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Large sample behaviour of the product-limit estimator on the whole line*) 

by 

Richard Gill 

ABSTRACT 

Weak convergence results are proved for the product-limit estimator 

on the whole line. Applications are given to confidence band construction, 

estimation of mean lifetime, and to the theory of q-functions. The results 

are obtained using stochastic calculus and in probability linear bounds 

for empirical processes. 
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*) This report will be submitted for publication elsewhere. 





I • INTRODUCTION 

Let x1, ••• ,Xn be independent positive random variables with common 

continuous distribution function F. Independent of the x. 's, let u1, ••• ,U 
i n 

be also independent positive random variables with possibly non-continuous 

and defective common distribution function G. The problem at hand is to 

make nonparametric inference on F based on the censored observations (X.,8.), 
i i 

i = l, ... ,n, defined by 

X. = X. A U., i i i 8. = I{X.$U.}, i i i 

where A denotes minimum and I{•} is the indicator random variable of the 

specified event. Classically, Fis estimated by the product-limit estimator 

F, introduced by KAPLAN & MEIER (1958). This estimator is in a reasonable 

sense the maximum likelihood estimator of F (see JOHANSEN (1978), SCHOLZ 

(1980) and WELLNER (1981)) and reduces to the ordinary empirical distribu­

tion function when there is no censoring. Defining processes N and Yon 

[0,oo) by 

N(t) = #{ i: X. ::;; t, 0. = 1}, 
i i 

Y(t) = #{i: X. ~ t}, 
i 

,.._ 
then Fis given by 

I - F(t) = ~ ( I _ dN (s)) 
0 Y (s) ' 

or in more abbreviated notation 

I - F = TT(I - ~N). 

t 
By g and f~ we mean product integration (see JOHANSEN (1978)) and ordinary 

integration over the interval (O,t]. When we drop the limits of integration, 
t ft we implicitly define a function or process t ➔ g<•) or t ➔ 0 (•). The 

estimator Fis seen to be an intuitively reasonable one when we note that 
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(whether Fis continuous or not) 

1 - F =TT(l- dF) 
1 - F ' 

while the cumulative hazard function J dF/(1-F_) is naturally estimated by 

I dN/Y. 

Define also the random time T by 

T = max X. 
i i 

and for any process W define the stopped process WT by 

WT ( t) = W ( t A T) • 

Note that FT = F, and that if t:1N(T) = N(T) - N(T-) = 0, i.e. the largest 

observation is censored, then F(T) < 1 almost surely. Some authors prefer 

in this case to set F equal to I on (T, 00 ) while others leave it undefined 

there. 

Let H be the distribution function of the X.'s, given by 
i 

( I - H) = ( I - F) ( I - G) , 

and define (possibly infinite) times TF' TG and TH by 

TF = sup{t: F(t) < l} 

and similarly for TG and TH. Of course 

Define also some continuous, nonnegative, nondecreasing functions A, C 

and K by 



J\(t) 

C(t) 

and 

K(t) 

= lot dF(s) 
1-F(s-)' 

= lot dF(s) = 
(I - F(s-))2(1- G(s-)) 

C(t) =----) + C(t) ' 

Jot dJ\(s) 
( I - H(s-)) 

where K(t) = I if C(t) = 00 • Note that J\(TF) = 00 , and that C(TH) = 00 and 

K(TH) = 1 if TG ~ TF. When TG < TF it is both possible that C(TH) = 00 and 

C(TH) < 00 • (We write e.g. 1 -F(s-) even though Fis continuous to indicate 

the right extension for non~continuous F.) 

Let B be a standard Brownian motion on [0, 00 ) and let BO be a Brownian 

bridge on [0,1]. Assuming G to be continuous (we shall see later that this 

condition is unnecessary), BRESLOW & CROWLEY (1974) proved a result on weak 
! 

convergence of n 2 (F- F) equivalent to the following theorem. The two ways 

in which we state it derive from EFRON (1967) and HALL & WELLNER (1980). 

THEOREM 1. 1 • For any T such that H ( T-) < I 

i .... V 
n 2 (~=:) --r B (C) 

in D[O,T] as n + 00, or equivaZentZy 

in D[O,T] as n + 00 • 

Note that B(C) is a continuous Gaussian martingale, zero at time zero, 

with covariance function 

cov[B(C(s)),B(C(t))J = C(s) A C(T) = C(sAt). 

