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Nonuniformity of the convergence of location estimators*) 

by 

C.A.J. Klaassen 

SUMMARY 

The pointwise supremum is considered of the distribution functions of 

properly normed translation equivariant antisymmetric location estimators 

based on observations from a distribution with a symmetric density. For posi

tive values of the argument this function converges to the standard normal 

distribution function as the number of observations increases. Sets of sym

metric densities are given over which this convergence - and consequently 

the convergence of adaptive location estimators - is not uniform. 

KEY WORDS & .PHRASES: distribution functions of "location estimators., 

non:uniformity. 

*) This report will be submitted for publication elsewhere. 





1 • INTRODUCTION 

We consider the set D of density functions f with respect to Lebesgue measure on JR, 

which are synnnetric about zero and absolutely continuous and which have finite Fisher 

information I(f) = J(f'/f) 2f. Notice that for all f ED I(f) is positive. 

x1, .•. , Xn are independent and identically distributed random variables with density 

function f(x-e) for some unknown e E JR and known f ED. 

Lett: ]Rn+ JR be Borel measurable and T - t (X X) be an estimator based n n- n l' ... , n 

on x1, ... , Xn of the location parameter e. If for all real a and Lebesgue almost all 

x 1, ••e, xn tn(x 1+a, .. .,, xn+a) = _tn(x 1, ••• , .xn) + a then T~ is called translation 

equivariant. If t (-x 1, ..• , -x) = -t (x 1, •.• , x) for Lebesgue almost all 
n n n n 

x 1, .•. , x then we shall call T antisymmetric. We denote by T the class of 
n n n 

translation equivariant antisynnnetric estimators of location T • 
n 

Lett be the standard normal distribution function. For all f E ·n there are known 

estimators T ET, n = I, 2, ••• , for which for all x E JR and e E JR 
n n 

holds or equivalently for which for all x > 0 

( 1. 1) 



holds. It can even be shown that for all f ED and all x > 0 

( 1. 2) lim sup 
n-+<>o T ET 

n n 

~(x). 

2 

We shall be concerned with the question whether there exist subsets D0 of Dover which 

the convergence on (1.2) can not be uniform. It turns out that such subsets exist. 

Intuitively this is clear from the following reasoning. Let the sample size n be 

fixed. There exist densities f and g belonging to D for which I(f)/I(g) is 

arbitrarily large, while at the same time the joint densities of a sample x1, ••• , Xn 

under f respectively g are almost indistinguishable. As a consequence of the latter 

phenomenon it is impossible to estimate the location parameter considerably better 

under f than under g on the basis of n observations. Because I(f) is much greater 

than I(g) this implies that for x > 0 the supremum in formula (1.2) is much smaller 

than the same supremum with f replaced by g. From this it is clear that the 

convergence in (1.2) can not be uniform over D. 

A precise formulation of this statement is given in section 2. The assertions of 

section 2 are proved in sections 3 and 4. Section 5 is an appendix containing a proof 

of formula (1.2). 

2. THE MAIN RESULTS 

In this section a theorem and a.lennna will be stated which imply the assertions of 

the preceding section. We define the total variation distanced (f,g) off and g by n 

dn(f,g) = ½ J ... JI n:=lf(xi) - n:=lg(xi) 
lR.n 

and we denote d 1(f,g) by d(f,g). Furthermore we shall say that a subset D0 of D has 

property A iff 

for all£> 0 and all o > 0 there exist a density f E D0 and a density 

g ED such that d(f,g) <£and I(g)/I(f) < o. 

We may now formulate our theorem. 

Theorem 2.1. Let x be a positive real, n a positive integer and D0 a subset of D. If 

D0 has property A, then 

( 2. I) inf sup 
fEDO T ET n n 

I 

Pf((nI(f)) 2Tn ~ x) = ½. 



This theorem would be meaningless if no subsets of D with property A would exist, 

However the subsets presented in the following lermna have property A. 

Lemma 2. I. In the following cases formula (2.1) holds for aU positive reals x and 

all positive integers n 

(2. 2) 

(2.3) D0 = {f E D!d(f,g) < n} where n > O and g ED 

(2.4) DO= {f E D!I(f) = l}. 

