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SUMMARY 

In this paper bounds are given for E0 r!=l asos and cr0 (E!=l asOs), 

where O1, .•. ,0N are the order statistics of x1, ..• ,~, a random vector with 

density p0 (x 1-e 1, ... ,xN-0N) for some e = (e 1, .•. ,eN) and pO(x1, ... ,xN) a 

completely arbitrary density with respect to Lebesgue measure in~- If the 
. N 

X. are exchangeable under pO the bounds depend only on E0 E a O and 
i N s= 1 s s 

crO(Es=l asOs) plus quantities that can be computed without knowledge of pO. 

The bounds are attainable for some distributions and nearly attainable for 

some others. · 
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1. INTRODUCTION 

Let p0 (x) = p0 (x 1, ... ,xN) be a given density with respect to Lebesgue 

measure in~ and consider the family p8 (x) = p0 (x 1-e 1, .•. ,~-eN), 8 = 

(e 1, •.• ,8N) E ~- Let (X1, .•• ,~) be a random vector whose density is p8 
for some e and let 0 1, .•. ,0N be the order statistics of x1, ..• ,~. 

In thi·s b d f E ~N O d (~N O) paper oun s are given or 8 us=I ass an 0 8 us=I ass • 

These bounds are of the form 

(I.I) 

and 

( I • 2) a O ) 
s s 

N 
a O - E l a 0 

s s O s=l s s 

where a= (a 1, ... ,aN). 

The bounds (I.I) require no other assumptions than those above; (1.2) 

requires a further condition; exchangeability under p0 of the Xi' for ex

ample, is sufficient (see section 3 for the exact condition and also for a 
N 

bound for o8 (t:s=l a O) which uses only the assumptions for (I.I)). 
s s 

With the condition of exchangeability of the Xi under p0 the functions 

f 2, f 3 and f 4 can be computed without knowledge of p0 . 

Examples will be given to show that the bounds are in some circum-

stances exactly attainable and in others almost attainable. 

In what follows, section 2 contains the derivation of the bounds for 

the mean, section 3 the derivation of the bound for the standard deviation. 

The computation of the functions f 1, f 2, f 3 and f 4 when the Xi are exchange

able under Po is discussed in section 4. Distributions for which the bounds 

are attained as well as examples where they are almost attained are given 

in section 5; section 6 contains some comparisons between actual values and 

their bounds. 
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2. BOUNDS FOR THE EXPECTATION OF r!=t a.sos. 

It will be helpful to consider first the expectation of a single order 

statistic, 0 • 
s 

Straightforward computation gives 

E O = l f x. Pe(x)dx, 6 s . J -
J T. s 

J 
where Tj = {xj 1 $ ••• $ XjN} and j = {j 1, ••• ,jN} is a permutation of {l, ••• 

••• ,N}. Let y = x -6, r = 1, ••. ,N, then r r r 

Eeos = i f (y. + e. )po(y)dy 
J JS JS 

B. 
J 

with B • = { yJ· + 6 J. $ ••• 
J 1 1 

$ yJ· + SJ· }. With A. = 
N N 1 

{i 1, •• ~,iN} a permutation of {1, .•• ,N}, we have 

(2. 1) l I 
i,j A.B. 

l. J 

$Yi}, i = 
N 

where i and j range independently through the N! permutations of l, ... ,N. 

Concerning the sets A.B. we have the following lemma. 
l. J 

LEMMA 2.1. For each (i,j) there either exists k such that 

(i) k E { is , • , , , iN} 

and 

(ii) 

or A.B. is empty. 
l. J 

for aU y E A.B. 
l. J 

PROOF. Suppose there exists j such that A.B. f 0 and for which there is no 
l. J 

k with (i) and (ii). Then for every k E {i 8 , ••• ,iN} we have 

for some y E A.B., 
l. J 



which implies, because 

that for all k E {i , •.. ,iN} . s 

for some y E A.B .. 
l. J 
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This means that, for all k E {is•···,iN}, k is strictly to the right o~ js 

in the j-permutation, but this is a contradiction because {is•···,iN} con

tains N-s+l integers and the number of integers strictly to the right of 

Js is only N-s. 

