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SUMMARY

In this paper bounds are given for Ee ZS_]

are the order statistics of Xl""’XN’ a random vector with

N
aSOS and ce(ZS=l aSOS),

where 01,...,0N

density po(xl_el""’xN_eN) for some 8 = (9],...,6N) and pO(Xl""’XN) a

completely arbitrary density with respect to Lebesgue measure in RN. If the

Xi are'exchangeable under Py the bounds depend only on EO ZN 1
S=

: aSOS and
cO(Zs=1 aSOS) plus quantities that can be computed without knowledge of Py

The bounds are attainable for some distributions and nearly attainable for

some others. -
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1. INTRODUCTION

Let po(x) = PO(XI""’XN) be a given density with respect to Lebesgue
measure in RN and consider the family pe(x) = pO(xl—el,...,xN—eN), 6 =
(91,...,6N) € RN' Let (Xl""’XN) be a random vector whose density is Py

for some 6 and let 01""’ON be the order statistics of Xl""’XN'

N
aSOS and Oe():s=l a 0).

In this paper bounds are given for Ee Z§= O

1
These bounds are of the form

N N
(1.1) £,(0,0) < Eg L o0 -Ey L o0 <f (6,0
s=1 s=1
and
N 5 N
(1.2) oe(szl 0 0) < oo(szl a 0) + £,(0,0) + £,(8,0),

where d = (al,...,aN).

The bounds (1.1) require no other assumptions than those above; (1.2)
requires a further condition; exchangeability under Py of the Xi’ for ex-
ample, is sufficient (see section 3 for the exact condition and also for a
bound for GG(Z§=] aSOS) which uses only the assumptions for (1.1)).

With the condition of exchangeability of the Xi under Py the functions
f

f f, and f4 can be computed without knowledge of Poe

2> 73
Examples will be given to show that the bounds are in some circum-—

]’

stances exactly attainable and in others almost attainable.

In what follows, section 2 contains the derivation of the Bounds for
the mean, section 3 the derivation of the bound for the standard deviation.
The computation of the functions fl’ f2, f3 and f4 when the Xi are exchange-
able under P is discussed in section 4. Distributions for which the bounds
are attained as well as examples where they are almost attained are given
in section 5; section 6 contains some comparisons between actual values and

their bounds.



N

2. BOUNDS FOR THE EXPECTATION OF Zs=l aSOS;

It will be helpful to comsider first the expectation of a single order
statistic, Os.

Straightforward computation gives

EGOS = Z J xj pe(x)dx,
Jop, 8
J . 3 3 3 3
where Tj {xJ < ve. £ XjN}’and j= {Jl?...,JN} is a permutation of {1,...

...,N}. Let vy, =X -6, r=1,...,N, then

j s s

1 = . . . o 1 = . < . 1 =
with Bj {le-FeJl < ... < yJN-+6JN}. With A, {y11 < ... < le}, i

{il"'f’iN} a permutation of {1,...,N}, we have

(2.1) EeoS = igj J (yjS + ejs)po(y)dy,
AiBj

where i and j range independently through the N! permutations of 1,...,N.

Concerning the sets AiBj we have the following lemma.

LEMMA 2.1. For each (i,j) there either exists k such that

(1) k € {is,...,iN}
and

11 + 6. 2y, + .B.
(ii) yjS eJS yls 0, for all y € AlBJ

or AiBj 18 empty.

PROOF. Suppose there exists j such that AiBj # @ and for which there is no

k with (i) and (ii). Then for every k ¢ {is,...,iN} we have

y. + 6. <y + 0 for some y € AiBj’



which implies, because

y, < Vi for all k € {1S,...,1N} and all y € AiBj’

i
s
that for all k € {is,...,iN}
yjs + ejs < Vi + Ok for some y € AiB"

This means that, for all k {iS,...,iN}, k is strictly to the right oﬁ js
in the j-permutation, but this is a contradiction because {is,...,iN} con-
tains N-s+l1 integers and the number of integers strictly to the right of
js is only N-s.

In the same way the following lemma can be proved.

LEMMA 2.2, For each (i,j) there either exists k such that

(1) k e {11,...,15}

and

(ii) y. + Bj Sy, ot Bk for all y € AiBj
Js s s

or AiBj 18 empty.