-1 Since (1 +C) = (1-K) the equivalence between the two versions of Theorem 

1. 1 follows from the fact, easy to verify, that 

3 
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see DOOB (1949). BRESLOW & CROWLEY's (1974) proof of Theorem 1.1 was based 
! -

on approximating n 2 (F-F) by an expression linear in the empirical proces­.. 
ses N/n and Y/n, and then applying standard results on weak convergence 

of empirical distribution functions. Though this sounds straightforward, 
. 1 *) . the proof was unavoidably comp ex. For instance a Skorohod-Dudley con-

struction was needed in order to take care of certain remainder terms. 

Also the simple form of the limiting distribution only appears after long 

calculations in which complicated expressions surprisingly cancel out. 
! -

We shall later see why n 2 (F-F) has the particular limiting distribution 

it does. But first let us mention another reason why we have stated 

Theorem I.I in the way we have chosen. Since F and also K can be uniform­

ly consistently estimated on [0,T] for any T such that H(T-) < I, the 

theorem gives two obvious ways of constructing confidence bands for Fon 
0 

[0,T] based on the known distributions of xiC(T) IB(x) I and ;~~(T) IB (x) I, 

respectively, see GILL (1980) and HALL & WELLNER (1980). Of course C(T) 

and K(T) have to be estimated too. 

Clearly there is hope that the Brownian bridge version of Theorem 1. 1 

could be extended to [0,TH] giving confidence bands for Fon the whole 

line. When K(TH) = I one would be able to use the distribution of 

i~) IBO(x) I, leading to simpler computations too. Finally, when there is 

no censoring (G = O), such bands would reduce to the usual Kolmogorov bands 

for F based on the empirical distribution function F. Such a result was 

conjectured to hold by HALL & WELLNER (1980) and motivated the work 

presented here. We can only partially confirm the conjecture, but the 

techniques used will turn out to be of wider application. 

and 

*) 

Let us first define K by 

I - K = I/ ( I +C) 

- ft ndN(s) 
C ( t) = 0 Y ( s ) (Y ( s) - 1 ) 

A misprint in the proof of the central theorem, where the expression three 
lines from below on page 447 sgould read 2e:+2KpT(X(l-F)-2,0)Pr (F:&,F), has 
even led BURKE, CSORGB & HORVATH ( 1981) to claim the proof was incorrect. 
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-(so K(T) = I and C(T) = 00 almost surely if 6N(T) = I). Then we shall prove 

THEOREM I • 2. 

and 

THEOREM I. 3. 

in D[O,TH] as n + 00, provided that 

( I. I) ITH dF(t) 
O I - G(t-) < 00 

A 

(If F(T) = I we interpret (1-K)/(I-F) in the point T as equal to its value 

in T- • ) 

Whether or not Theorem 1.3 holds without the condition (I.I) we do 

not know. We make some more connnents on this matter in Remark 3.1. Note that 

( I. 2) 

and that !=! is nonincreasing. The same relationship holds between K, F and 

G, where G is the product-limit estimator of the censoring distribution G. 

(These facts follow from the equality 

f dG 
d((I+C)(I-F)) = (I-F)(I-G)(I-G_) dF 

which is also valid for non-continuous F.) Thus the factors (I-K)/(I-F) and 

(1-K)/(I-F) can be considered as weighting factors which compensate for the 
! A 

greater variability (increasing as t increases) of n 2 (F-F) when there is 

censoring. 
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.... 
When there is no censoring F becomes the ordinary empirical distribu-

tion function of the x. 1 s, also l - K becomes l - F and l - K becomes 
l. 

1 - F, so apart from being 11stopped at T" the theorems reduce to the clas-
1 

sical result on weak convergence of n 2 times the centred empirical distribu-
• 

tion function to a time transformed Brownian bridge. For practical purposes, 

stopping at Tis of no consequence at all. The value of F(T) is the only 

information about F we have on (T, 00). Theorem 1.3 gives asymptotic confi­

dence bands for Fon the random interval [0,T] (provided censoring is not 

too heavy, if condition (1.1) is really needed). 

The result does have some practical importance. One would be tempted 

to apply Theorem 1.1 after choosing T such that Y(,) is reasonably large. 

