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ABSTRACT 

It has been noted by a number of authors that if two tests are asympto­

tically efficient for the same testing problem, then typically their powers 

will not only agree to first but also to second order. A general result of 

this type was given by Pfanzagl (1979) in a paper entitled "First order ef­

ficiency implies second order efficiency". Because of their technical nature, 

however, these contributions give little insight into the nature of this 

phenomenon. The purpose of the present paper is to provide an intuitive un­

derstanding of the phenomenon by proving a simple theorem of this kind under 

mild assumptions. 
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I. INTRODUCTION 

For N = 1,2, .•. , we consider an experiment with outcome XN taking 

values in an arbitrary sample space. Let PN O and PN I be two possible 
' , 

distributions of XN, with densities pN O and pN I with respect to some 
' ' dominating measure µN. We shall write EN O and E~ 1 for expectations 

' ' under PN,O 

ratio by 

and PN I respectively. Define the logarithm of the likelihood 
' 

PN 0 , and/ or pN 1 • 
' 

with the usual conventions for vanishing 

Now consider a sequence aN E(O,I) and let ¢N(AN,aN) denote the test 

function of the most powerful level-aN test for against PN l , thus 
' 

0 for A < cN(aN) 
¢N(AN,aN) 

N = 
for A > cN(aN) N , 

with 

EN 0 ¢N(AN,aN) = aN 
' 

¢N(AN,aN) = * EN I nN(aN) ' , 

* maximum attainable where TIN(aN) is the power against p N, 1 at level aN 
For N = I , 2, ••• 

' 
let ZN be a random variable depending only on the 

outcome ~ of 

function of the 

We have 

EN 0 
' 

EN I 
' 

where TIN(aN) 

the N-th 

level-aN 

0 

ljJN(ZN,aN) 

ljJN(ZN,aN) 

experiment and let 

right-sided test based 

= 

= 

for ZN < dN(aN) 

for ZN> ~(aN) 

aN 

nN(aN) ' 

ljJN(ZN,aN) denote 

on the statistic 

is the power of this test against PN 1 
' 

the test 

ZN ' 
i.e. 

. 



For a sequence 'N E(0,1] , we shall say that the sequence of level-aN 

tests 1/JN(ZN,aN) is ,N-efficient if, for N-+ 00 , 

In a more usual terminology first and second order efficiency correspond to 

'N-efficiency with T = 1 
N 

and 

Finally, let us define for 

0 

-1 
, = N 2 respectively. 

N 
N = 1,2, ••• , 

+ ex, 

LiN = 
otherwise , 

and let us denote the indicator function of a set B by 1B. 
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Having established our notation we shall now give an informal description 

of the phenomenon we wish to study. Let us think of N as denoting sample size, 

i.e. N is the number of independent random variables involved in the N-th 

testing problem. We are interested primarily in sequences of testing problems 

where aN ~ E and n;caN) ~ 1-E for some E > 0 and all N. Such sequences 

exist if it is impossible to discriminate perfectly between PN O and PN 1 
' ' even as N-+ 00 and this is true if PN O and PN 1 are contiguous. A sufficient 

' ' condition for contiguity - and one which is often fulfilled in this case - is 

asymptotic normality of AN both under PN O and PN 1 • But if AN is 
' ' asymptotically normal, it will usually also be possible to obtain an Edgeworth 

expansion for its distribution function under PN O and PN 1 and this will 
' ' yield a similar expansion for the power of the test based on AN, viz. 

(I.I) 

Typically the remainder term on the right in (1.1) will be O(N- 1) • 

Suppose that the sequence of tests 1/JN(ZN,aN) is asymptotically efficient 

to first order, or I-efficient in our terminology. For most statistical problems 

such I-efficient tests abound. They are usually based on statistics ZN that 

closely resemble AN. Typically 6N = ZN - AN tends to zero in probability 

both under PN,O and PN,I and in the situation we have described so far, this 

suffices to ensure I-efficiency. Of course, these }-efficient tests can also be 

based on statistics ZN which don't resemble AN at all, because the test 

statistic associated with a test is by no means unique. However, we shall not be 

concerned with such alternative representations and suppose that 6 -+ 0 
N 

in 



3 

PN,O - and PN,l - probability. 

Recalling that N is the sample size, we note that one often finds 

that a sequence of random variables tending to zero in probability does 
I -1 

so at the rate of N 2 • Thus, for ]-efficient tests, N2 ~ will typically 
N 

be bounded in probability both under PN,O and PN 1 ., Hence, one may expect 
' to be able to establish Edgeworth expansions for the distribution functions 

of ZN under PN 0 and PN I ' 
which differ from those for AN only in the 

N-! 
, 

term of order and in those of smaller order. This yields a similar 

expansion for the power of the test based on ZN, 

( I. 2) 

where the remainder term on the right will typically be O(N- 1) or of slightly 

larger order. The fact that the leading terms in expansions (1.1) and (1.2) 

have the same value c0 reflects the }-efficiency of the sequence 1/JN(ZN,a.N) 

There would seem to be no reason a priori to expect that also 
_1 

c 1 = cj , which 

would entail N 2 -efficiency or efficiency of second order. 