In the same way the following lemma can be proved. 

LEMMA 2.2. For each (i,j) there either exists k such that 

(i) 

and 

(ii) 

or A.B. is empty. 
l. J 

for aU y E A.B. 
l. J 

If we now define the random variables whose values on each A. are 
l. 

(ls min { e . , . . . ' e . } 

(2. 2) 
1. s 1.N 

1, ... ,N, s = 
e = max { e . ' . . . ' e . } 
us 1.1 1.s 

then we have, on each A.B., 
l. J 

(2.3) y. + 8fs s y. + e. s y. +8 s = l, ••• ,N. 
l. JS JS l. us' 

s s 

Integrating with respect to Po and using ( 2. 1) gives 
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(2.4) $ E0o + E0e 
s us s = l, ••• ,N, 

where E0els = Ii P0 (Ai)els' 

Clearly, for a monotone nondecreasing function h(0) 
s 

Eoh ( 0 + e O ) :::; Eeh ( 0 ) $ Eoh ( 0 + e ) ' s ~s s s us s = l, •.. ,N, 

can be obtained as above. A similar result holds for a function h(O1, ••• ,0N), 

where his monotone in each variable; the upperbound and lowerbound for 

E8h(0 1, ••• ,0N) are determined by the direction of the monotonicity of h in 

each argument. This result will now be used to find bounds for the expecta

tion of linear combinations IN a O . First note that on A.B. we have, for 
s= l s s 1. J 

each s = l, .•. ,N, 

(2.5) y. 
1. 

s 
+ /J.. . ' 1.J s 

say. 

Summing (2.5) with respect to s gives 

N 
(2.6) I 

s=l 
/J. .. 

1.J s 

N 

= I 
s=l 

Hence we can write 

N 
(2. 7) I a (y. + e. 

s=l s J s JS 

-
Ne. 

N 
) = I 

s=l 

N 
= I 

s=l 

N 

asy· + I a /J. .. 
l.s s=l s l.J s 

N 
I -

asyi + (a - ao)/J. .. + a0Ne, 
s=I s l.J s s 

where a.0 is an arbitrary constant. Since, by (2.3), /J. .. 1.s 1.n the interval 
1.J s 

[8 0 ,e ], we have 
~s us 

N N 
(2.8) I a (y. + e. ) 2". I asyi + I (as - a O) 8 ls + 

s=I s J s J s s=l s as>ao 

I -
+ (a - ao)e + a0Ne 

s us 
a <a 

s 0 
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and 

N 
(2.9) I 

s=l 
+ (a. - a ) e + 

s O us 

I -
+ (as - ao) e .ts + a0Ne. 

as<ao 

Integrating with respect to Po gives the following lower and upper bounds 

N N 
(2. 10) Ee I a 0 2: Ea I a 0 + I (as - ao)Eoe .ts + s s s s s=l s=l as>ao 

I -
+ (a - ao)Eoe + a0Ne s us 

as <ao 

and 

N N 
(2.11) Ee I a 0 :::;; Eo I a 0 + I (a - ao)Eoe + s s s s s us s=l s=l as>ao 

I (as - ao)Eoe.ts + 
-

+ a 0Ne. 
as<ao 

The distance between these bounds is 

N 
( 2. 1 2) I I a - a 0 I E0 < e - e o ) , 

s=l s us -l..S 

which is minimized by choosing a0 as the median of the as with respect to 

the probabilities 

(2.13) 
E0 ( e -e o ) 

us -l..S 

N 
s = l, ... ,N. 

