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Abstract 

Let for a, 8, y > -1 and n ~ k ~ 0 the orthogonal polynomials 

pa,kl3,Y (u,v) be defined as polynomials in u and v with "highest" term 
n, 
n-k k . u v which are obtained by orthogonalization of the sequence 

2 2 3 2 "h "hf · 1, u, v, u, uv, v, u, u v, ••••• wit respect to the weig t unction 

(l-u+v)a(l+u+v) 8(u2-4v)Y on the region bounded by the lines 1 - u + v = 0 

and 1 + u + v = 0 and by the parabola u2 - 4v = O. Two explicit linear 

partial differential operators D~'l3,y and D~'l3,y of orders two and four, 

respectively, are obtained such that the polynomials pa'!'y(u,v) are 

eigenfunctions of D~,S,y and D~,B,Y. It is proved thatnif a differential 

operator D has the polynomials pa'!'y(u,v) as eigenfunctions then D can be 

expressed in one and only one wa;' as a polynomial in D~'l3,y and D~'l3,Y. 

The special case y = -i can be reduced to Jacobi polynomials by the 
identity pa,S,-~(x+y xy) = const.(P(a,S)(x) P(a,S)(y) + 

n,k ' n k 

+ Pk(a,S)(x) Pn(a,S)(y)). F t. 1 f O d . t f th or cer ain va ues o a, µ, y an in erms o e 

coordinates s, t, where u = cos s +cost, v = cos s cost, the operator 

D~,l3,y is the radial part of the Laplace-Beltrami operator on certain 

compact Riemannian synnnetric spaces of rank two. 
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1. Introduction 

Compared with orthogonal polynomials in one variable very few things 

are known about orthogonal polynomials in several variables. A short 

survey of the subject can be found in the Bateman project [3, Chap. 12]. 

In the twenty years after the publication of this reference not many new 

results have been obtained. However, it seems to the author that there 

are still quite a lot of interesting problems on orthogonal polynomials 

in several variables, both in the general theory and in the study of the 

special cases. Especially those aspects of the field which are not trivial 

extensions of the one-variable case would be worthwile to consider. 

In the one-variable case the so-called classical orthogonal poly

nomials are characterized by the property that these polynomials are eigen

functions of a second order linear differential operator (cf. Bochner [2], 

Erdelyi [3, § 10.6]. Krall and Scheffer [5] generalized this property to 

the case of orthogonal polynomials in two variables as follows. 

Let the class H of orthogonal polynomials of degree non a two-dimensional 
n 

region R with respect to a positive weight function w consist of all poly-

nomials p(x,y) of degree n such that 

fJ p(x,y) xi yj w(x,y) dx dy = O 

R 

if i + j < n. 

Then these orthogonal polynomials may be called classical if there exists 

a linear second order partial differential operator Din two variables for 

which each class H is an eigenspace, i.e. Dp = A p for all p € H. n n n 
Krall and Scheffer [5] classified all such differential operators D. Not 

all cases of interest can be obtained 

the example that H is spanned by the 
n 

in this way. This can be seen 

Products P(a,S)(x) P(a,S)(y) 
n-k k ' 

k = 0,1, ••• ,n, of two Jacobi polynomials. In this simple case and in 

from 

several less trivial examples there still exists a linear second-order 

partial differential operator Din two variables such that each class H n 
is spanned by eigenfunctions of D. But no longer two eigenfunctions 

belonging to the same class H need to have the same eigenvalue. If such 
n 

an operator D exists for a particular class of orthogonal polynomials and 
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if all eigenvalues of D have multiplicity one then there is a natural way 

to choose an orthogonal basis for each class H. This should be compared 
n 

with the case of general orthogonal polynomials in two variables. Then 

there is usually no distinguished way to choose an orthogonal basis for 

H (cf. Erdelyi [3, § 12.1]). 
n 

The concept of "classical" orthogonal polynomials in two variables 

as introduced by Krall and Scheffer may be further modified. In the 

present paper and in one or more subsequent papers the author will con

sider examples of orthogonal polynomials in two variables, where for each 

class H an orthogonal basis {p 0 , p 1, ••• , p } is chosen such that n n, n, n,n 
the following holds. There exist two algebraically independent partial 

differential operators D1 of order two and D2 of arbitrary non-zero order 

such that the polynomials Pn,k(x,y) are joint eigenfunctions of D1 and D2 • 

In the example considered in the present paper the second order 

operator D1 is related to compact Riemannian synnnetric spaces of rank two. 
a. s y Apart from the two independent variables the operator D1 = D' ' depends 
1 s 

on three parameters a., S, y. It turns out that the operator D2 = D~' ,Y 

has order fou:r. The joint eigenfunctions p°''kS,y(u,v) of Da.,S,y and 
n, J a.Sy n-R k . Dz' ' are polynomials in u and v with "highest" term u v which are 

obtained by orthogonalization of the sequence 
2 2 3 2 . 1, u, v, u, uv, v, u, u v, ••••• with respect to the weight function 

