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Branching processes with continuous state space allowing 

immigration*) 

by 

P.J.M. Kallenberg 

ABSTRACT 

In addition to some recent papers on Galton-Watson processes 

allowing immigration we study asymptotic properties of branching processes 

with continuous state space allowing immigration. In particular we derive 

results for the class of processes which do not occur if we consider only 

processes for which the state space is integer-valued. The methods we use 

are however very similar to the ones used to obtain results for Galton­

Watson processes. 

KEY WORDS & PHRASES: Galton-Watson process; branching process with 

continuous state space; immigration; subordinator; 

slow variation; regular variation 

*) This report will be submitted for publication elsewhere. 
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1. INTRODUCTION 

In several recent papers ([1],-[6],[7],[8]), the asymptotic behaviour 

of Galton-Watson processes allowing immigration has. been studied. Such 

processes describe the number of individuals of a population, behaving like 

a Galton-Watson process, in which moreover a random number of immigrants 

enter the nth generation. These immigrants then act as the other individuals 

of the population. More formally, we can say, let {x .. ; i = 1,2, ••• ; 
1] 

j = 1,2, ••• } be a sequence of independent random variables, all distributed 

according to the so-called offspring distribution {p,; j = 0,1,2, ..• }, and 
J 

let {Y1 , Y2 ,Y3 , ••. } be a sequence of i.i.d. intege-r:valued random variables, 

then the Galton-Watson process allowing immigration is defined as 

( 1.1) V = 
"n+l X 1 '+ y 1' n+ ,J n+ 

n = 0,1,2, ••• 

In this paper we study the analog of these processes for branching proces­

ses with continuous state space (see e.g •. [5]). We use the following de­

finition: 

DEFINITION 1.1. Let {{W (t); t E [0, 00)}; n = 0,1,2, •.• } be a sequence of 
n 

i.i.d. subordinators, and {Y1 ,Y2 ,Y3 , .•• } a sequence of i.i.d. random vari-

ables, also independent of the subordinators and such that P(Y1=0) < 1 = 

= P(Y1~0). Let {Xn; n = 0,1,2, ••• } be defined by 

(1. 2) n = 0,1,2, •••• 

Then the process {x; n = 0,1,2, ••• } is called a branching process with 
n 

continuous state space allowing immigration. 

* Writing h (s) for the cumulant generating function (c.g.f.) of the 

offspring distribution of the process without immigration, that is 

* h (s) = - log E exp(-sWn·(l)), f(s) for the c.g.f. of Y1 and hn (s) for the 

c.g.f. of X, it follows immediately from Definition 1.1 that 
n 

(1.3) h0 (s} = 0; hn+l (s) = h (h*(s)) + f(s), 
n 

n = 0,1,2, •••• 
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* * Denoting by h. (s) the j-th iterate of the function h (s), or equivalently, 
J 

the c.g.f. of the size of the j-th generation of the process without immi-

gration starting with one particle, (1.3) can also be expressed in the more 

convenient form 

(1.4) h 1 (s) = 
n+ 

n 

I 
j=0 

* f (h. (s) ) , 
J 

n = 0,1,2, .... 

In several papers ([5],[10],[11]) it has been shown that there is a great 

correspondence between Galton-Watson processes and branching processes with 

continuous state space, both if the expectation of the offspring distribu­

tion, denoted by m, exceeds 1 and if m ~ 1 and the offspring distribution 

has an atom at 0. This same correspondence can be proved to exist if we 

consider processes with immigration. We shall not go into details but on­

ly refer to [1] and [8]. In this paper we restrict attention to the remain­

ing cases, that ism~ 1 and the offspring distribution has no-atom at 0. 