If we now define the random variables whose values on each Ai are

min{ei ,...,ei }

. 0
Ls < N 7
(2.2) s =1,...,N,

6
us

I

max{6. ,...,0. }
i i
| s
then we have, on each AiBj’

(2.3) v +e£SSy. + 8. <y, +6 , s =1,...,N.
S S h

Integrating with respect to p, and using (2.1) gives
0 g



(2.4) EOOS + Eoeﬂs < EGOS < EOOS + Eoeus s =1,...,N,
where Eoeﬂs = Zi PO(Ai)eﬂs'

Clearly, for a monotone nondecreasing function h(OS)
th(os+ef_s) < Eeh(os) < EOh(os+eus), s = 1,...,N,

can be obtained as above. A similar result holds for a function h(O],...,ON),

where h is monotone in each variable; the upperbound and lowerbound for
Eeh(Ol,...,ON) are determined by the direction of the monotonicity of h in
each argument. This result will now be used to find bounds for the expecta-

. . . . N .
tion of linear combinations Zs= aSOS. First note that on AiBj we have, for

1
each s = 1,...,N,

(2.5) y. +0. =y. +y. -—-y. +6. =y. +A.., say.

N N N
2.7) z a (y. +606. )= z ay + Z a A.. =
s=1 Js Is s=1 s 1g s=1 s 118
N N _
= z 4.y, + Z (as - aO)Aijs + aONe,
s=1 s s=1

0
Leﬁs’eus]’ we have

where a, is an arbitrary constant. Since, by (2.3), Aijs is in the interval

N N
(2.8) Z us(y. +6. ) 2 Z ay. + z (as-ao)ezs +



and

(2.9)

I~z
Q
7~
«
+
(a>)
p—
IN
o~z
Q
«
+
~
~~
Q
wm -
1
Q
o
N
D
c
+

+ z (as-ao)eﬁs + aONé.

N N
(2.10) E, L o0, 2E; ) a0 + ] (a -0 )E8,  +
s=1 s=1 o >0
s 0
+ z (us-uO)Eoeus + uoNe
o <o,
s 0
and
. N N
(2.11) E, Z a0 <&, Z a0 + ) (a - )E e o +
s=1 s=1 as>u0

The distance between these bounds is

N
(2.12) Szl la, —aglEy (6, = 8,.),
which is minimized by choosing a, as the median of the a with respect to
the probabilities
E (6 =6,)
(2.13) NO us Ls” g - 1,...N.
E EO(eus—eﬂs)

s=1

Sometimes a shorter bound can be found by maximizing (2.10) and minimizing

(2.11) separately. Consider the upper bound (2.11) which can be written



N N
2 * Eoeus - z (as._aO)EO(eus‘-eKs) * 0‘O[Ne - Z Eoeus]
= a <aq s=1

N
- Z OLsEOeuS * g(OLO)'

Because g(ao) is continuous and has a nondecreasing derivative (except for

ay = 0 s 8 = l,...,N) which is nonpositive for small o, and nonnegative for

0
large ags g(ao) either has a minimum or an interval of minima and a mini-

mizing o, is an % s ) which satisfies the two inequalities
0

N
~ : - - No
) EO(eus eﬂs) < Z EOeus N6
o <o s=1
(s) (SO)
< N _
z EO(eus'_eZs) = z EOeus - o,
o <o, s=1
(s) (so)

where u(]) < .,.. < a(N) are the ordered values of a -

In the same way an g maximizing the lower bound for Ee E§=1 aSOS is

an % s ) which satisfies the two inequalities
0

N
" 2: EO(eus-—eﬂs) = No& - Zl Eoeﬂs
HONICH) >
9 _ N
‘} Eg(8  ~0p,) = N6 - Zl Efps-
%) (s ) >

An example where a shorter bound is obtained by maximizing (2.10) and min-

imizing (2.11) separately is the following. Let N = 4, el =0 < 62 = 63 =

64 = 0 and let the Xi be po—exchangeable. Then, for o, < a, < Ay < 0,

4 1
median of the ag with respect to the probabilities (2.13) is a.,. Using this

the

3



. . N .
median for a, in the bounds for E, £ . o O - E ZN_ o O gives
6 “s= s s 0 "s=1 "s's

0 1

a, + a, + a

lower bound 2 3 4}

N —

3
G{Z'a] +

5 3
Olay + 7 ag + 7 ol

upper bound A

(a3-a4)]. The upper

and the length of this interval is 6[%(&2-a1) + %

bound is minimized for ay = o and the upper bound then becomes
1 3
G{Zo‘l * o, o, +Z°‘4}'
The lower bound is maximized for a,. = o, which is the median. The differ-

0 3

ence between these upper- and lowerbounds is e[g(az-a]) + %(ul-aa)] and

the difference between the two lengths is %@(a -al) > 0.