(l-u+v)°'(l+u+v)S(u2-4v)y on a region bounded by the two perpendicular 
2 straight lines 1 - u + v = O, 1 + u + v = 0 and by the parabola u - 4v = 0 

touching these lines. For reasons of convergence it is required that 

a., S, y > -1. These polynomials p°''kS,y(u,v) form a large interesting class 
n, 

of orthogonal polynomials in two variables which resembles the class of 

Jacobi polynomials P(a.,S)(x). If y =-½then the polynomials p°''kS,y(u,v) 
n n, 

can be expressed in terms of Jacobi polynomials by the identity 
pa.,S,-½(x+y,xy) = const.(P(a.,S)(x) P(a.,S)(y) + P(a.,S)(x) P(a.,S)(y)). 
n,k n k S k n 

For general values of y the polynomials p°''k'y(u,v) are not yet known in n, 
some explicit form, but the differential equations satisfied by these 

polynomials can be proved from the orthogonality properties. 

In§ 2 of this paper the operator D~,S,y is introduced and it is 

transformed into algebraic form. § 3 deals with the special case y = -½. 
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In§ 4 we prove that the polynomials pa,kS,y(u,v) are eigenfunctions of 
e n, e 

D~' ,Y. Next, in§ 5 the fourth order operator D~' ,Y is obtained as the 

product Da,S,y = Da,S,yDa,S,y of two second order operators. These 
2 + -

operators Da,S,y and Da,S,y have the property that 
+ -

Da,S,y a,S,y _ t a+l.S+l,y and Da,S,y a+l,S+l,y = const. Pa,kS,Y. 
- Pn,k - cons • Pn-1,k-1 + Pn-1,k-1 n, 

Finally, in§ 6 a theorem is proved stating that each differential 

operator which has for fixed a, S, y all polynomials pa,kS,y as eigen-
n, 

functions can be 
operators Da,S,y 

1 . 

expressed in one and only one way as a polynomial in the 

and D~'S,Y. 

The results of this paper might be applied to certain compact 

Riemannian synnnetric spaces of rank two in order to characterize the 

spherical functions on these spaces as orthogonal polynomials and to 

obtain an explicit expression for an invariant differential operator on 

such a space which is independent of the Laplace-Beltrami operator. 

In one or more forthcoming papers the author will consider other 

examples of orthogonal polynomials which are eigenfunctions of two inde

pendent partial differential operators. Some of these examples are rather 

elementary, because the polynomials can be written as products of Jacobi 

polynomials and of elementary functions. However, one particular example 

seems to be much deeper. In this example the operator D1 is also related 

to compact synnnetric spaces of rank two and the region of orthogonality is 

the interior of the so-called Steiner hypocycloid. 

Yet another paper can be announced in which Ida Sprinkhuizen will 
a e y continue the analysis of the polynomials pn:k' (u,v) introduced in the 

present paper. Among her results will be a Rodrigues type formula, the 

quadratic norm of pa,S,y(u v) and the value of pa,kS,y(2,1). 
n,k ' n, 

Notation. Throughout this paper the order a, S, y may be deleted as upper 

index of a function or operator if no confusion is possible. For instance, 
a e y we may write p k(u,v) instead of p 'k' (u,v). n, n, 
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2. The second order operator n1 

Consider for arbitrary real numbers a, S, y the function 

(2. 1) a,S,y( ) (. 1 • 1 )2a+l w s,t = sin 2 s sin 2 t 

• (cos ½s cos ½t) 2S+l (sin ½(s+t) sin ½(t-s)) 2y+J , 

0 < s < t < '11', 

and the second'order partial differential operator 

(2.2) 

Formula (2.2) can be written in explicit form as 

(2.3) 
a2 

+-
at2 

+ [(a+½) cotg ½s - (S+½) tg ½s + (y+!) cotg !(s+t) 

a + (y+½) cotg ½(s-t)] as" 

+ [(a+½) cotg ½t - (S+!) tg ½t + (y+~) cotg ~(t+s) 

a + (y+½) cotg ½(t-s)]"at. 

Although the operator D1 is defined by (2.2) only if O < s < t < '11', it 

follows from (2.3) that D1 has a unique analytic continuation for all 

complex values of sand t except possibly on the singular lines sins= O, 

sin t = 0, sin !(s+t) = O, sin !(s-t) = O. 

The operator D1 has the following interpretation on certain symmetric 

spaces. Consider a compact Riemannian symmetric space of rank two for 

which the restricted root vectors have Dynkin diagram O ➔ 0 (cf. Araki 

[1, pp. 32,33]). The corresponding vector diagram is then given by 

figure 1. 
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figure 1 

Let the restricted roots A1, 2A 1 and A2 in figure 1 have multiplicities 

2a - 28, 2S + 1 and 2y + 1, respectively. 

