n (x-1] x In(1-p) [ p \*
(m)? (1-p) (n—l e \T-p/ n P




TABLE 3.2. q(x)/q(x-1) in binomial, Poisson, hypergeometric and negative

binomial classes.

class [ param— q(x)
eters q(x-1)
' -x+ —-x=y+
binomial n,P, (x-1 x+y > n= ! My XY 2)
ny,po \ x xty-1 \n]—x+2 nz—x—y+]
Poisson | u x-1 x+y
ul x xty-1
2
- -x+ —x=y+
Hyper- tl’nl’rl x-1 x+y n, -x 1 n,~Xx-y 2 )
geometric tysNy,Ty N X x+y-1 n,- -x+2 nz-x—y+l
}x./rl x+1 r,=X- y+2\ / -n, r]+x 1 tz—nz—r2+x+y \
\r -x+2 r —x—y+1/ \t TR T TR tyTn, T +x+y—1)
1 2 2 72
Negative | n_,p xty-2 x-1 x-n,~1 x+y-n
binomial ! l 2
nysPy xty—-1 x-2 x-n; x+y—n2—1
THEOREM 3.1. Implication (3.3) holds
a. 1in the binomial case 7f 0 <y < n, n
in the Poisson case 1f y = 0
c. 1in the hypergeometric case 1f 0 <y < n,-n, and
£y (e mnyTry) <y S 1,
dl. zZn the negatzve binomial case if nz—n] <y and n, - n <0
d2. in the negative binomial case Zf P, = and n, 2 n,

PROOF. Cases a to c are dealt with by showing that q(x)/q(x-1) < 1 for all

x by lemma 2.5(a). In case dl we have q(x)/q(x-1) < 1 for all x > n]+2 by
(2.8) in lemma 2.5 witha=x+y -1, b=x-1, ¢ = x - o,

d=x+y -n,. Lemma 2.4 completes the proof in the cases a to dl. In case

2
d2 the shape of r(x) is considered.

(nl-nz)(x—l) + y(n]—l)

a(x) =1+ (x—nl)(x+y—l)
y(nl-l)
So r(x) > r(x-1) if x - I < p—
2 1
y(n,-1)
r(x) = r(x-1) if x - 1 = ———r

2 1



y(n,-1)
r(x) < r(x-1) ifx-1> e

Then lemma 2.3 completes the proof. [J
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