I E0 (e -er1) 
s=l us ,{._s 

Sometimes a shorter bound can be found by maximizing (2.10) and minimizing 

(2.11) separately. Consider the upper bound (2.11) which can be written 
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N N 

fe I a. 0 - E I a. 0 s 
s=l s s 0 s=l s s 

N N 
s I a. E e - I (a. - a.o)Eo (e - el ) + a.0 [N8 - I E0e J s O us s us s us s=l a.s<a.o s=l 

N 
= I a. Eoe + g(a.o). 

s=l s us 

Because g(a.0 ) is continuous and has a nondecreasing derivative (except for 

a.0 = a.s' s = 1, ... ,N) which is nonpositive for small a.0 and nonnegative for 

large a.0 , g(a.0) either has a minimum or an interval of minima and a mini

mizing a.0 is an a.(so) which satisfies the two inequalities 

N 
I E0 (e - el ) I E e - -s NS us s 0 us 

a. ( s) <a. ( s O) s=l 

N 
I E0 (e - el ) I -

::?: E e - NS, 

a. ( s >5a. ( s O ) 
us s s=l 0 us 

where a.(l) s •.. s a.(N) are the ordered values of a.s. 

In the same way an a.0 maximizing the lower bound for E8 IN a. 0 is s=l s s 
an a.(so) which satisfies the two inequalities 

N 
I E0 (e -el) 

- I Eo 8ls s NS -us s 
s=l a. (s) <a. (so) 

N 
I Eo(S - el ) 

- I Eo 8-ts· ::?: NS -

a.(s)sa.(so) 
us s s=l 

An example where a shorter bound is obtained by maximizing (2.10) and min-

imizing (2.11) separately is the following. Let N = 4, 0 I = 0 < 02 = e = 
3 

e4 = e and let the Xi be p0-exchangeable. Then, for a.4 < a. 1 < a.3 < a 2 , the 

median of the a.5 with respect to the probabilities (2.13) is a 3 . Using this 
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median for in the bounds for E EN a O - E EN a O gives aO 8 s= I s s O s= I s s 

lower bound 

upper bound 

3 I and the length of this interval is 8[4 (a2 - a 1) + 4(a3 - a 4)]. The upper 

bound is minimized for a0 = a 1 and the upper bound then becomes 

The lower bound is maximized for a0 = a 3 which is the median. The differ

ence between these upper- and lowerbounds is 8[¾(a 2 - a 1) + ¼<a 1 - a 4 ) J and 

the difference between the two lengths is ¼s (a3 - a 1) > 0. 
I 

If x1, ... ,¾ are p0-exchangeable, then p0 (Ai) = N!' the distributions 

of 8 0 and 8 do not depend on p0 and are simple to compute. Some distri-
,t_S US 

butions of 8ls and Sus are given in section 4. 

N 
3. UPPERBOUND FOR THE STANDARD DEVIATION OF I 

s=l 

From (2.8) and (2.9) we have 

N 
I a (y. + 8. ) is 

s=l s J s JS 

N 
I I (a - ao) 8 + (3.1) :::; asyi + 

s us 

a O • 
s s 

I (as - ao) 8 .ts + 
s=l s as>ao as<ao 

N 
I I (as - ao) 8ls + I ~ a.Sy i + (a - ao) e + 

s=I 
s us s as>ao as<ao 

Then, if 

N N 
Y I ri <Y. + o . ) - [ () I (i o , 

s= I 5 J s J s s= I 5 5 

-
a 0Ne and 

-
a0Ne. 
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N 
X = l 

s=I 
a. y. 

S 1 
s 

N 
- Ea L a. o, 

s=I s s 

zl = I (a.s - a.a)(els -Eaels) + I 
a.s<a.a a.s>a.a 

z2 = I (a. - a.a)(e - Eae ) + I s us us 
a.s>a.a a.s<a.a 

N N 
A= a. Ne - E I a. 0 + Ea I a. 0 + 

a e s s s s s=I s=I 

+ 

N N 
B = a.aNe - Ee I a. 0 + Ea I a. 0 + 

s s s s s=I s=I 

+ 

(3. I) becomes 

(3.2) 