Notice that such processes can not occur if we consider Galton-Watson 

processes. The methods we shall use are however very similar to the ones 

used to obtain results for Galton-Watson processes allowing immigration, 

as described in [8]. They are in fact based on knowledge of the process 

* without immigration, that is of the c.g.f. h. (s), which is used with the 
J 

help of (1 • 4) to obtain results for h ( s) • 
n 

2. THE SUBCRITICAL CASE 

In this section we suppose that m < 1. It follows immediately from 

(1. 4) that 

lim h (s) = 
n 

n-+= 

CX) 

I 
j=0 

* f(h.(s)) 
J 

exists, and that this limit is the c.g.f. of a possibly defective distri­

bution. In fact integral comparison yields 

CX) 

CX) 

(2. 1) I 
j=0 

* f(h.(s)) 
J 

< CX) for any S E (0, 00 ) iff I -x 
f(e )dx < oo, 

0 



sin~e m < 1 implies that there exist o1 ,o2 E (0,1) such that oi ~ h;(s) ~ 
~ o~ for sufficiently large j (see Chapter IV of [5]). Furthermore, just 

as in the discrete case ([2],[4]) we have the following Lemma (see also 

Theorem 3 in [10]). 

+ LEMMA 2.1. Equivalent with(2.1) is E(log Y1) 

PROOF. Using the representation 

00 

1-exp~-f(s)) = f -sx e {1-F(x)}dx, 

0 

< 00 

where Fis the distribution function of Y 1 , it follows that (2.1) holds 

iff for any E > 0 

E 

f 1--:exp(-sf(s)) ---=----- ds < 00 , 

0 

that is iff for any O < E < 00 

( 2. 2) 

00 

f l-ex~(-x) {1-F(x)}dx < 00 

E 

by Fubini's theorem. Now ( 2. 2) is equivalent with 

00 00 00 

f 
1-F(x) 

dx I {f dF(y)}d log x 
X 

E E x-
00 y 

= I {f d log x} dF (y) < 00 for any O < E < co, 

E- E 

that is with E(log Y1) + 
□ < 00 

As a consequence of this Lemma we have that X converges weakly to a 
+ n P 

proper distribution iff E(log Y1) < 00 • Otherwise Xn--+ 00 • We shall now 
-x examine this latter case in more detail. Writing G(x) = f(e ) , and as-

suming that E(log Y1)+ =· 00 , that is that J; G(x)dx = 00 , we consider two 

special types of behaviour of G(x). 

3 
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LEMMA 2.2. Suppose there exist a constant b E (0,ml and a positive increas­

ing function B such that B(O+) = 0 and 

( 2. 3) * -1 h ( s) = B ( bB ( s) ) , 

and that B(s) has a monotone derivative and is regularly varying with ex­

ponent o E (0, 00 ) for s + 0, and that furthermore 

(2. 4) lim xG(x) = 0. 
x-+<x> 

-n 
Then A(X )/A(b ) converges weakly to a random variable with distribution 

n 
function A(x) = min(1,xs); here 

(2.5) 
__ {exp{xJ~ 

A(x) 

G(y)dy} if X ::C: 1 

if X < 1 

ands= - 1/log m. 

PROOF. Since Bis regularly varying with exponent o, (2.3) implies that 

* 0 mB(s) ~ h (B(s)) = B(bs) ~ b B(s), s + 0, and hence o = (log m)/(log b). 
* n -1 It follows also from (2.3) that h (s) = B(b B (s)), n = 0,1,2, .... De­
n 

fining for all t E (0, 00 ) 

* t -1 ht (s) = B (b B (s)) , 

integral comparison and (1.4) yield 

(2.6) 
n 

hn+l (s)-h1 (s) I 
j=l 

* f(h.(s)) 
J 

n-1 
* ~ I 

j=O 
f (h. (s)) = h (s). 

J n 

n 

~ I * f(ht(s))dt ~ 

0 

log{B- 1 (e-x)/B- 1 (s)} 
Substituting t =--=-----~----,and using the fact that the regular 

log b 



variation of B(s) and the monotonicity of its derivative imply that 

. -1 
s[B (s) ]' 

lim _ 1 
s+0 B (s) 

= 1/0 = log b 
log m 

5 

([9], property 1.5.5 and theorem 2.4), it follows from (2.6) that for any 

sequences + 0, 
n 

( 2. 7) 

Now let 

(2. 8) 

then lim n-+oo 

(2. 9) 

say. Now 

(2 .10) 

* h (s ) 
n n 

exp{-h (s )} ~ exp{-(1/log m) 
n n . 