So in fact Twill not be fixed in advance. Moreover, what is felt to be 

11 reasonably large" may well be numbers as small as 5 or 10. However, Theorem 
p 

1. l has the implicit condition Y(,)--+ 00 • Thus it is not obvious that 

Theorem 1.1 will yield accurate approximations when applied in such a way. 

(See also GILLESPIE & FISHER ( 1979) and CSORGO & HORVATH ( 1981) for some 

indications that the approximations are not too good anyway with heavy cen­

soring and small to medium sample sizes.) 

In proving Theorems 1.2 and 1.3 it turns out that a technique is being 

used which leads to quite general results on weighted or integrated Kaplan­

Meier processes. More specifically, defining 

= n! (F-F) 
z 1-F ' 

then we can prove weak convergence results on the whole line for the 

processes hZ, J Zdh, and J hdZ, where his a nonincreasing, nonnegative, 

continuous function. (Recall that by J Zdh we mean the process defined 

by (f Zdh)(t) = f (O,t]Z(s)dh(s).) In view of Theorem 1.1, the natural con­

dition for this to be possible is 

( l. 3) 
'H 2 f0 h(s) dC(s) < 00 

and that turns out to be all we need. Extensions are possible to random 

h functions and the restrictions on h may be weakened in other ways too. 

However (1.3) may not be sufficient then; cf. Theorem 1.3 where condition 



(I.I) corresponds to (I. 3) with h = I - F rather than the natural h = I - K 

(for which (1.3) always holds, giving Theorem 1.2). 

7 

In the next section we therefore state and prove such a general theo­

rem. In Section 3 we show that Theorems 1.2 and 1.3 are corollaries of this, 
;, 

and go on to present other applications to estimating mean lifetime and to 

the theory of q-functions. 

The key to our methods is that ZT is a martingale on [0,TF), a fact 

which was discovered by AALEN & JOHANSEN (1978), though in the case when 

there is no censoring it has been known for a long time. We use the theory 

of counting processes developed by AALEN ( I 978), which depends on the 

theory of continuous time martingales and stochastic integration of MEYER 

(1976). We refer to AALEN (1978) or GILL (1980a) for brief surveys which 

should be sufficient for our purposes. After showing that ZT is a martingale, 

we can derive our results using the martingale central limit theorem of 

REBOLLEDO (1980) and various martingale inequalities, as well as a few 

results on empirical distribution functions. 

All our results can be easily extended to non-identically distributed 

censoring variables, and in particular therefore to the model of fixed cen­

sorship, which is more appropriate when censoring is due to limited obser­

vation times rather than to competing risks. Also the results can be extend­

ed to noncontinuous F. However, since the extra technicalities would only 

obscure the structure of our proofs we refer to GILL (1980a) for such a 

fuller treatment, where part of the material here has already appeared 

together with a study of two-sample tests. 

2. MAIN THEOREM 

Theorem 2. I. Leth be a nonnegative continuous nonincreasing function on 

[O,.HJ such that 

(2. l) 

Define 

(2. 2) 
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Then the processes (hZ)T, <f hdZ)T and <f Zdh)T converge jointly in 

D[O,TH] in distribution to processes hZ(oo), f hdZ(oo) and f z<00)dh respec­

tively, where 

(2.3) 

and 

(2.4) 

Z(oo) = B(C) 

REMARK 2.2. When C(TH) = 00 , the limiting processes here are interpreted to 

be equal in the point TH to their limits as T t TH' which do exist as we 

shall now show. In fact the limit of hZ(oo) is zero. Also we must discuss 

in any case what we mean by the process f hdZ(oo), which cannot be defined 

by pathwise Lebesgue-Stieltjes integration. Taking up the latter point 

first, we note that f hdZ(oo) can be defined on [0,TH) either by (2.4) or 

as a stochastic integral in the sense of MEYER (1976). By GILL (1980b) 

LeIIll!la 5, 2nd part, the two definitions coincide. By (2.1), f hdZ(oo) is a 

square integrable martingale on [0,TH) which can be extended by taking 

limits to [0,TH]. So it remains to show that either hZ(oo) or f z(oo)dh also 

has a limit almost surely as t ➔ TH (in which case both processes do). 