3
1f Xl""’XN are po-exchangeable, then pO(Ai) = ﬁ%‘ the distributions
of ezs and eus do not depend on Py and are simple to compute. Some distri-

butions of 6ps and 6,5 are given in section 4.

N
3. UPPERBOUND FOR THE STANDARD DEVIATION OF z aSOS.
s=1
From (2.8) and (2.9) we have
" N
) oo (y. +6.,) is
s=1 Is Js
l:7 g
< —_ —_
(3.1) < Z a.y. + Z (as ao)eus + Z (as ao)eﬁs + aoNe and
s=1 s o >0, o <a
s 0 s O
N —
- Z %Yi 7 Z (us_.do)eﬂs * Z (“s"“o)eu * aONG.
s=1 s a >0 a_ <o
s 0 S O
Then, if
N N
Y = ‘>_: rzs(yj . + ()j ) - LO }, (\LS()S,



N N
X = z 0¥ T E0 Z 0‘sos’
s=1 s s=1
Zp= ) (agmoag) (8 =Eg8y ) ¥
o_>o o
s 0 s
Z2 = z (as-_ao)(eus.-EOSus) *
a_>o o
s 0 s
_ N N
A=oagNo -E, ) a0 +E) ) a0
s=1 s=1
_ N N
B = agN6 - Eg Z a0 +Ej )L a0
s=1 s=1 .
(3.1) becomes
(3.2) X+Z]+ASYSX+ZZ+B.

To find an upper bound for o(Y)

Z.+7Z +A+B 2

1 2 Yy + £

kX + 5

with k and £ such that
2 2
max{(X+Zl+A) ,(x+22+B) } < kX +

With a little algebra one sees that k > 1 and

Z2+B—ZI—A 2
5

;

(asr-aO)(eus.-EOGus)’
<o,
0
Z (as-_ao)(eﬂs.-Eoeﬂs)’
<o
0
* z (as-.QO)EOGKS *
a _>a
s O
+ ) (o -0 )E8. s
o <a
s 0
* Z (a .—QO)EOeuS
o >a0
+ z (a' _aO)EOe'@S’
0 <0

ZI+ZZ+A+B}2

2

N .
O(ZS=] aSOS) consider parabolas

+ L.



are necessary. Let

Xk ZZ+B-Z]—A 2

L= ¢ )

and k will be chosen after integration. Integrating with respect to Py

gives

ZI+Z2+A+B)2 . X . (22+B—Z1-A)2
2 k=1 "0 2

(3.3) o (

s

aSOS) < kEO(X +

2
0 521

Il ~>2

for all k > 1.

Minimizing the right hand side of (3.3) with respect to k > 1 one finds for

the minimizing value of k

1
0 2
%+Z+Am 2

—5)

EO(X +

Substitution of this value in (3.3) gives

1 1
N Z +7Z_+A+B - Z . +B-7Z -A -
1 72 2.2 2 1 2,2
(3.4) UG(SZ] aSOS) < {EO(X + ———"—E*———) T+ {EO(_———_E_———) 1.
21*29 2 A+B.2 % Zo¥B=Z 7 '12'
= {EO(X t— )T+ (-5—9 T+ {EO(—____E_—__) 1e.
This bound for o (ZN_ o 0 ) contains E ZN_ a 0 ; also, it depends on the
6" "s=1 "s's 8 s=1 "s s
correlation between X and Z1 + ZZ' Using (2.10) and (2.11) one obtains
N N
|A+B| _ =
— = IaONe Eq Z a O  + EO )l o 0 +
s=1 s=1
1 N
T3 Z (ocs“O{'O)EO(eus.'-el’,s)l

IN
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Substituting this bound in (3.4) gives the following bound for OG(Z§=1 aSOS)

(3.5) oe(
S

<
| aSOS) <

I ~>2

2 N ;3
S{00( E' 0Lsos T3 Z (as._GO)(eus-Feﬂs)) *
s=1 s=1 1

( g o -a |E (6 -8 ))2}§-+
2, s 01707 us Ls
N 1
1 2.2
+[g EO{SE1 lag =agl(e -6, )71

+

)=

If X and Z] + 22 are uncorrelated under Py> for example if the Xi are p,-

exchangeable, the bound (3.5) becomes

N
(3.6) oe( ) aSOS) <
s=1
2, N i 2 X
= {00( Z 0Lsos) * Z'OO( Z (as-_ao)(eus-keﬂs))
s=1 s=1
1
N —_—
1 2,2
* Z<SZIIas-_GO|EO(eus-_e£s)) 1+
1
N ‘ -
1 2.2
+ [z EO{S:Z= lag = aql(6, =8, 371"