G(x)dx}. 

s (x) 
n 

s (x) 
n (log 

-log 

I I I :c;; 
n 

-logs 
n 

-1 -n = 1//\. (x/\.(b ) } , x E (0, 00), n = 1,2,3, ... , 

= 0 for all x, 

* h (s (x) ) 
n n 

G(y)dy 

s (x) 
n 

-n log b 

since J~ G(x)dx = 00 • Furthermore 

* = log/\.(1/h (s (x))) log/\. (1/s (x)) 
n n n 

* -n = log/\.(1/h (s (x))) - log(x/\.(b )) 
n n 

* -log h (s (x)) 

f n n 
= -logx+ 

-n log b 

= - log x + I , 
n 

* -log h (s (x)) 
n n 

G(y)dy 

1J G(y)dyl + 1f G(y)dyj. 

-n log m -n log m 

Since b :c;; m < 1, and G is decreasing, it follows that 

- n log b 

if G(y)dyl :c;; -G(-n log m) • n log (b/m) (2.11) 

- n log m 

= G(-n log m) •(-n log m) • log(b/m) - 0 as n + 00 by (2.4). 
log m 

* n Because s (x) + 0 as n + 00 , and h (s) :c;; ms, it follows that 
n n 



6 

h*(s (x)) ~ mn for sufficiently large n, and therefore 
n n 

(2. 12) 

* - log h (s (x)) If n n 

-n log m 

* h (s (x)) 
I n n G(y) dy ~ - G(-n log m) •log ---­

n 
m 

* 
[

- log h (s (x)) 1 
G(-n log m) •(-n log m) n n -1J 

- n log m 

-1 
for sufficiently large n. The regular variation of Band B imply that 

-1 
log B(s) ~ o logs and log B (s) ~ (1/o)log s for s + 0, and so 

* - log h (s (x)) 

1 ~ lim sup n n lim sup = - n log m n-+= n-+= 

0 log 
n B- 1 (s (x) ) - b - o log 

lim sup 
n 

= - n log m n-+= 

o log b -log sn(x) 
----+ l~s~------

log m -n log m n-+= 

Now for any x E (0,1) it holds that 

n -1 
log B (b B ( s (x) ) ) 

n 
- n log m 

- log s (x) 
n 

-1 -n 1 n = log A (xA(b )) ~ log A- (A(b- )) -n log b, 

and so for any x E (0,1) 

* -log h (s (x)) 
1 ~ lim sup ____ n __ n ___ ~ (o+1) log b 

-n log m log m n-+= 
< 00 

In view of (2.10) ,(2.11) ,(2.12) and (2.4) we therefore obtain that 

lim ]I I= 0 for all x E (0,1). This together with (2.7) and (2.9) im-
n-+= n 

plies that 

lim h (s (x)) 
n n n-+= 

= log x 
log m 

XE (0,1). 

Noting thats (x) is non-increasing in x, and that h (s) ~ 0, we see that 
n n 

lim h (s (x)) = max(0,(log x)/log m) = - log A(x). Next we notice that 
n-+= n n 

for x + 00 and t E (1, 00 ) 



log tx log tx 

1 :s: J\ (tx) 
= 

tog 
G(y)dy :s: 

tog 

dy = log tx 
+ 1, 

ACx) 
exp exp 

y log x 
X X 

that is J\ is slowly varying at 00 Then we can use Lemma 1 of [3] and the 

fact that 
p 

to obtain the required D X 
- 00 

result. 
n 

LEMMA 2.3. Suppose that the conditions of Lemma 2.2. are satisfied except 

for (2.4) and that 

(2.13) lim xG(x) =BE (0, 00). 

x+oo 

Then Cs log X )/n converges weakly to a random variable with distribution 
n 

function C(x) = (1+o/x)-sB, withs= - 1/log m, and 8 = (log m)/(log b). 