(a - a.a)(e - Eae ) , s' us us 

(a.s - a.a) (els -Eaels), 

I (a.s - a.a)Eaels + 
a.s>a.a 

I (a. - a.a>Eae , s us 
a.s<a.a 

I 
a.s>a.a 

(a. - a.a)Eae + s us 

I (a.s - a.a)Eae ls' 
a.s <ct.a 

To find an upper bound for cr(Y) N 
= cr(Es=I a.sos) consider parabolas 

z 1+z 2+A+B 2 
k (X + 2 ) + l 

with k and l such that 

With a little algebra one sees that k > I and 



are necessary. Let 

Z +B-Z -A 2 
l = ~( 2 I ) 

k-1 2 

and k will be chosen after integration. Integrating with respect to pO 
gives 

(3.3) 
z 1+z 2+A+B 2 Z +B-Z -A 2 

s kEO (X + 2 ) + ~ E ( 2 I ) 
k-1 0 2 

for all k > I. 

9 

Minimizing the right hand side of (3.3) with respect to k > I one finds for 

the minimizing value of k 

t Z +B-Z -A 21..!_ E ( 2 I ) 2 
k = I + 0 2 

z 1+z2+A+B 2 
EO(X + 2 ) 

Substitution of this value in (3.3) gives 

(3.4) 
N 

ae < I 
s=I 

a O ) 
s s 

z 1+z 2+A+B 2 -21 Z +B-Z -A ..!_ 
s {Eo(X + 2 ) } + {Eo( 2 2 I )2}2. 

This bound for a 0 (I:=I asOs) contains E0 I:=I asOs; also, it depends on the 

correlation between X and z 1 + z2 . Using (2.10) and (2.11) one obtains 

IA+BI --'-----'- = 
2 

N 
< ..!_ \ 
- 2 l 

s=I 

a 0 
s s 

N 

+ Eo I 
s=I 

a O + 
s s 

N 

+-2 I (a-a,o)Eo(e +0o)I 
s=I s us -l-S 

I a - a0 I E0 ( e - e o ) • 
S US -l-S 
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N 
Substituting this bound in (3.4) gives the following bound for cr 0 (rs=l asOs) 

N 

ae< l 
s=l 

(3.5) a O ) ~ 
s s 

1 N 
a o + -2 I < a - aO) < a + a o ) ) + 

s s s=l s us ~s 

1 N 2 2 
+ -4 ( I I a - a 0 I E0 ( e - e o ) ) } + 

s=l s us ~s 
1 

22 I a - a 0 I ( e - e o ) } J • s us ~s 

If X and z1 + z2 are uncorrelated under pO, for example if the Xi are pO-

exchangeable, the bound (3.5) becomes 

(3.6) 
N 

cr 0 ( I 
s=l 

a O ) ~ 
s s 

2 N I 2 N 
~ foO< I a o) + -4 a0 < I <a -aO)(e +ao )) 

s= 1 s s s= 1 s us ~s 

I 
1 N 2 2 

+ -4 ( I I a - ao I Eo ( e - e O ) ) } + 
s=l s us ~s 

I 
1 N 2 2 

+ [-4 E0{ I I a - a0 I (e - e O ) } J 
s=l s us ~s 

4. THE DISTRIBUTION OF (0 0 ,e ) WHEN THE X. ARE pO-EXCHANGEABLE. 
~s us ----- i --

Let 0j < ••• < eM be the ordered values of the e's, let, fork= I, •.• , 

M, Nk be the number o{ ej ~ ek and let NO = 0. If the Xi are pO-exchange

able, then PO(Ai) = N! and a somewhat lengthy but straightforward combina

torial argument gives, for the joint distribution of 0 0 and e , 
~s us 



( 4. I) 

where 

A= 
(Nk-Nj-1)! 

(s-1-Nj-l)!(Nk-s)! 

(Nk-Nj)! 

(s-1-Nj)!(Nk-s)! 

B = 

0 

(Nk-I-Nj-1)! 

C = 
(s-1-Nj-l)!(Nk-l-s)! 

0 

(Nk 1-N.)! 
- J 

(s-1-Nj)!(Nk-l-s)! 