Now we can write 

2 TH 2 
h(t) C(t) = fo h (t)I[O,t](s)dC(s). 

So when C(TH) = 00 and consequently by (2. 1) h(t) + 0 as t t TH' by dominated 

convergence 

(2.5) 

(this is essentially the Kronecker lemma with integrals instead of sums). It 

follows iIIllllediately that when C(TH) = 00 

(2.6) 

we must extend this to an a.s. result. By the Birnbaum-Marshall inequality 



(BIRNBAUM & MARSHALL (1961)) applied to the submartingale (Z(00)-Z(00)(t)) 2 

d h . . f . h2 [ ) h an t e non1ncreas1ng unction on t,TH, we ave 

P[ sup ( (Z (00
) (s) - Z (00

) (t) )h(s)) 2 ~ e:] ~ ! /H h(s) 2dC(s). 
[ ) e: t . 

SE t,TH . • 

Therefore 

P[ sup (hZ(00
) - h(t)Z(00

) (t)) 2 ~ 2e:] 
[ t ,TH) 

T 

~ ! f H h2dc + P[h(t) 2Z(00)(t) 2 ~ e:] 
e: t 

Now let e: > 0 and o > 0 satisfy e: ~ 0 and l o < 00 • For each m we can 
m m m m m 

now by (2.1) and (2.5) find at such that 
m 

P[ sup (hZ <00
)..; h(tm)Z (00

) (tut) 2 ~ 2e:m] ~ om. 
[tm,TH) 

Thus by the Borel-Cantelli lemma hZ(00
) converges almost surely; by (2.6) 

the limit is zero. 

In order to prove Theorem 2.1 we first present a sequence of lennnas 

including a proof of Theorem I.I. 

LEMMA 2. 3. Define M by 

M(t) = N(t) - f~ Y(s)dA(s). 

Then Mis a square integrable martingale on [0, 00 ] with predictable varia­

tion process <M,M> given by 

<M,M>(t) = f~ Y(s)dA(s). 

PROOF. See AALEN (1976), Section SC, or GILL (1980a). 0 

9 
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This result can be interpreted as stating that the rate at which N(t) 

jumps, given the past up to time t, is equal to Y(t) times the hazard rate 

dA(t)/dt belonging to F. When Fis not continuous, a factor 1 -AA(s) must 

be inserted in the formula for <M,M>. 

LEMMA 2.4. For aU t 

1 - F(t) = 1 _ ft 1 - F(s-) dM(s) 
T O Y (s) • 

1-F (t) 1 - FT (s) 

PROOF. See AALEN & JOHANSEN (1978), or GILL (1980a). □ 

Note that since M = MT the fact that Y = 0 on (T, 00 ) is of no consequence 
. A T 

here. Defining 1/Y = 0 on (T, 00), the integrand in Lennna 2.4, (1-F )/(1-F )Y, 

is a bounded predictable process on [0,,] for any,< 'F" This gives us: 

1-F T T 
LEMMA 2.5. ( 1_F) a:nd Z 

1 1-F T 
= n~(l - ( 1_F) ) are s~~e integrable martingales 
<ZT ZT>(t) = ftAT (l-F_) ~ dA ~ 77 t on [0,,J for any•< 'F; , O (1-F)Z Y ll Jor aH • 

LEMMA 2.6. For a:ny BE (0,1), 

P[l-F(t) s s- 1(1-F(t)) Vt s T] :2: 1-B. 

PROOF. Apply Doob's submartingale version of the Kolmogorov inequality to 
A T 

the nonnegative martingale (1-F)/(1-F) on [0,,] for each.< 'F; then 

take limits as, t 'F" D 

(Lennna 2.6 also holds, taking a little more care at 'F' when Fis noncon­

tinuous.) 

The remarkable thing about this result is that when there is no 

censoring the inequality is actually an equality due to DANIELS (1945). 

For an elegant proof see PITMAN (1979). Essentially the same idea is also 

present in VINCZE (1970). 

LEMMA 2.7. For any B € (0,1), 

P[Y(t)/n :2: B(l-H(t-)) Vt s T] :2: 1-e(l/B)e-l/B. 