However, in those cases where expansions (1.1) and (1.2) were explicitly 

computed, one does indeed find that c = c' and hence that the sequence 
J } } 

1/JN(ZN,a.N) 1.s N- 2-efficient. This phenomenon was noticed in Pfanzagl (1973), 

(1975) and Chibisov (1974) for a number of tests for the parametric one-sample 

problem and in Bickel and Van Zwet (1978) for rank tests for the nonparametric 

two-sample problem. Some tests for the one-sample problem for the case where 

nuisance parameters are present were considered in Chibisov (1973) and Pfanzagl 
-1 

(1974) and also found to be N 2 -efficient. Finally, it was shown in Pfanzagl 

(1979) that first order efficiency forces seco~d order efficiency for a large 

class of one-sample tests in the presence of nuisance parameters. With an 

appropriate definition of efficiency a similar result was obtained for 

estimators. 
-1 

In each of these contributions, N 2 -efficiency 1.s established by imposing 

the conditions needed to obtain expansions (1.1) and (1.2) and then checking 

that these expansions are in fact identical. This method of proof coupled with 

its extreme technicality makes an intuitive understanding of the phenomenon 

rather difficult. The purpose of the present paper is to provide such an 

intuitive understanding by proving a simple theorem of this kind under rather 

mild assumptions. Since our aim 1.s to provide insight rather than generality, 

we shall only be concerned with the simple hypothesis testing problem described 
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above and avoid the technicalities inherent in the treatment of nuisance para­

·meters and estimation problems, although extension to these situations is 

certainly possible. 

In section 2 we present our result, discuss its meaning and explain why 

it is true. A formal proof of the theorem is given in section 3. Though this 
\ 

proof is straightforward, the non-mathematically inclined may wish to skip it. 

2. DISCUSSION OF THE RESULT 

In the notation introduced in the previous section we have the following 

result. 

THEOREM 

Suppose that 

(2. I) lim inf aN > 0, 
N 

and that there exists A > 0 such that for every x0 E JR , every y > 0 and 

N ➔ oo , 

! I 

(2.2) sup PN O(x-,; $ /1.N $ x) = 0 ( '[ J) 
x$xo ' 

(2.3) EN olt1NI 7 1 ( J l\N I ) = o ( ,N) ' • (y-r~,A) 

(2.4) PN O(llN 2'. A) = o(,N) ' , 

(2.5) PN l(l\N $-A)= O(,N) . 
' 

Let us briefly discuss the conditions of this theorem. First of all, 

assumption (2.2) is clearly satisfied for any sequence 'N if the distributions 

of /1.N under PN,O possess uniformly bounded densities. More generally, 

will hold if the distribution functions FN ~f /1.N und_er P N, 0 can be 

approximated with a uniform error of order , 2 by distribution functions 
N I 

with uniformly bounded densities, i.e. if supJFN(x) - GN(x)J = O(,J) . 
X 

(2. 2) 
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This is certainly the case when FN has a normal approximation or an Edgeworth 

expansion with the required error. 

If T ➔ 0 
N 

, assumption (2.2) clearly implies that the distributions of 

AN under PN O don't tend to a degenerate limit. In view of this, conditions , 
(2.3) - (2.4) serve to ensure that under PN,O , l6NI is small compared to 

AN. Note that these conditions refer only to values of l6NI the variation of 

which excede and that they are satisfied if the distribution of under 
I 

either assigns probability 1 to a set where l6NI = O(,J) , or has at most 

very small tails outside that range. Thus, roughly speaking, 6N is required 
I 

to be o(,J) under PN,O ; under PN,I condition (2.5) is even weaker, but 

this is to a certain extent artificial and is due to our efforts to replace 

conditions under PN I as much as possible by conditions under PN O which 
' ' will usually be easier to verify. It follows that one can't hope to say more 

about the differences between the distribution functions of and under 
I 

PN O and PN I ' , 
than that they are 

* 
o(,J~ . One would therefore expect to be 

able to prove that TTN(aN) - TTN(aN) = o(,J) but, somewhat surprisingly, the 

conclusion of the theorem is the stronger 
l 

is O ( ,;) The condition that roughly 6N 
l 

improved. By taking 6N = 6,~ where 6 

* statement that TIN (aN) - TTN(aN) 

under PN O cannot essentially be 
' is independent of AN for every N, 

one easily constructs examples where * 1T (aN) - TT(a,N) is of exact order 'N. 

A formal proof of the theorem will be given in section 3. At this point 

we shall be content to provide an intuitive explanation of the result by 

sketching the proof for the special case where there exist numbers oN such 

that for N = 1,2, •.• , 

(2.6) 

By making this assumption we avoid certain technicalities and bring out the 

essential simplicity of the proof. 