D = 

0 

A - B - C + D 

0 

otherwise, 

if s ~ N. + I 
J 

if not 

if s :,; Nk-1 

if not 

if N. + I :,; s :,; Nk-1 J 

if not. 

I I 

From (4.1), or by direct computation, one obtains for the marginal distri

butions of els and eus 

(4. 2) 
= (N-Nk-1\ 

\ N-s+I) 
( N-Nk \ 
\N-s+I} 
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and 

(4.3) ( N) = (Nk) _ (Nk-1\. P (8 =a') I s O us k \s s / 

If the e's are all .unequal then Nk = k and the joint and marginal distribu-

tions of 8 0 and a become 
,l..S US 

( k-j-1) (k-j) (k-s) . 1 + 1 • 
s-J- ; ,s-J 

if J :$; s :$; k 

(4.4) 

0 

otherwise, 

(N-k 

ffi (4.5) PO(als a') N-s N-s+1 = = = k N s 
\N-s+1 

and 

(k-1\ {N-s+1\ 

(4.6) P0 (a a') 
=~= 

s N-k+1 = us k N-s+1 N 
S/ \N-k+1 

Two simple limiting distributions for els' when the S's are all unequal, 

are the following. If i ➔ A, 0 <A< 1, then 

(4.7) k = 1,2, •••• 

If s = N- a, a fixed, then 

(4.8) 

X 

Po<e.e.s :$; e[Nx]) ➔ (a+ 1) I (1 - t)adt 
0 

Similar results hold for the distribution of 8 us 

O<x<I. 
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If M = 2, i.e. the two sample problem, then the joint distribution of 

(80 ,e ) is 
.(..S us 

(4.9) 

e us 

= e i, 8us = e') = 
2 

I -

e = e') us 2 = k+I~ 
\N-s+I) 

~ ~N-~+I~ 

\.s} \.N-s+I) 

where n = N 1 and m = N - N 1 • The marginal distributions are 

(4.10) 

and 

P0 (e 
us 

(4.11) 

P0 (e 
us 

= e') = 
I 

I -

( m 
N-s+I 

N 
N-s+I 

=~ 

\N-s+I) 

(n \ 
= 8 I) 

I = t!j 
= 8 I) = 

2 

{n \ 

t~) 
Note that, for the two sample case, one of the distributions of els and eus 

is degenerate, so els and eus are independent. 
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5. ATTAINABILITY 

In this section distributions are given for which the bounds are 

attained, as well as examples where they are almost attained. 

EXAMPLE a. If p0 is concentrated on a single Ai' say i = {1, ... ,N}, and the 

order of the e's is the same as i, here e 1 ~ ... ~ 8N, then els= eus = eis' 

here 8 , with probability I for every sand the inequalities (2.10) and 
s 

(2.11) for the mean and the inequalities (3.5) and (3.6) for the standard 

deviation become equalities. 

I 
EXAMPLE b. If the as are all equal, say equal to N, and a.0 is the common 

value then the inequalities (2.10), (2.11), (3.5) and (3.6) are equalities. 

EXAMPLE c. The inequalities (2.10), (2.11), (3.5) and (3.6) are continuous 

as the e's approach equality and hence can be made arbitrary close to 

equality for 8 - 8 . sufficiently small. 
max min 

EXAMPLE d. 8 - 8 . does not have to be close to zero to get approximate 
max min 

equality. For Nodd let x1, •.. ,~+2 be independent. For large N there is 

practically no difference between the distribution of the median of x1, ... , 

~+Z from U(O,l) and the median of x1, .•. ,~ from U(O,I). Hence, for 8 > I, 

there is, for large N, practically no difference between the distribution 

of the median of x1, ... ,~+2 from U(O,I) and the median of x1, •.. ,~+2 for 

x 1, ..• ,~ from U(O,I) and ~+I' ~+ 2 from U(8,8+1) and the inequalities 

will be almost equalities. 

