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A note on a paper by H. Levine 

by H.A. Lauwerier 

Mathe~atical Centre Amsterdam 

The diffusion problem considered by Ho Levine in a previous 

paper is solved here in a diff1::;1---e11t v·Jay b-y making use of the known 

solution of the corresponding problem of Green. 

Introduction 
• 

In a recent considers the problem of solving 

n non-ho1nogcneouf: 1-reln1holtz equation in an angle a vJith a slight 

chan~e of nota~ion tb.e problem can be formulated as follows. To 

find a solution \r r ~ cp in the angle O < (fl< 8; 0 < r < co of 

(A -1) ',V = -1 
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and where 
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over odd numbers m=1,3J5 ... 

next section. 11e shall prove that 

L 
ft 

X 

~ 

1 - _,,,1-1-

0 

x shu du. 

If this is substituted in 1.7 it follows that 
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and hence 
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which is equivalent to the result obtained by Levine l.c. formula 
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is a solution of the non-

homogeneous Bessel equation 
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L ti + 1 LI - 1 + fi L = -1 
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and that for > 0 
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By applying cosine transformatio11 in the form 
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1 - cos xt ft dt 

the equation 2 .. 1 

with f' 0 
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' C .. -µ. 
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+ Jtf' + 2 
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By making the substitution t=shu the equation 2.4 becomes 

with ff 0 2 . ... ..... r . 

chu f . 2 
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This has the solution vanishing at infinity 
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Therefore 2.3 becomes 
00 

1 -~ e p,.u cos xshu duo 2.7 
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A series valid for small values of x can easily be derived. 

If r ;;,;;;.2,4 .,6 •.• we obtain cf .. v-Jatson l .c. 

- 2 2 2 2 4-p., 16-_,,,u ... 4m -fa 
m= 

If fa is a positive even integer logarithmic terms are 

The first term is, however, 

when - x. 

The asymptotic expansion for large values of xis 
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obtained. 

for ft =2 

cf. tvatson 

If r=2J4,6 ... the series on the right-hand side breaks off but 
then we have the exact relation 
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