Then it follows from Harish-Chandra [4, p. 270, Corollary 1] that the 

operator D~,S,y given by (2.2) denotes the radial part of the Laplace

Beltrami operator on such a synunetric space. The values of a, a, y for 

which D~'S,y admits an interpretation on a synunetric space can be obtained 

from Araki [I, pp. 32, 33]. In the following the operator D~,S,y will only 

be considered from an analytic point of view for arbitrary real values of 

a, Sandy. 

The singular lines of n1 divide the (s,t)-plane into triangular 

regions with angles TI/2, TI/4, TI/4 (cf. figure 2). 

figure 2 
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The operator D1 is invariant under reflections with respect to the singu

lar lines. If a function f depending on s,t and defined for all real 

values of s,t is invariant under reflections with respect to these lines 

then, equivalently, f satisfies for all s,t the symmetry relations 

(2.4) 

f(s+2w,t) = f(s,t) , 

f(-s,t) 

f(t,s) 

= f(s,t) , 

= f(s,t) 

f(s,t+2w) = f(s,t) , 

f(s,-t) = f(s,t) , 

Let R denote the triangular region 

(2.5) R = {(s,t) I O < s < t < w} • 

If f is continuous and satisfies (2.4) then f is completely determined by 

its restriction to R. 

The function w defined by (2.1) is positive on the region R. The 

integral 

ff wa,B,y(s,t) ds dt 

R 

is finite if and only a, 8, y > -1. From now on it will always be supposed 

that a, 8 and y satisfy this inequality. The theorem below states that the 

operator D1 is self-adjoint on R with respect to the weight function wand 

for an appropriate class of functions. 

THEOREM 2.1. Let a, B, y > -1. Let f and g be functions depending on s,t 

satisfying (2.4) which have continuous second derivatives. Then 

(2.6) ff (D~,B,y f) g wa,B,y(s,t) ds dt 

R 

=ff 
f (Da,S,y g) wa,B,Y(s,t) ds dt. 

I 
R 
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F'roof. Let for positive and sufficiently small o R0 be a triangular 

region similar to and included in R such that the sides of R0 are on 

distances o from the respective sides of R. Integration by parts and 

application of Gauss's theorem gives 

g w ds dt = JJ ((wfs)s + (wft)t)g ds dt 

Ro 

It follows from (2.4) that on the boundary aR~ of R ~ = O(o) if o i O. 
u o an 

Thus 

J ~! g w dl 
= O(o2min(a,8,y) + 2) ifoiO. 

aR0 

Hence, by letting o i O it follows that 

JJ<n1f) g w ds dt = - JJ<fsgs + ftgt) w ds dt. 
R R 

A similar equality can be derived by reversing the roles off and g and 

formula (2.6) follows. Q.e.d. 

Let us transform the operator n 1 into algebraic form by the transfor

mation 

(2. 7) X =COSS, y =cost. 

The transformed operator will also be denoted by n1 and it equals 

(2.8) 
2 a2 2 a2 

= (1-x) - + (1-y ) -
ax2 ay2 

2 
+ [B - a - (a+8+2)x + (2y+l) l-x J .l_ + 

x-y ax 
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2 
1-v] a + [8 - a - (a+8+2)y + (2y+I) ..;;,__,t_ 
y-x ay 

In terms of the function 

(2.9) 

we can also write 

(2.10) a8y a 2a8y a 
D ' ' = ----- [ ffx((I-x )m ' ' (x,y) ax) 

I ma,8,y(x,y) 

+ .1... ((I-y2)ma,8,y(x y) a)] 
ay ' ay • 

-I <y<x< I , 

The mapping (s,t)-+ (x,y) defined by (2.7) is a regular one-to-one 

mapping from each square region {(s,t) I kTI < s <(k+l)TI, lTI < t <(l+l)TI} , 

k,l integers, onto the square region {(x,y) -I < x < I, -I< y < I} • 

In particular, the region R in the (s,t)-plane defined by (2.5) is mapped 

in a one-to-one and regular way onto the triangular region 

{(x,y) I -I< y < x < I}, which will also be denoted by R (cf. figure 3). 

t y 

( - I , I )..---------;I'--------,, 

X 
-+ 

figure 3 

Note that if f is a function ins and t, defined for all real values 

of sand t and satisfying (2.4) then there is a unique function gin x and 

y, defined for x,y E [-1,+I] and satisfying g(x,y) = g(y,x), such that 

g(cos s, cost)= f(s,t) for all reals and t. Conversely if g is a 

syrmnetric function in x and y, defined for x,y E [-1,+I], then the func-
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tion f defined by f(s,t) = g(cos s, cost) satisfies (2.4). 

The functions wa,B,y and ma,B,Y are related by the identity 

(2.11) 22a+28+2y+3 wa,B,y(s,t) ds dt = ma,B,y(x,y) dx dy on R. 