6. SOME COMPARISONS BETWEEN ACTUAL VALUES AND THEIR BOUNDS 

Let x1, x2 , x3 be independent with x1 and x2 double exponential with 

mean O and x3 double exponential with mean 8 ~ 0. Tables 6.1, 6.2 and 6.3 

below give, for several values of 8, (a= a(Xi) = 12) the values of E8os 

and G 8 (0s), s = 1,2,3, together with the bounds (2.10), (2.11) and (3.6). 

For all three tables and all values of 8 the value of a.0 used for the bounds 

is a.0 = 0. This value of a.0 maximizes the lower bound (2.10), minimizes 

the upper bound (2.11) and is the median of the a. with respect to the 
s 

weights (2.13). 
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Table 6.1 

Comparison of E8o1 and 0 8 (0 1) with their bounds 

E001 08(01) 

8 lower value upper value upper 
bound bound bound 

0 - 1 • 125 - 1 • 125 - I • 1 25 I . I 895 I. 1895 

.040 - 1 • 1 25 -1. 1065 - 1 • 1061 1 • 189 5 1. 2060 

. 1 0 -1 . 1 25 -1 .0803 -1 .0779 1.1896 1.2310 

.4 0 - I . 125 -.9732 -.9364 1 • 1 904 1. 3640 

0 -1 • 1 25 -.8488 -.6536 1 • 19 32 1. 6659 

Table 6.2 

Comparison of E8o2 and 0 8 (02) with their bounds 

E8o2 0 8 <02) 

8 lower value upper value upper 
bound bound bound 

0 0 0 0 .7993 .7993 

.040 0 .0189 .0377 .7995 .8227 

. 1 0 0 .0471 .0943 .8003 .8591 

.4 0 0 • 1838 . 3771 .8154 1.0629 

0 0 • 4111 .9428 .8852 1 • 5634 
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Table 6.3 

Comparison of E8o3 and a 8 (o3) with their bounds 

Eeo3 cre(03) 

e lower value upper value upper 
bound bound bound 

0 1 . 1 25 I • 125 I .125 1. 1895 1.1895 

.04a 1 • 1439 I . 1443 1. 1816 I. 1895 1 • 2 I 28 

• I a 1.1721 I.1747 1 . 2664 I. 1896 I. 2486 

.4 a 1 . 3 I 36 I . 3551 1. 6907 I . I 9 20 I • 4427 

a I . 5964 1. 8520 2.5392 I • 2138 I . 8996 

As a second example, let x1, x2 , x3 , x4 be independent with x1 and x2 U(0,I) 

and x3 and x4 U(e,e+I), 0 ~ e ~ I. Tables 6.4 and 6.5 below give, for sev-
1 °1+04 

eral values of e, (a= a(X.) = ill) the values of E8o1, a 8 (o 1), E8 2 01+04 i 
and a 8 ( 2 ). In both tables and for all values of 8 the value of a0 used 

for the bounds in a0 = 0; this value maximizes the lower bound (2.10), mini

mizes the upper bound (2.11) and is the median of the a with respect to 
s 

the weights (2.13). 

Table 6.4 

Comparison of E8o1 and a 8 (o 1) with their bounds 

E8o 1 ae(0l) 

e lower value upper value upper 
bound bound bound 

0 . 2 . 2 .2 . 1633 . 1633 

.04a .2 .2057 .2058 . 1634 . 1674 

• I a .2 .2139 .2144 . 1638 . I 738 

.4 a .2 .2494 • 2577 • 1700 .2091 

a . 2 . 2967 .3443 • 1937 .2046 



e 

0 

.04o 

. 1 a 

.4 a 

a 

Table 6.5 

01+04 (01+04) 
Comparison of E6 2 and 0 6 2 with their bounds 

lower 
bound 

.5 

.5029 

.5072 

.5289 

.5722 

Ee 2 ae 2 

01+04 

value upper value 
bound 

.5 .5 .1291 

.5058 .5087 .1291 

.5144 .5217 . 1294 

.5577 .5866 . 1327 

.6443 .7165 .1451 
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upper 
bound 

.1291 

. 1329 

. 1387 

. 1706 

.2468 