Remark. There exist asymptotically efficient so called adaptive estimators of 

location T ET, n=l, 2, ... , for which (I.I) holds for all f ED and all x > 0. 
n n 

See Beran [ 1]. Lemma 2. 1 implies (with the help of (3. 4)) that for all estimators 

T ET and consequently for all adaptive estimators T ET the following equality n n n n 
holds for all x > 0 

! 
lim inf Pf((nl(f)) 2 T ~ x) = !. 
n~ fED n 

3. PROOF OF THEOREM 2.1 

In order to prove theorem 2.1 we need the following lemma. 

1 
Lemma 3.1. For each f ED and T ET the distribution function of (nl(f)) 2 T n n n 
under f is differentiable and has a density which equals at most½, 

Proof. First we shall prove that the derivative of the distribution function of 
! 

(nl(f)) 2 T under f exists and that for all reals y 
n 

(3. 1) 

=f···!·······f (nl(f))-½\~ 1f 1 (x.)/f(x.) TT~-J f(x.)dx 1 ... dx. 
l J= J J 1- 1 n 

(nl(f)) 2 t (x 1, ... ,x )~y 
n n 

For that purpose we note that for 8 > 0 

3 



00 OO x+e 

J le- 1(f(x+0)-f(x))idx = J e- 11 J f'(y)dyldx 

-oo -oo X 

OO x+e 

~ f f e- 11f'(y)!dy dx 

-oo X 

00 y 

= J J e- 11f'(y)ldx dy 

-oo y-e 

00 

= J lf'(x)ldx 

-oo 

Clearly the same is true fore< 0. So we have for all e ~ 0 and for j=l, ••• ,n 

r J I nj- 1 nn -1 I J ·• . 1.f(x.+8) .. 1 f(x.)8 (f(x.+8)-f(x.)) dx 1 ••• dxn 
1.= l. 1.=J+ l. J J 

IR.n 

~ I · · I I f' (x.)/f(x.) TI1: 1 f(x.) I dx 1 ••• dx . 
J J i= 1. n 

IR.n 

By Vitali's theorem it follows that for j=l, ••• ,n 

I I I nj - 1 nn -1 lim · • ._ 1 f(x.+8) ._. 1 f(x.)8 (f(x.+0)-f(x.)) 
l.- l. 1-J+ l. J J 

e+o IR.n 

-f' (x.)/f(x.) TT1: 1 f(x.) I dx) ... dxn = 0. 
J J 1.= ]_ 

For each Borel subset B of IR.n this implies 

(3.2) 

lim I J .. I {e- 1cn1: lf(x.+8)-TI1: lf(x.))-\1: 1f'(x.)/f(x.) TI1: lf(x.)} 
i= 1. i= 1. lJ= J J i= l. 

8+0 B 

. \'n 
~ lim l ·=1 

8+0 J 
I nj-1 nn -1 

l.• = l f ( Xl.. + 8 ) . . l f ( X • ) 8 ( f ( X • + 8 ) - f ( X • ) ) 
1.= J + l. J J 

Now by the translation equivariance of T 
n 

4 



5 

=I···!······· I -1 TTn - 1 TTn {0 (. 1f(x.+(nl(f)) 2 0)- . 1 f(x.))}dx 1 ••• dx 
1= . 1 1= 1 n 

(nl(f)) 2 t (x1, ••• ,x )$y 
n n 

from which (3.1) may be concluded by using (3.2). Because the distribution of 

Lf'(X.)/f(X.) under f is synnnetric it is clear, that for each Borel subset B of IR.n 
J J 

I J (nl(f))-½L~ 1f'(x.)/f(x.) TT~ 1 f(x.)dx 1 .. ,dx 
J= J J 1= 1 n 

B 

Jr · · J I (nl(f))-h~ .1£' (x.)/f(x.) I TT~ l f(x.)dxl ••• dx 
lJ= J J 1= 1 n 

IR.n 

$½{Jr .. Jr (nl(f))- 1(\~ 1f'(x.)/f(x.)) 2 TT~ l f(x.)dx1···dx }½ 
n lJ= J J 1= 1 n 

IR. 

= ~ 

where the second inequality is a consequence of the Cauchy-Schwarz inequality. So we 

have for all reals y 

which completes the proof of the lemma. D 

Now theorem 2.1 may be proved as follows. Let x, n and nO be as in the theorem. 