1

4. THE DISTRIBUTION OF (eﬂs,eus) WHEN THE Xi ARE pO—EXCHANGEABLE.

Let ei < u.. < Bﬁ be the ordered values of the 0's, let, for k = 1,...,

1 1 = - -
M, Nk be the number of ej < ek and let NO 0. If the Xi are p exchange

able, then PO(Ai) = ﬁ%-and a somewhat lengthy but straightforward combina-
torial argument gives, for the joint distribution of ezs and eus,



11

|l

(N Ne_y)
(s-1-N,_ )T (N -s)!

if j=k and Nk_1+1 <s <N,

N.

(4.1) ————+ P (8, =6!, 8 =80') =
(s-1)T(N-s)T "0"8Ls 7j’ "us 'k if 3 <k and S
0
otherwise,
where
- ]
A = M ijl)' :
(S-l—Nj_l).(Nk—s).
~ (N, -N.)!
k 3 .
- T a1 if s 2 N. +1
(s-1 Nj).(Nk s)! i
B =«
0 if not
s .
i N _-N. !
1'(Nk—l vJ;Il) T if s < Nk 1
C =J (s j_])'( k_] S)o
0 if not
Nt
r N, -N.)!
k=1 "3 .
TN ) TN, =5 if N+l <s <N,
D =4
0 if not.

From (4.1), or by direct computation, one obtains for the marginal distri-

butions of © and 6
£Ls us

\ (N N1

N-N
N oty = k)
- (N-S+1/P0(eﬂs'-ek) T N-s+l

N-s+1)

Vo f
J A
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and
N N
(N —ory o [ kY _ (k1)
(4.3) \S/Po(eus ek) = s / s /-
If the 6's are all unequal then Nk = k and the joint and marginal distribu-
tions of eﬂs and eus become ( ( \
8 k-j-1 k-]
k- . + .
( S)\S-J—l) \s-j/
if _] < s £k
N! — ] ] —_
(4.4) (s-1)!(N-s)! PO(GKS-_ej’ eus-_ek) =
0
otherwise,
(N—k) (s
_ a1y = _\N-s _ N-s+1 \k
(4.5) PO(GKS ek) [ N s N
\N-s+1 \k/
and
(k-1\ (N-s+1\
ary sl _ s \N-k+1)
(4.6) PolOys = &) N N-s+1 [ N )
\s/ \N-k+1

Two simple limiting distributions for eﬁs’ when

are the following. If % - X, 0 <X <1, then

oy -2 .k _
(4.7) PO(GKS 6") a——a—-x , k 1,2,.
If s = N-a, a fixed, then
X
. !
(4.8) PO(eﬂs < e[NX]) > (a+1) [ (1-t) dt
0

the 6's are all unequal,

0 <x < 1.

Similar results hold for the distribution of eus.
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If M= 2, i.e. the two sample problem, then the joint distribution of

(eﬂs,eus) is

&)

L}
D

]
D
—
~

]

PO(eﬂsA us

n Zn B

I
@
-

n
— Aty = _\s/ _ \N-s+l,
(4.9) 9 PO(GES 1’ eus 82) ] N >‘"§F‘§ ’

m
- — oty = \N-s+l
PO(GKS eus 62) N ?

L '\N_S"']/’
where n = N] and m = N-—Nl. The marginal distributions are
~ ([ m
— a1y = _ \N-s+1
PO(eﬂs 61) ! N
N-s+1
(4.10) <
[ m
— a'y = N-s+1
PO(GKS 62) N
- \N-s+1
and
- (n
PO(Gus 61) N
\s/
(4.11) 4
8
= v = - S
BBy = 03) = 1 = 9x¢ -
\\S/

Note that, for the two sample case, one of the distributions of eﬂs and eus

is degenerate, so e[s and eus are independent.
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5. ATTAINABILITY

In this section distributions are given for which the bounds are

attained, as well as examples where they are almost attained.

EXAMPLE a. If Py is concentrated on a single Ai’ say i = {1,...,N}, and the

order of the 6's is the same as i, here #, < ... < eN, then ezs =0 =0, ,

1 us is
here 65, with probability 1 for every s and the inequalities (2.10) and
(2.11) for the mean and the inequalities (3.5) and (3.6) for the standard

deviation become equalities.

EXAMPLE b. If the a are all equal, say equal to %-, and g is the common

value then the inequalities (2.10), (2.11), (3.5) and (3.6) are equalities.