PROOF. See WELLNER (1978) Remark l(ii). (The fact that H need not be con­

tinuous only increases the probability on the left-hand side of this 

inequality.) D 

LEMMA 2.8. For any T such that H(T-) < 1, 

- p sup IF(t) - F(t) I ~ O, 
t~T 

as n -+ 00 • 

PROOF. Since P[T < T] -+ 0 as n-+ 00 , it suffices by Lemma 2.4 to show that 

for any E > 0 

(2. 7) p[sup I ft I - F(s-) dM(s) I > i::] -+ 0 as n-+ 00. 

t~T O l _ FT (s) Y(s) 

11 

By Lemma -½ T _ f 1-F- dM. 2.3, n Z - ,-=--y y is a square integrable martingale on [0,T] 

with predictable variation process equal at time t to 

A 2 
ftAT (I - F(s-)) dA(s) 

0 (I _ F(s))2 Y(s) • 

Therefore, by LENGLART's (1977) inequality applied to (n-½ZT) 2 and 

n- 1<ZT,ZT>, it follows that for any n > O, the left-hand side of (2.7) is 

bounded by 

[ 
A 2 ] _!!__ + p rOAT (1 - F(s-)) _l_ dA(s) > n 

E2 (1 - F(s))2 Y(s) 

p[ A(T) I > ] 
(l-F(T))2 Y(TAT) n. 

Since Y(TAT) ..!. 1 - H(T-) > 0 as n -+ 00 , we now easily see that (2. 7) holds. D 
n 

REMARK 2.9. A strong consistency result can also be simply derived from the 

representation of F- F given in Lemma 2.4; see Lemma 2 and the remarks fol­

lowing Theorem 1 in GILL (1980b). Also if TH= TF it is easy by monotonicity 

to show that Lemma 2.8 also holds for T =TH.However, it is an open ques­

tion as to whether 
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sup 
t::s;T 

IF(t) - F(t) I J:_ 0 as n -+ 00 

always holds. Note that a corollary of Theorem 1.2, which we could have 

derived directly, is that we always have 

sup 1 - K(t) IF (t) - F(t) I J: 0 
t::s;T 1 - F(t) 

as n -+ 00 • 

LEMMA 2.10. Leth be a continuous, nonnegative, and nonincreasing function 

a:nd Zet Z be a semimartingaZe, zero at time zero. Then for aZZ, 

sup h(t)IZ(t)I ~ 2 sup IJ~ h(s)dZ(s)I. 
o:::;;t::,;;, o:::;;t~. 

PROOF. See WELLNER (1977) Lennna 1 for a discrete version of this result. 

Note that J hdZ can equivalently be interpreted here as a stochastic inte­

gral, a pathwise integral when it exists as such, and by forma_lly integrat­

ing by parts; cf. Remark 2.2. Define 

W(t) = f~ h(s)dZ(s) 

so that fort such that h(t) > 0, 

Thus 

Jt dU(s) U(t) ft 1 
Z(t) = 0 h(s) = h(t) - 0 U(s-)d(h(s)) 

Jt
0 

I 
= (U(t)-U(s-))d(h(s)). 

lh(t)Z(t) I = jJ~ (U(t)-U(s-))d(~~~~), 

h(t) 
IU(s) I (1 - h(O)) 

giving the required result. D 



PROOF OF THEOREM I. I. Recall that T satisfies H(T-) < 1. Since 

P[T < T J + I as n + 00 , it suffices to show that 

A A I 

ZT = n½((F-F))T = f 1-F_ n 2dM ~ z(ro) 
I - F I_ FT Y . 

in D[O,T] as n + 00 • By Corollary 2.5 above and Theorem V.l of REBOLLEDO 

(1980) this is the case if for each t < T 

A 2 
<ZT ,ZT> (t) = fot/\T (I - F(s-)) _n_ dJ\(s) 1:. C(t) 

(l _ FT(s))2 Y(s) 

and for each E > 0 

A 2 A ! } 
r"T (I - F(s-)) _n_ I{l - F(s-) ~ > E dA(s) __t O 

0 (I_ FT (s))2 Y(s) I_ FT (s) Y(s) 

(note that by continuity of F we are in the quasi-left-continuous case in 

which REBOLLEDO's (1980) strong and weak ARJ(2) conditions coincide). 

By Lennna 2.8 and the Glivenko-Cantelli theorem for Y/n both conditions are 

easily seen to hold. D 

13 

PROOF OF THEOREM 2. 1. By Theorem I. I we certainly have weak convergence on 

[0,T] for any T such that H(T-) < I. Also by Remark 2.2 the limiting proces­

ses do exist on [0,TH] and are continuous in TH. Thus (see BILLINGSLEY 

( I 968) Theorem 4. 2) it suffices to prove "tightness at TH", i.e. we must 

show 

(2.8) lim lim sup P[ sup lh(t)Z(t) - h(T)Z(T) I > E] = 0 VE > 0 
TtTH n+oo TS:t:S:T 

and 

(2.9) lim lim sup P[ sup IJ~ h(s)dZ(s)I > E] = 0 
TtTH n+oo TS:t:S:T 

VE > 0. 