Furthermore let E and o be positive reals. Since DO has property A there exist f E DO 

and g ED with d(f,g) < E and I(g)/I(f) < o. For these f and g and all T ET we have 
n n 

! ! 
Pf (( nl ( f ) ) 2 T $ x) $ P ((nl(f)) 2 T $ x) + d (f,g) 

n g n n 

! I 

(3.3) $ P ((nl(g)) 2 T $ x(I(g)/I(f)) 2 ) + nd(f,g) g n 

! ! 
$ P ((nl(g)) 2 T $ xo 2 ) + nE. 

g n 

From the translation equivariance and antisymmetry of T we obtain for all h ED 
n 

I 

(3.4) Ph((nl(h)) 2 Tn $ 0) = ½, 

From (3.3), (3.4) and lemma 3.1 it follows that 



Because E and o may be chosen arbitrarily small this string of inequalities proves 

the theorem. 

4. PROOF OF LEMMA 2.1. 

In this section we shall prove lemma 2.1 by showing that the subsets of D mentioned 

6 

in this lemma have property A. For case (2.3) and hence case (2.2) this is a consequence 

of the following lemma. 

Lemma 4.1. For each g ED there exist fl ED, l=l, 2, ••. , with 

= O and lim I(fl) 
i~ 

= (X) 

Proof. Let g ED with distribution function G be fixed and let 

l . 
~ = {olo < o < ½, o < g(G- (o)) < 1}. 

For all o E ~ we define 

-1 
c0exp{b0 (x-G (o))} 

aog(x) 
-1 

for G (o) 

X < 

-G-l (o) < X 

where a0 = (l-2o+2o{g(G- 1(o))} 2)-l, b 0 = 

Then fo ED, 

f ~ (x) / f O (x) = 

and 

( 4. l) 

Furthermore we have 

-G-l (o) 

r 
-lj 

G (o) 

bo 

g' (x) /g(x) 

-b 
0 

X < G- 1(o) 

-1 -G-l (o) for G (o) < X < 

-G- l (o) < X 

(4. 2) 

G- l ( o) 

l1-a0 lg(x)dx+ J (f0(x)+g(x))dx 

-ro 
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Because there exist o(l) E ~, l=l, 2, ••• , with lim o(l) = O, we may define ft by 
t~ 

fo(l) for such o(l), l=l, 2, ..•• In view of (4.1) and (4.2) the lenmia holds for these• 

fl, l=l, 2, ••• , since lim ao(l) = 1. □ 
t~ 

In order to prove that the subset of case (2.4) has property A we proceed as follows. 

Let f and g belong to D and let a= (I(f))!. Define f (x) = a- 1f(xcr- 1) and 
a 

g (x) = a- 1g(xcr- 1). Now f and g belong to D and I(f) = 1 while d(f ,g) = d(f,g) a a a a a a 
and I(g )/I(f) = I(g)/I(f). From this observation and from the existence of a a a 
subset of D with property A it follows that {f!I(f) = 1} has property A. 

5. APPENDIX 

For the sake of completeness we shall prove here formula (1.2). To this end the 

following lennna suffices. 

Lemma 5.1. For all f ED and all x > 0 

I 

limsup sup Pf((nI(f)) 2 Tn ~ x) ~ ~(x). 
n~ T ET 

n n 

Proof. Let f E 

B = { (x1, ••• , 

_1 
D, x > O, e = (nI(f)) 2 x, 

n 
T ET with T = t (X 1, ••• , X) and n n n n n 

(5. 1) 

and 

(5. 2) 

x ) E lRn It (x1, ••• , 
n n 

x) ~ O}. Then we have n 

1 
Pf(.+e )((nI(f)) 2 Tn ~ O) 

n 

=I·· I 
lRn 

1B TT~ 1 f(x.+0 )dx 1 ••• dx 1.= 1. n n 

By the fundamental lemma of Neyman and Pearson it follows from (5,1) and (5.2) that 

for all integers n 

(5. 3) 

where 

C ) 
n 
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Now from formula (7) of section VI.2.5 of Hajek and ~idak [2] we obtain for all reals y 

(5.4) 
,n 2 -1 

lim Pf(l. 1log[f(X.+0 )/f(X.)] ~y) = ~((y+½x )x ) 
n-+oo 1= 1 n 1 

and 

(5.5) lim Pf( e )(}:1:1 1log[f(X.+8 )/f(X.)] ~ y) = ~((y-½x2)x-l). n-+<x> .+ 1= 1 n 1 
n 

From (5.3), (5.4) and (5.5) the lemma follows. D 
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