EXAMPLE c. The inequalities (2.10), (2.11), (3.5) and (3.6) are continuous
as the 6's approach equality and hence can be made arbitrary close to

equality for 6 - 6 . sufficiently small.
max min

EXAMPLE d. 6 - 6_. does not have to be close to zero to get approximate
—————" "max min

equality. For N odd let X]""’XN+2 be independent. For large N there is
practically no difference between the distribution of the median of Xl""’
XN+2 from U(0,1) and the median of Xl""’XN from U(0,1). Hence, for 6 > 1,
there is, for large N, practically no difference between the distribution
of the median of Xl""’XN+2 from U(0,1) and the median of X]""’XN+2 for
Xl""’XN from U(0,1) and XN+1’ XN+2 from U(6,6+1) and the inequalities

will be almost equalities,
6. SOME COMPARISONS BETWEEN ACTUAL VALUES AND THEIR BOUNDS

Let Xl’ X2, X3 be independent with X, and X, double expomential with

1 2

mean 0 and X3 double exponential with mean 6 = 0. Tables 6.1, 6.2 and 6.3

below give, for several values of 6, (o = O(Xi) = v2) the values of Eeos
and ae(OS), s = 1,2,3, together with the bounds (2.10), (2.11) and (3.6).

For all three tables and all values of 8 the value of aO used for the bounds

is ay = 0. This value of a, maximizes the lower bound (2.10), minimizes

the upper bound (2.11) and is the median of the oy with respect to the
weights (2.13).



Table 6.1 .

Comparison of EeO1 and 06(01) with their bounds

EeO1 09(01)
6 lower value upper value upper
bound bound bound
0 -1.125 -1.125 -1.125 1.1895 1.1895
.04o -1.125 -1.1065 -1.1061 1.1895 1.2060
.10 -1.125 -1.0803 -1.0779 1.1896 1.2310
4o -1.125 -.9732 -.9364 1.1904 1.3640
o =1.125 -.8488 -.6536 1.1932 1.6659
Table 6.2
, Comparison of EeO2 and 06(02) with their bounds
EOOZ 06(02)
6 lower value upper value upper
bound bound bound
0 0 0 0 .7993 .7993
.040 0 .0189 .0377 .7995 .8227
.10 0 .0471 .0943 .8003 .8591
4 o 0 .1838 .3771 .8154 1.0629
o 0 L4111 .9428 .8852 1.5634
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Table 6.3

Comparison of EeO and 06(03) with theitr bounds

3
Eg03 94 (03)

) lower value upper value upper
bound bound bound

0 1.125 1.125 1.125 1.1895 1.1895
.040 1.1439 1.1443 1.1816 1.1895 1.2128
.1 o 1.1721 1.1747 1.2664 1.1896 1.2486
4o 1.3136 1.3551 1.6907 1.1920 1.4427
o} 1.5964 1.8520 2.5392 1.2138 1.8996

As a second example, let Xl’ XZ’ X3, X4 be independent with X] and X2 Uu(o,1)

and X3 and X4 U(0,6+1), 0 < 6 < 1. Tables 6.4 and 6.5 below give, for sev-

_ 1 01+04
eral vaé?ESAOf 8, (o = o(Xi) —-7T§) the values of EeOI, 06(0]), Ee —
and oe( 5 ). In both tables and for all values of 6 the value of oy used

for the bounds in ay = 0; this value maximizes the lower bound (2.10), mini-
mizes the upper bound (2.11) and is the median of the o with respect to

the weights (2.13).

Table 6.4

Comparison of Eeol and oe(Ol) with their bounds

Eq0, a5(0,)
6 lower value upper value upper
bound bound bound
0 .2 .2 .2 .1633 .1633
.04o .2 .2057 .2058 .1634 .1674
1 o .2 .2139 L2144 .1638 .1738
4 oo .2 <2494 .2577 .1700 .2091
o] .2 .2967 .3443 .1937 .2046




Table 6.5 -

0]+0 0,+0
Comparison of Ee 0 and ce( 5 > with their bounds
. Ol+04 01+04

6 2 %\ 2
0 lower value upper value upper
bound bound bound
0 .5 .5 .5 .1291 .1291
.040 .5029 .5058 .5087 .1291 .1329
.10 .5072 .5144 .5217 .1294 .1387
4o .5289 .5577 .5866 .1327 .1706
o] .5722 .6443 .7165 L1451 - .2468

Département de Mathématiques et de Statistique
Université de Montréal
Montréal, Québec, Canada.
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