3. A special case: symmetrized products of Jacobi polynomials 

A Jacobi polynomial P(a,B)(x) of degree n and of order (a,B), 
n 

a> -1, B > -1, is an orthogonal polynomial of degree non the interval 

(-1, +l) with respect to the weight function (1-x)a(l+x) 8• The usual 

normalization is given by P(a,B)(l) = (a+n). We choose a different 
n B n ( B) 

normalization as follows. Let pa, (x) = const.P a, (x) such that 
n n 

pa,B(x) = xn + terms of lower degree. Then 
n 

(3. 1) 

There is the following pair of differential recurrence relations for 

Jacobi polynomials: 

(3.2) 

(3.3) ( )-a( )-B d [(l )a+l(l )B+l a+l,B+l(x)J 1-x I +x dx -x +x P n- l 

= - (n+a+B+l) pa,B(x) 
n 

(cf. Szego [6, formulas (4.21.7) and (4.10.1)]). By substituting the right 

hand side of (3.2) into the left hand side of (3.3) we obtain the second 

order differential equation 

(3.4) 

= - n(n+a+B+l) pa,B(x) 
n 

This equation can also be written in the form 
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2 d 2 d 
[(1-x) - + (S - a -(a+S+2)x) -d] pa'S(x) 

dx2 x n 

= - n(n+a+S+l) pa'S(x) 
n 

(cf. [6, formulas (4.2.1) and (4.2.2)]). 

It is evident from (2.8) and (3.5) that 

(3.6) 

The polynomials p:' 8(x) p~'S(y) are orthogonal polynomials in two 

variables on the square region {(x,y) I -1 < x < 1, -1 < y < 1} with 

respect to the weight function (l-x)a(l+x) 8(1-y)a(l+y) 8• Let the 

synnnetric polynomial p:::,-½(x,y) be defined by 

pa'S(x) Pa,S(y) + pa,S(x) pa'S(y) if n > 

p:::,-½(x,y) 
n k k n 

(3.7) = 

k 
) 

pa'S(x) Pa,S(y) if n = k • n n 

Then by (3.6) the polynomial p:::,-½(x,y) is also an an eigenfunction of 

D~'S,-½. We have 

(3.8) Da,S,-½ pa,S,-½ = (-n(n+a+S+l) -k(k+a+S+l)) pa,S,-½ 
1 n,k n,k • 

If (n,k) ~ (m,l) then 

(3.9) JI ~::,-½(x,y) ~:~'-!(x,y) ma,S,-½(x,y) dx dy = O, 

R 

where R is the region {(x,y) I -1 < y < x < l} and where the weight func

tion ma,S,-½ is given by formula (2.9). 

Let N be the set of all pairs of integers (n,k) such that n ~ k ~ 0. 
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Suppose that N is lexicographically ordered. This means that (n,k) > (m,l) 

if either n >morn= m and k > 1. 

Each synnnetric polynomial p(x,y) is a linear combination of the 
. n k kn 

synnnetric polynomials x y + x y, (n,k) € N. 
, m 1 1 m 

Let p(x,y) = l. cm 1(x y + x y) for certain coefficients 
(m,l)~(n,k) ' 

c 1 , (m,1) € N, such that c k ~ O. Then we say that the synnnetric poly-m, n, 
nomial p(x,y) has (synnnetric) degree (n,k). 

In particular, the symmetric polynomial ~,:,-½(x,y) defined by (3.7) 
' ~a (3 -½ has symmetric degree (n,k). The term of highest degree of p 'k' (x,y) is 

n k kn 'f k n n 'f k n, x y + x y i n > and x y i n = • 

The polynomials p1,:,-½(x,y) can be obtained by orthogonalization of the 
n, 2 2 2 2 2 2 3 3 . 

sequence 1, x+y, xy, x +y, x y+xy, x y, x +y , ••••• with respect to the 

weight function ma,S,-½ on the region R. 

Let us 

variables u 

polynomials 

consider next arbitrary polynomials q(u,v) in the two 

and v. Each polynomial q(u,v) is a linear combination of the 
n-k k u v, (n,k) € N. Let 

m-1 1 q(u,v) = l C U V m,l (m, l)~(n,k) 

for certain coefficients c 1 , 
m, 

(m,1) € N, such that c k ~ O. Then we say n, 
that the polynomial q(u,v) has degree (n,k). Note that a polynomial of 

degree (n,k) has ordinary degree n. 

By v.d. Waerden [7, § 33) each symmetric polynomial p(x,y) can be 

written in one and only one way as a polynomial in the so-called elementa

ry synnnetric polynomials x + y and xy. 