Let us write cN and dN for cN(aN) and dN(aN) respectively. Since 

the tests tN(AN,aN) and ~N(ZN,aN) have the same level aN, (2.6) clearly 

implies that we may assume that lcN-dNI < oN. Invoking (2.6) once more, we 

see that if AN~ cN and ZN~ dN, then dN - oN ~AN~ dN + oN; the same 

conclusion holds if AN~ cN and ZN~ dN. It follows that on the set where 

tN(AN,aN) # ~N(ZN,aN) we have IAN-dN! ~ oN, and again because both tests 

have level aN we find with the aid of (2.2), 
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Note that we need to have dN bounded above, but this is an easy consequence 

of (2.1) and (2.6). The above sketch should make it clear that the essential 

thing which makes the theorem work is that not only do ~N(AN,aN) and 

~N(ZN,aN) resemble each other closely, but that also AN is almost constant 

on the set where they differ. 

Let us finally discuss the relevance of the theorem to the problem of first 

and second order efficiency. As was pointed out in section I, first order 
! 

efficiency of ~N(ZN,aN) will typically imply that N2~N is bounded in 
! r 

EN olN2~N1 and 
' r > I and this (or even uniform 

probability both under 
! r 

EN,! JN 2~N1 will 

PN 0 
' usually be 

I 

and PN I • Also, , 
bounded for some 

integrability of JN2~N1 

that assumptions (2.3) -

under PN,O and PN,l) 

(2.5) are satisfied for 

is amply sufficient to ensure 
-1 

TN= N 2 . But then the 

theorem ensures that ~N(ZN,aN) is efficient to second order under the very 
_! 

mild conditions (2.1) and (2.2) for T = N 2 
N 

An examination of our proof shows that if we replace (2.6) by 

(2.7) 

for M < oo and N = 1,2, ... , then we obtain the conclusion 

(2.8) 

Taking 
-1 

T = N 
N 

we conclude that if is bounded and if e.g. the 

distribution of 

* TTN(aN) - TTN(aN) = 

AN under PN O tends to normality at the rate of 

O(N- 1) • Thi~ means that the tests based on ZN 

_! 
N 2 , then 

have a finite 

deficiency in the sense of Hodges and Lehmann (1970). That is, if we let 

aN = a E(0,1) for N = 1,2, ... 

* for which TTN 1 (a) ~ TTN(a) then 

and define N' 

lim supN(N'-N) 

to be the smallest integer 

< 00 
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_! 
Asumption (2.7) is of course not necessary to obtain (2.8) and N 2 -

efficiency is frequently coupled with finite deficiency. However, the coupling 

is not inevitable. An example - in a nuisance parameter context - is provided 

by the normal scores test studied in Bickel and Van Zwet (1978). Note that this 

bears out what we have said about the order of the rem~inder terms in (1.1) 

and ( 1. 2). 

3. PROOF OF THE THEOREM 

Take a sequence aN E(O,1) satisfying (2.1) and write cN = cN(aN) and 

dN = dN(aN) . If dN = - 00 for some N then 

I - 'ITN(aN) s PN, 1 (ZN = -oo) s p N 1 (.I\N = -oo) + p N, 1 (liN = -oo) 

' 

= PN 1 (liN = -oo) = O(,N) 
' 

because of (2.5), and 1/JN(ZN,aN) is clearly 'N-efficient. Take A as in 

(2.3) - (2.5). Then 

aN s PN,O(ZN~dN) s PN,0(.1\N~dN-A) + PN,O(liN~A) 

-dN+A -dN+A 
s e PN,l(.I\N~dN-A) + o(,N) s e + o(,N) 

because of (2.4). In view of (2.1) it is therefore no loss of generality to 

assume that for some D < 00 and all N, 

(3. 1) -oo < d s D. 
N 

Define 

-
liN = 

0 otherwise. 

Obviously, 

(3. 2) 
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+ where x =xv O and x = (-x) v O denote the positive and negative parts 

of a number x. 

since {~N(AN,a~) - ~N(ZN,aN)} is nonnegative (nonpositive) if (AN-dN) is 

positive (negative) and equals zero if ~N = 0 and (AN-dN) IO. A similar 

argument yields 

and hence 

(3. 3) 

By (2.3) there exists a sequence yN + 0 such that 

-~ 
EN OJ e N_ I J 7 l ( J ~NI ) = o ( TN) 

' (yNT~,A) 

for N + 00 • In view of (3.2) this implies 

--~ 
EN ale N-11 7 l cJ~NI) 7[0,A/l~NI) = O(TN). 

' (yNTJ,ooJ 
(3. 4) 

Also (3.1) and (2.2) with x0 = D + I yield 



(3.5) 

If bN ~ 0 then bN ~ 0 and because of (2.4) 

-b 
(3.6) EN,ole N-1 I J[A,ooJ(bN) ~ PN,O(~~A) = O(TN) . 

If bN ~ 0 then ~N ~ 0 and (2.5) ensures that 

(3. 7) 
dN -bN. 

e EN,ole -11 7[-00,-AJ(~N) 

9 

Together (3.1) and (3.3) - (3.7) imply that ~;(aN) - ~N(aN) = o(TN) and 

the proof is complete. 
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