(Note that by the equality J Zdh = hZ - J hdZ the corresponding result for 

J Zdh does not need to be explicitly verified.) 
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Now 

sup lh(t)Z(t)-h(-r)Z(-r)I ~ sup lh(t)(Z(t)-Z(T))I 
T~t~T T~t~T 

We already know that Z(T) ~ Z(00)(T) as n + oo so that 

2 
(h(T)-h(TH)) C(T) 

lim sup P[l(h(TH)-h(T))Z(T) I > £] ~ 2 
n➔oo £ 

If C(TH) < 00 this quantity converges trivially to zero as T t TH. However, 

if C(TH) = 00 we must have h(TH) = 0 by (2.1) and convergence to zero 

follows from (2.5). By Lemma 2.9 

sup lh(t)(Z(t)-Z(T)) I 
T~t~T 

~ 2 sup jJ~ h(s)dZ(s) I· 
T~t~T 

Thus (2.9) implies (2.8). 

Since his, as a process, predictable and bounded, and ZT-ZT(T) is 

a square integrable martingale on [T,T'] for each T1 such that H(T'-) < I, 

we have for any n > 0 by the inequality of Lenglart (1977) (cf. the proof 

of Lemma 2.8) 

P[ sup I ft h(s)dZ(s) I > £] 
T~t~T 1 AT T 

[ 
2 - 2 

~ ~ + p fAT h(s) (I -F(s-)) _n_ di\(s) 
£ T (I-F(s))2 Y(s) 

> n] 

< l + S + e(l/S)e-1/S + P[JT' S-2h(s)2di\(s) > n] 
- 2 T 1-H(s-) 

E 

for any SE (O,I) by Lemmas 2.6 and 2.7. Letting T1 t TH (or choosing 
TH -2 2 

T1 = TH if H(TH-) < I) and choosing n = JT S h(s) dC(s), we obtain 

T 
~ S-2£-2 f H h(s)2dC(s) 

T 

+ S + e(I/S)e-l/S. 



By (2. I), and since 8 was arbitrary, this gives us (2.9). D 

3. APPLICATIONS 

We first prove Theorems 1.2 and 1.3. 

PROOF OF THEOREM I. 2. Choose h = I - K in Theorem 2. I. Then (2. I) holds 

because 

TH 2 J0 (I -K(s)) dC(s) !TH dC(s) = I _ I :;; l < 00 

= 0 -(-I -+-C-'--(s_)_)_2 I+ C(TH) 

PROOF OF THEOREM I. 3. Choosing h = I - F in Theorem 2. I, we see that 

(3. I) 

provided that 

TH 2 TH J0 (1-F(s)) dC(s) = J0 
dF(s) 

1 - G(s-) 
< 00. 

' 

i.e. provided that (1.1) holds. Now straightforward arguments show that 

sup IK(t) - K(t) I L 0 
O:;;t:;;T 

as n + 00 

for any T such that H(T-) < 1. Therefore, by Lemm.a 2.8 we certainly have 

weak convergence of 

in D[O,T] 
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□ 

for any T such that H(T-) < 1. Thus to prove Theorem 1.3 it only remains to 

prove "tightness at TH" as inTheorem2.I. Since (I-K)/(1-F):;; 1 (cf. (1.2)), 

this follows from (3.1). D 

REMARK 3.1. In order to prove Theorem 1.3 without the condition (1.1) it 

would suffice to show that 
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(3. 2) lim p[l -K(t) / 1-K(t)::;; 8-1 Vt::;; T] = 
8-1-0 1-F(t) l-F(t) 

.... .... 
uniformly inn. Equivalently, taking the fact that (I-F_)/(1-G_) = Y/n 

into account and then applying Lemma 2.6 to I - G and Lennna 2. 7 to Y/n, 

one must show that 

(3.3) lim P[ 1 + C(t) ~ 8 Vt ::;; T] = 
8-1-0 l+C(t) 

uniformly inn. However, at present this is an open question. 