LEMMA 3.1. Let u = x + y, v = xy. Let the synnnetric polynomial p(x,y) and 

the polynomial p(u,v) be related by the identity p(x,y) = p(u,v). Then the 

synnnetric degree of p(x,y) is equal t<> the degree of p(u,v). If this 

degree is (n,k) then the coefficient.of-~nyk + xkyn (or of xnyn if n = k) 

for p(x,y) is equal to the coefficie~t of un-kvk for p(u,v). 

n-k k Proof. Let (n,k) € N. We shall express u v as a linear combination of 
m 1 1 m n n n polynomials x y + x y. If n = k then v = x y. If n > k then it follows 
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by the binomial formula that 

[!(n-k)] k. . . k. k t n- -1 1 1 n- -1 + l c.(x y + x y )(xy) 
• 1 1 . 1= 

for certain coefficients c .• Hence 
1 

n-k k n k kn [!(~-k)] ( n-i k+i k+i n-i) 
U V = X y + X y + l C. X y +x y 

i=J 1 

n k kn 
= x y + x y + polynomial of synnnetric degree less than (n,k). 

This proves the lemma. Q.e.d. 

The transformation 

(3.10) U = X + y , V = xy 

maps the region R in the (x,y)-plane in a one-to-one and regular way onto 

the region {(u,v) I -v-1 < u < v+J, u2-4v > O}, which-will also be denoted 

by R (cf. figure 4). 

t V 

u 
+ 

(0,-1) 

figure 4 
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This region is bounded by two perpendicular lines and a parabola which 

touches the two lines. Let the weight function µa,S,y be defined by 

(3.11) µa,S,y(u,v) du dv = ma,S,y(x,y) dx dy on R. 

Then 

(3.12) a S y a S 2 y µ ' ' (u,v) = (1-u+v) (l+u+v) (u -4v) • 

Let pa,S,-½(u v) = pa,kS,-½(x,y). Then by Lemma 3.1 the functions 
n,k ' n, 

pa,S,-½(u,v) are polynomials of degree (n,k) in u and v and the coefficient n,k . 

of un-kvk is equal to I. If (n,k) ~ (m,l) then using (3.9) and (3.12) we 

have the orthogonality relation 

(3.13) ff P:::,~½(u,v) p::~'-½(u,v) µa,S,-½(u,v) du dv = O. 

R 

Hence the polynomials pa,:,-½(u,v) can be obtained by orthogonalization of 

h 1 ~' 2 3 h ' R 'h t e sequence , u, v, u, uv, v, u , ••••• on t e region wit respect to 

the weight function µa,S,-½. 

As a generalization of the polynomials pa,kS,-½(u,v) we define for 
Sn, 

a,S,y > -1 and (n,k) EN the polynomial pa,k,y(u,v) by the conditions 
n, 

(3. 14) 

Pa,S,y(u v) 
n,k ' 

n-k k 
= U V + polynomial of degree less than (n,k) , 

ff P::!'y(u,v) q(u,v) µa,S,y(u,v) _du dv = O 

R 

if q(u,v) is a polynomial of degree less than (n,k). 

We conclude this section by deriving a fourth order differential 

operator which has the polynomials 'f''kS,-½(x,y) as eigenfunctions. It n, 
follows from (3.2) and (3.3) that 
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Hence 

(3. 17) 
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a2 ~a,e,-l( ) = n k ....a+l,S+l,-l( ) 
axay Pn,k x,y Pn-1,k-1 x,y 

2 -a -e a a+] ((1-x)(l-y)) ((l+x)(l+y)) axay [((1-x)(l-y)) 

• ((l+x)(l+y))e+1 ....a+l,S+l,-l(x )] 
pn-1,k-1 ,y 

= (n+a+e+t)(k+a+S+l) ....ap ,e,-l(x y) 
n,k ' 

2 -a -e a a+l ((1-x)(l-y)) ((l+x)(l+y)) axay [((1-x)(l-y)) 

2 
• ((l+x)(l+y))e+J a ~a,e,-lc )] axay Pn,k x,y 

~a e _1 
= n k (n+a+S+l)(k+a+S+l) p 'k' 2 (x,y) • n, 

In§ 5 the last three formulas will be generalized to the case of arbi

trary y. 

4. The eigenfunctions of the second order operator n1 

If the operator D~,S,y given by (2.8) is expressed in terms of the 

coordinates u,v (cf. formula 3.10) then we obtain 

(4.1) e 2 a2 a2 
D~' ,Y = (-u +2v+2) - 2 + (-2uv+2u) auav 

au 

+ (u2-2v2-2v) _a_+ [- (a+S+2y+3)u + (2$-2a)] !u 
av2 0 

a 
+ [(S-a)u - (2a+2$+2y+S)v - (2y+l)] av • 
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r 
In this section it will be proved that the polynomials pa,kS,y(u,v) 

S n, 
defined by (3.14) are eigenfunctions of D~' ,Y. The proof is based on 

two lemmas. 