PROOF. Just as in the proof of Lemma 2.1 it follows that 

* 
(2 .14) 

-log h (s ) 

exp(-h (s )) ~ exp{-1/log m f n n G(x)dx} 
n n 

-logs 
n 

f + 0 h · () -- bxn, x ~ (0, 00), n or any sequences . C oosing s x c 
n n 

we obtain by (2.13) that 

(2 .15) 

-log 

I-log 

* h (s (x)) 
n n 

s (x) 
n 

G(y)dy ~ B 

-log 

J-log 

* h (s (x)) 
n n 

s (x) 
n 

* 

dy 
y 

-log h (s (x)) 
n n 

= B log ------­
-log s (x) 

n 

As in the proof of Lemma 2.1 

and 

Therefore 

* - log h (s (x)) 
n n 

-1 
- log B (s (~)) ~ - (1/o)log s (x) = 

n n 
nx log b 

0 

1,2,3, •.• , 

7 
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Combining 

* -log h (s (x)) 
-no log b-nx n n 

lim lim = 
-logs (x) -nx log b n-+oo n n-+oo 

this with (2 .14) and (2 .15) it follows 

lim h (bnx) = sS log(l+o/x). 
n n-+oo 

log 

that 

b 1 + 0 
X 

We can now use Lemma 9.2.1 in [5], yielding that (slog X )/n converges 
n 

weakly to a random variable with distribution function (l+o/x)-sS, x E (0, 00). 

□ 

We shall now apply the two preceding lemmas to obtain results in the 

case which does not occur in Galton-Watson processes, that is we suppose 

that P(Z 1=0), where {Zn; n = 0,1,2, ... } is the process without immigration. 

As is well-known ([5],[11]) we have to distinguish between the cases where 

a= inf{x;P(Z 1 ~ x I z0 = 1) > O} > 0 and a= 0. In the first case the 

starting point is equation (2.1) in [11]. There it is proved that there 

exists a sequence c such that c Z a.s~ some limit Z, with c.g.f. ¢ 
n n n 

satisfying 

(2 .16) ¢ (as) * =h (q,(s)). 

This relation is of the form (2.3), with B =¢and b =a.So we get 

THEOREM 2.4. Suppose that a> 0. If q,(s) is regularly varying for s + 0, 

then 
-n 

a) if lim xG(x) = 0, then A(X )/A(a ) converges weakly to a random 
x-+oo n 

variable with distribution function A(x), with A and A as in Lemma 2.2; 

b) if lim xG(x) =SE (0, 00), then (-log X )/(n log m) converges weakly 
x-+oo n S/log m 

to a random variable with distribution function (l+(log m)/(x log a)) . 

PROOF. Since¢ is a c.g.f. it satisfies the conditions of the Lemmas 2.2 

and 2.3, The result now follows from these Lemmas. 0 

If a= O, we can show just as in Theorem 9.2.12 and the construction 

preceding it in [5], that there exists a positive, increasing, 
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differentiable function L such that m-nL(1/Z) ~ some limit U, and that 
n 

(2 .17) * -1 h (s) = L (mL ( s) ) . 

This leads to the following result. 

THEOREM 2.5. Suppose that a= O, and that the function Lis convex or con-

cave; 

a) if limx-+<x> xG(x) = O, then A(Xn)/A(m-n) converges weakly to a random 

variable with distribution function A(x), with A and A as in Lemma 2.2; 

b) if limx-+<x> xG(x) =SE (0, 00 ) then (-log Xn)/(n log m) converges weakly 

to a random variable with distribution function (1+1/x)S/log m. 

PROOF. In view of the Lemmas 2.2 and 2.3 we only have to prove that L(s) 

is regularly varying for s + 0. Suppose for instance that Lis _concave. 

Since L(O) = O, we then get 

-1 
L (ms) 

-1 1 
L (ts) L- (s) 

:$ ---- :$ ---
ms ts s 

for any t E (m,1). Furthermore, by (2.17) 

-1 -1 
L (ms) / L (s) 

ms s 

L-l(mL(s)) s h*(s) 
mL(s) / L(s) = ms - 1 ass+ O 

and so for any t E (m,1) 