Next we consider estimation of mean lifetime Jb tdF(t) = J6 (I -F(t))dt 

which we suppose here to be finite. Many authors mention this problem but 

only SUSARLA & VAN RYZIN (1980) achieve any really general result. Even so, 

they are obliged to work with an estimator 

J~ (I - F(t))dt, 

where M = M t 00 is a sequence of constants depending on the unknown F and n 
Gin a complicated way. We shall consider the estimator J~ (1 -F(t))dt 

and obtain a more general result under a natural condition. 

Define functions µandµ and a process P by 

µ(t) = J~ (1 - F (s)) ds, 

µ (t) = Joo (I - F(s))ds, t 

f~ 
.... 

p (t) = ( I - F (s) ) ds • 

Note that 

l r l .... 
n 2 (µ-µ) = J 

n2 (F-F)dt 
.... 

J 
l F-F = n2 --(I - F)dt 1 - F 

= - f Zdµ. 



Thus we obtain innnediately from Theorem 2.1: 

THEOREM 3.2. Suppose 

(3.4) 

Then 

1 T V f (00 ) -n 2 (µ-µ) ..- - Z dµ 

COROLLARY 3.3. Suppose (3.4) holds and furthermore 

(3.5) 
! - p 

n 2 µ(T) ..- 0 as n ➔ 00 • 

Then 

l V fTH (oo) -n 2 (µ(T) - µ(oo)) ..- - 0 Z (s)dµ(s) 

V ( TH 2 ) = N 0, J0 µ(s) dC(s) . 

PROOF. Under (3.5) we are in the situation TH= TF and C(TH) = 00 • Also 
-p--
T ..- TH as n ➔ 00 • Thus the corollary follows by Remark 2.2. D 
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REMARK 3.4. Suppose Fis a distribution function in the class NBUE (New 

Better than Used in Expectation), i.e. µ/(1-F) is nonincreasing (in fact we 

only need that it is bounded). This covers in particular all increasing 

hazard rate distributions. Then (3.4) is easily seen to hold if (I.I) does, 

1.. e. 

dF(t) 
1 - G(t-) 

< oo, 

This is true in particular 1.n the case when 

(3.6) ( 1 - G) ;;:: c ( 1 - F) S close to TF 
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for some constants c > 0 and S < l; i.e. when the censoring distribution 

is lighter in the tail than the distribution of interest. 

Some straightforward calculations also show that (3.5) holds if for 

some O <a< 2 and c' > 0 we also have 

(3. 7) (1 - H) 
-a 

~ c'µ close to TF. 

This in turn is implied by (3.6) and F being NBUE (or just µ/(1-F) being 

bounded). 

One would expect to be able to extend Theorem 3.2 to the problem of 

estimating the residual lifetime function µ/(1-F); we have not attempted 

this yet however (cf. GHORAI, SUSARLA, SUSARLA & VAN RYZIN (1981)). 

!TH -2 
In GILL (1980a) we show that the asymptotic variance O µ dC may be 

estimated consistently in the natural way. 

Finally, we hope that the conditions of Theorem3.2andCorollary3.3will 

discou~age actual estimation of mean lifetime in practical applications! 

Finally, we sketch an application to q-functions, which appear in the 

theory of empirical distribution functions (cf. PYKE & SHORACK (1968) 

Theorem 2.1 and WELLNER (1977)). 

THEOREM 3.5. Suppose q is a continuous function on [0,1] which is positive 

on (0,1), syrronetric about½, nondecreasing on [0,½J, and such that 

(3. 8) f 1 dt 
--- < 00 

0 q(t)2 

and (1-t)/q(t) is nonincreasing close to 1. Then 

PROOF. In Theorem 2.1 we only needed h to be nonincreasing in the neigh­

bourhood of TH; and this was only needed in the case C(TH) = 00 (K(TH) = I). 
Thus by (3.8) and Theorem 2.1 with h = (1-K)/q(K) we have weak convergence 



on [T,TH] for any T such that K(T) > O. So we only need further to prove 

"tightness near zero". Since (1-K)/q(K) 1.s nonincreasing fort such that 

K(t) ~½,exactly the same arguments as in Theorem 2.1 can be used again 

to give the required result. D 

ACKNOWLEDGEMENT" I am very grotefuZ to Jon WeUner for the stimulating 

discussions which Zed to this paper being written. 
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