LEMMA 4.1. If D~,S,y is given by (4.1) and if (n,k) € N then 

(4.2) 

+ polynomial of degree less than (n,k). 

n-k k 
U V 

LEMMA 4.2. Let a,S,y > -1. For arbitrary polynomials p(u,v) and q(u,v) 

it holds that 

(4.3) JI (D~,S,yp(u,v)) q(u,v) µa,S,y(u,v) du dv 

R 

= If p(u·,v)(D~,S,yq(u,v)) µa,S,y (u,v) du dv • 

R 

Lemma 4.1 follows immediately from (4.1). Lennna 4.2 follows from 

Theorem 2.1 and from formulas (2.11) and (3.11). 

THEOREM 4.3. Let a,S,y > -1 and (n,k) € N. Then 

(4.4) [-n(n+a+S+2y+2) -k(k+a+S+l)] pa,S,y n,k • 

Proof. By Lemma 4.1 the function D~,S,y p~:!'y(u,v) is a polynomial of 

degree (n,k). Let (m,l) € N and (m,l) < (n,k). Then it follows from 

Lemma 4.2 and formula (3.14) that 

R 

= If Pa,kS,y (DJ pa,lS,y) µa,S,y du dv = 0. 
n, m, 

R 
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a 13 y Hence D p' ' (u,v) is a polynomial of degree (n,k) orthogonal to all 
1 n,k l3 13 

polynomials of lower degree, so n1 p::k'y(u,v) = const. p::k'y(u,v). 

The value of the constant follows from (4.2). Q.e.d. 

5. The fourth order operator n2 

In this section we shall generalize the formulas (3.15), (3.16) and 

(3.17) by finding second order differential operators Da,l3,y and Da,l3,y 
+ -

such that 

= a+l,13+1,y 
const. pn-l ,k-l 

Da,13,y a+l,13+1,y 
+ pn-1,k-1 = cons t. pa ' 13 ' Y n,k 

and 

Then n:,l3,y D~,l3,y ~s a fourth order operator which has the polynomials 

pa,kl3,y as eigenfunctions. 
n, 

Let us define 

(5. 1) 

and 

(5.2) D~'l3,y = ((l-x)(l-y))-a((l+x)(i+y))-13 nY 

a+l 13+1 
. ((1-x)(l-y)) ((l+x)(l+y)) . 

These operators are generalizations of the differential operators in (3.15) 

and (3.16), respectively. 

LEMMA 5.1. Let a,13,y > -1. For arbitrary synunetric polynomials p(x,y) and 

q(x,y) it holds that 

(5.3) ff (D~ p(x,y)) q(x,y) ma+l,13+1,y(x,y) dx dy = 

R 
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= ff p(x,y) (D~,S,y q(x,y)) ma,B,y (x,y) dx dy • 

R 

Proof. Let Q(x,y) = ((1-x)(l-y))a+l((l+x)(l+y))B+l q(x,y). 

Then we have to prove that 

ff [..!. ((x-y)2y+t ~) a (( )2y+t !E.)J d d ax ay + ay x-y ax Q X y 
R 

= ff p [ aax ((x-y/y+l ~) + aay ((x-y)2y+l :~) J dx dy • 

R 

Denote the left hand side of this equality by 1 1 and the right hand side 

by 12• Let 

13 = - JJ (~ aQ + ~ ,!g_) (x- /Y+l dx d ax ay ay ax y y 
R 

Let aR denote the boundary of R. Integration by parts and application of 

Gauss's theorem gives 

It = 13 + f (x-y)2y+l Q (!£ dy - ~ dx) 
ay ax 

aR 

and 

12 13 + f 
2y+] (aQ dy - aQ dx) = (x-y) p ay ax 

aR 

On the sides y = -1 and x = 1 the contour integrals vanish since Q and!~ 

vanish for y = -1 and Q and:~ vanish for x = t. The contour integrals 

evidently vanish on the side x = y if y > -i. Otherwise we have to use 

that the normal derivatives of p and Q on the line x = y vanish. Thus it 

is proved that 11 = 13 = 12• Q.e.d. 

If the operators D~ and D~,S,y are expressed in terms of u and v then 

we obtain the formulas 
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(5.4) 

(5.5) a Sy -a -a y a+l S+l D+' ' = (1-u+v) (l+u+v) D_(l-u+v) (l+u+v) 

2 2 a2 3 2 a2 
= (-u +v +2v+l) au2 + (-u +uv +2uv+u) a'iiav 

2 3 2 a2 2 
+ (-u v+v +2v +v) - + [(a-S)(u -2v-2) 

av2 

a 7 2 + (a+S+2)(uv-u)] au+ [(a+S+y-+t)(-u +2v) 

11 2 3 a 
+ (a-S)(uv-u) + (2a+2S+y"'z)v + (y-+t)J av 

5 5 + [ (a-a)_(a+S+y-+t}u + (a+S+2) (a+S+y-+t)v 

2 1 + (a-S) + (y"7)(a+S+2)J • 

LEMMA 5.2. Let the operators nY and n:,a,y be given by (5.4) and (5.5). 