L- 1 (ts) -1 -1 
lim = t lim 

L (ts) 
I 

L (s) 
t, = 

s+O 
-1 

s+O 
ts s 

L (s) 

implying that L 
-1 

and therefore also L, is regularly varying with exponent 

1. □ 

3. THE CRITICAL CASE 

In this section we shall pay some attention to critical processes, 

that is we suppose that m = 1. If we want to use a similar method as before, 

it is not immediately clear which functional equation of the form (2.3) we 
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have to take. We can however proceed in a similar way as in [8]. The start­

ing point there•is a functional equation holding for the generating function 

of the invariant measure of the process without immigration. Making a 

special assumption on the behaviour of the probability generating function 

of z1 , several results for critical processes are deduced. Since the 

convenient tool in the study of branching processes with continuous state 

space is a c.g.f., the assumption we make can be stated as follows: 

(3 .1) 
* l+a h (s) = s - s L(s) 

with a E (0,1] and L(s) slowly varying for s + 0. Furthermore we can con­

struct a function V which satisfies a functional equation corresponding to 

the above mentioned equation used in [8]. To this end we define a function 

Von (0,1) such that 

(3. 2) V(l) = 0; 

( 3. 3) * V is decreasing, and continuously differentiable on (h ( 1) , 1 J; 

(3.4) VI (h * (1)) = VI (1) / (h *) I (1) • 

Finally we define 

(3. 5) * V(h (s)) = V(s) + n, 
n 

* s E (h ( 1) , 1] 1 n = 1,2,3, •••• 

The function V defined in this way is continuously differentiable on (0, 1) • 

Analogously to a result in [12] we can prove from (3.1) that V(s) is reg­

ularly varying with exponent -a for s + 0. Now we can proceed as in section 

2, that is we define 

* -1 ht(s) = V (V(s)+t), S E (0,1], t E [0, 00), 

and analogous to (2.7) we get that for every sequences + 0 n 



(3. 6) 

n 

exp{-h (s ) } ~ exp{ - f 
n n 

0 

-1 
f(V (V(s )+t))dt} 

n 

n+V (s ) 

= exp{ -I n 
G(x)dx} 

V (s ) 
n 

11 

n + oo, 

-1 
where G(x) = f(V (x)). This enables us to prove the results corresponding 

to the Theorems 9-12 in [BJ. We shall give one example of this. 

THEOREM 3.1. Suppose that f 00

0 G(x)dx = 00 , and that lim xG(x) = 0. If V 
x➔oo 

has a monotone derivative, then A(X )/A(a) has a limiting uniform distri-
n n 

bution on [0,l]; here 

fexp f~(l/x) G(y)dy if X ~ 1 

A(x) 
= 1x if OS XS 1 

-1 
and a = 1/V (n). 

n 

PROOF. Choosing s (x) = 1/A-1 (xA(a )) for x E (0, 00), it follows from (3.6) 
n n 

that 

n+V(s (x)) 

exp{- h (s (x))} ~ exp{ -I n G(y)dy} 
n n V(s (x)) 

n 

* = exp{log A(l/s (x))-log A(l/h (s (x)))} 
n n n 

n+V (s (x)) I n 
= x exp{-

n 

Now for x E (0,1] 

n+V (s (x) ) 

0 s I n 
n 

G(y)dy 

G(y)dy}. 

::; V (s (x) ) G (n) 
n 

= V(l/a )G(n) = nG(n) ➔ 0 
n 

as n ➔ oo 

by assumption. Therefore 

::; V(s (1)) • G(n) 
n 
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lim h (s (x)) 
n n n-+<x> 

Furthermore, 

xA' (x) 
lim A {x) 
x-+<x> 

=:: 

log x if XE (0,1] 

if XE [1,co) 

lim xG(V(1/x) )V' (1/x) 
2 

lim s G(V(s)) •V1/ (s). 
s+0 x-+<x> X 

Since V(s) is regularly varying with exponent -a, and V has a monotone deri-

vative it follows from Theorem 2.4 in [9] that sv' (s) 

This means that 

xA' (x) 
lim A(x) 
x-+<x> 

lim aG(V(s)) •V(s) == 0, 
s+0 

~ av(s), s + O. 

implying that A(x) is slowly varying for x ➔ 00 Application of Lemma 1 in 

[3] now yields the required result. D 
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