Let (n,k) € N. If k > 0 then 

(5.6) y n-k k n-k k-1 D_ (u v) = k(n+y+½)u v + polynomial of degree less 

than (n-l,k-1) , 

(5. 7) Da+,S,y(un-kvk-1) (k O l)( 0 3) n-k k = +a+µ+ n+a+µ+y-+t u v + polynomial of 

degree less than (n,k). 

Furthermore 

(5.8) Y n n-2 D u = n(n-1) u 
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LEMMA 5.3. Let a,S,y > -1. For arbitrary polynomials p(u,v) and q(u,v) it 

holds that 

(5.9) IJ (D~ 
a+l S+l y p(u,v)) q(u,v) µ ' ' (u,v) du dv 

R 

=ff p(u,v)(D:,S,yq(u,v))µa,S,y(u,v) du dv. 

R 

Lemma 5.2 follows immediately from (5.4) and (5.5). Lemma 5.3 fol

lows from Lemma 5.1 by using (3.11). 

THEOREM 5.4. Let a,S,y > -1 and (n,k) EN. Then 

(5. IO) 

(5. I I) 

nY Pa,S,y 
n,k 

= 
{

k

0

(n+y+½) a+l,S+l,y 
pn-1 k-1 

' 

Da,S,y a+l,S+l,y 
+ pn-1 ,k-1 

= (k+a+S+I)(n+a+S+y.J.2) pa,S,y 
n,k 

Proof. By Lemma 5.3 we have 

(5.12) ff (D~ Pa,S,y) a+l,S+l,y a+l,S+l,y d d 
k pm 1 µ U V 

n, ' 
R 

= ff Pa,S,y (Da,S,y Pa+l,S+l,y) µa,S,y du dv. 
n,k + m,l 

R 

fork> 0 

fork= 0, 

fork> 0. 

It follows from Lennna 5.2 that Dy pa,kS,y(u,v) is a polynomial which has 
n, 

degree (n-I,k-1) if k > O, degree not larger than (n-2,n-2) if k = O, 

n ~ 2, and which is the zero polynomial if k = O, n = 0 or 1. Similarly 

Da,S,y a+l,S+l,y( ) · 1 · 1 f d 1 h ( I 1 1) p 1 u,v is a po ynomia o egree not arger tan m+, + • 
+ m, 

First we prove (5.10) fork> O. Let (m,l) < (n-1,k-l} in (5.12). Then the 

right hand side of (5.12) is equal to zero by the orthogonality property 

of the polynomials with respect to the weight function µa,S,Y. 
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Thus the left hand side of (5.12) vanishes. By using the orthogonality 

property of the polynomials with respect to the weight function µa+l,S+l,y 
Y a Sy· a+l S+l y 

it follows that D p' ' = const. p ' ' and the constant is given n,k n-1,k-l 
by (5.6). If k =0, n ~ 2 then (5.10) follows by choosing (m,l) ~ (n-2,n-2) 

in (5.12). Formula (5.10) is evident if (n,k) = (0,0) or (1,0). Formula 

(5. 11) can be: derived in a similar way as (5. 1 O) by putting 

(n,k) < (m+l,l+l) in (5.12). Q.e.d. 

Let the fourth order partial differential operator D~'S,y be defined 

by 

(5.13) 

COROLLARY 5.5. Let a,S,y > -1 and (n,k) EN. Then 

(5. 14) = k(k+a+S+l)(n+y+½)(n+a+S+y-i-;;...23) pa,S,y 
n,k 

We conclude this section by expressing the operator n2 in terms of s 

and t. It follows that 

(5. 15) 

where 

w2(s,t) = (sin ~(t+s) sin ½(t-s))Zy+l . 

Observe that 
a4 

D 2 = -a-s 2.,..a-t.,,..2 + terms of order less than four. 
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6. The algebra of differential operators generated by D1 and D2 

In the previous sections we have obtained two differential operators 

D1 and D2 for which the polynomials p:::,Y are eigenfunctions. It is a 

natural problem to find the general form of the differential operators 

which admit the polynomials pa,kB,y as eigenfunctions. This question will 
n, 

be considered in the present section. 

From now on it is supposed that the parameters a,B,y are fixed and 

larger than -1. We shall write p k instead of pa,B,y 
n, n,k • 

LEMMA 6.1. Let the differential operator 

(6.1) 
, a m-1 a 1 

D = l a 1 (u, v) (3 ) (3 ) 
(m,l)S(n,k) m, u v 

admit the polynomials p 1(u,v) as eigenfunctions. Then Dis completely 
m, 

determined by the eigenvalues of p 1 , (m,1) S (n,k), and a 1(u,v) is a m, m, 
polynomial in u and v of degree not larger than (m,1). 

Proof. Let D Pm,l = Am,l Pm,l" Then 

(m-1)!1! a 1(u,v) = A 1 p 1(u,v) m, m, m, 

This recurrence relation completely determines the coefficients a 1(u,v). m, 
It follows by complete induction with respect to (m,1) € N that a 1(u,v) 

m, 
is a polynomial in u and v of degree not exceeding (m,1). Q.e.d. 

COROLLARY 6.2. Let D and D' be two differential operators which admit the 

polynomials p k(u,v) as eigenfunctions. Then DD'= D'D. n, 

LEMMA 6.3. Let the differential operator D be given by (6.1), where the 
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coefficients a 1(u,v) are polynomials in u and v. Let D be transformed in 
m, 

terms of sand t, u = cos s +cost, v = cos s cost, and write 

D = a i a · l b .. (s, t)(a) (at)J ' 
i+jsn iJ s 

(s,t) e: R. 

Then the functions b •. have unique extensions to one-valued analytic 
iJ 

functions, regular for all complex sand t except possibly on the lines 

sins= O, sin t = O, sin ½(s+t) = 0 and sin ½(s-t) = O. The operator D 

is invariant under the reflections 

(s,t) + (-s,t), (s,t) + (s,-t) and (s,t) + (t,s). 

Proof. The Lenuna follows by 

LEMMA 6.4. 

polynomials 

operator D 

(6.2) 

a m-1 a 1 a 1(u,v)(-a ) <-a) = a 1(cos s +cost, cos s cost) m, u v m, 

cos s 1_ + cos t a m-1 
• [sin s(cos t - cos s) as sin t(cos s - cost) at] 

a a 1 
• [ • ( ) -a + • ( ) -a J • sins cos s - cost s sin t cost - cos s t 

Q.e.d. 

Let D be a differential operator of order m which admits the 

p k(u,v) as eigenfunctions. Then in terms of sand t the 
n, 

equals 

D = 
m 
' (.l_)m-l(.l_)l + terms of lower order with constant 
l cl as at 
l=O 

coefficients c1• 

Proof. By Corollary 6.2 D conunutes with D1 and n2• We have 

+ terms of lower order, 
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04 
D2 = --- + terms of lower order. 

as 2at2 

Let D be given by (6.2), where c1 = c1(s,t) may depend on s,t. The 

vanishing of the terms of order m+I in the operator DDI - DID implies that 

~ 1 ~ m , 

The vanishing of the terms of order m+3 in the operator DD 2 - D2D implies 

that 

a 
~ C (s,t) = 0. as m 

a a 
It follows that 3s c1(s,t) = 0 = at c1(s,t), 

Hence the coefficients c1 are constants. Q.e.d. 

~ 1 ~ m , 

Clearly, each differential operator D which is a polynomial in the 

commuting differential operators DI and D2 admits the polynomials Pn,k as 

eigenfunctions. We can now prove the converse statement. 

THEOREM 6.5. Let D be a differential operator which admits the poly-

nomials p as eigenfunctions. Then D can be expressed in one and only 
n:,k 

one way as a polynomial in the operators DI and D2• 
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Proof. Suppose that there exist differential operators admitting the 

polynomials p k as eigenfunctions which can not be expressed as poly
n, 

nomials in D11 and D2 • Let D be such an operator of minimal order m, 

The operator D can be written in the form (6.2). Since D satisfies the 
th symmetries memtioned in Lemma 6. 3 the m order part of D must be a 

symmetric polynomial c}s/ and <a\/. Then there exists a polynomial Q 

in two variables such that the operator Q((;s) 2 + <;t) 2,(f;) 2(;t) 2) is 

equal to the mth order part of D. Hence D - Q(DI,D2) is a differential 

operator of order less than m which admits the polynomials p k(u,v) as 
n, 

eigenfunctions, so D - Q(DI,D 2) is a polynomial in DI and D2 and, there-

fore, Dis a polynomial in DI and D2 • This is a contradiction. It follows 

that each operator D admitting the polynomials p k as eigenfunctions is 
n, 

equal to a ce.rtain polynomial Q(DI ,D2). 

Next we have to prove that the polynomial Q is uniquely determined by D. 

Let Q(DI,D2) = 0 and suppose that Q is not the zero polynomial. Then 

Q(u,v) = 
f [fm] 

m=O l=O 

m-21 1 
C U V 
m, 1 

where not all the coefficients c , 1 = O,I, .•• ,[½n] are zero. n, 1 
It follows that 

n [ ½m] 
I I 

m=O l=O 

a2 a2 . m-21 
c (-- + -- + first order operator) 
m,l 'as2 'at2 

a2 a2 1 
(-- -- + third order operator) 
'as 2 'at 2 

qnJ 2 2 "2 "2 1 = l C (-d- + _a_)n-21 (-0- _o_) 
1=0 n,l as 2 at2 as 2 at2 

+ operator of order less than 2n. 

Since Q(DI,D2) = 0 the n th order part of Q(DI,D2) vanishes, hence cn,l = 0 

for 1 = O, I, •..• ,[ ½n]. This is a contradiction. Hence Q is the zero 

polynomial if Q(DI,D 2) is the zero operator. Q.e.d, 
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