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A second report on functions from the statistical theory of residual 

currents in tidal areas 

by 

N.M. Termne 

ABSTRACT 

Asymptotic approximations are given for functions occurring in a mathe­

matical model of vorticity production by tidal currents. In an earlier re­

port functions of the same type were considered. 

KEY WORDS & PHRASES: asymptotic expansions of Laplace type integrals, 

Bessel functions, tidal currents. 
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I • INTRODUCTION 

In an earlier report [2] we considered integrals occurring in a mathe­

matical model of residual circulations by tidal currents. In this report we 

consider a simpler model, which enables us to obtain more information about 

some quantities than was possible in the previous case. A central point there 

was a first order differential equation*) 

-+ 
dn<:;t) - [ik 1sint-b(k)Jn(k,t) = a(k) sint, 

where k = (k 1,k2) is the wave number in a Fourier analysis, k = (kf+k;) 1( 2 • 

The above equation arose in a model for a one-directional tidal current. 

The simplification concerns the assumption that the current velocity vector 

rotates circularly. It yields the equation (with k 1 = k cos e, k2 = k sin 8) 

(I.I) 
-+ 

dn(k,t) - [ik sin(t+8) - b(k)Jn(k,t) = 
dt 

= a(k)[, 1sin(t+8) + , 2cos(t+0)]. 

The function bis given by 

( I • 2) 
2 b(k) = , 2 + , 3k, 

, 1, , 2 and , 3 are non-negative constants and a(k) is related to a stochastic 

forcing field, the statistics of which are prescribed. 

The nontransient solution of the differential equation is written as a 

Fourier series 

( 1. 3) 
00 

(-+k ) \ Co(-+k)eil(t+8) 
1"\ 't = l ,c.. 

l=-oo 

with 

00 

( 1.4) I 
n=-oo 

• -+ 
where Jn(k) is the ordinary Bessel function. In order to describe the c,e_(k) 

*) in the above mentioned report the sign of b(k) was in error 
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it is convenient to introduce the functions 

00 J (k)J (k) 
( 1.5) R (a,k) = 

m I n n+m 
n+a ID E 2Z, a r/. 2Z. 

n=-oo 

With respect to the parameters,. two cases are investigated, which 
i 

will be treated in the following sections. First we give some properties of 

the function R defined above. 
ID 

In the previous report we used R0(a,t). Explicitly we have (for a proof 

see [2]) 

( 1. 6) 
TI 

R0 (a,k) = -,,--- J (k)J (k). 
sin 1ra a -a 

By using the well-known recurrence relations 

( 1. 7) 

we obtain 

( 1.8) ( ) 1 [ ( )] + 1 cl ( ) R±l a,k = k 1 - aR0 a,k 2 3k RO a,k,. 

For general ID we have 

( 1.9) R (a,k) = -m 

00 

I 
n=-co 

J (k)J (k) 
n-m n ------= 

n+a 

00 

I 
n=-oo 

Otherwise we have by using J (k) = (-l)nJ (k) 
-n n 

00 

( I. 10) R (a, k) = 1i 
-m l 

J (k)J (k) 
n-m n ------= n+a n=-oo 

m+I = (-1) R (-a,k), 
m 

and finally, by using 

(1.11) J 1 (k) + J 1 (k) n+ n-
= 2n J (k) 

k n ' 

00 

I 
n=-oo 

J (k)J (k) 
n n+m ------ = R (a+ID,k). n+a+m m 

J (k)J (k) 
-n-ID -n -------= 

-n+ a 
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00 (n+m)J (k)J (k) 00 Jn+m-1 (k)Jn(k) 
Rm+l (a.,k) 

2 I n+m n I = iZ = 
n+a. n+a. 

n=-00 n=-00 

2 (m-a.) R (a.,k) + 
2 

= -R 1(a.,k) + i?m(a.,k), m- k m 

where 

00 
T (a.,k) = I J (k)J (k). m n+m n n=-00 

It is known that T0 (a.,k) = 1. For general m E Zl we have 

27T 

(1 • 12) 
00 

J 
eiksin8-i(n+m)8de 

T (a.,k) = I J (k) 27T = 
m n n=-00 

0 

27T 

f 
00 

J (k)e-in8eiksin8-imed8 = 27T I = n 
0 

n=-00 

21T 

=- J 
e-imede = 0 27T O,m 

0 

where Kronecker's symbol 0 l,m is used, defined as 

{o l :f m 
( 1. 13) 0 -l,m - 1 l = m 

Consequently, we have the recursion form E 2'l 

( 1. 14) R ( k) R ( k) = 2(m-a.) R (N,k) 2 ~ 
m+ 1 a. ' + m- I a. ' k m "" + k u O, m • 

Remark that (1.8) leads to (1.14) with m = 0. This recursion may be used for 

the numerical evaluation of R when the two consecutive values are known. 
m 

It is interesting to note that (1.14) resembles the recursion relation 

2(m-a.) 
= X ym 
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with solutions y = J (x) and y = y (x). This recursion is homogeneous, 
m m-a m m-a 

whereas (1.14) is inhomogeneous. 

2. THE CASE Tl= 1, T 3 = O, T2 VARIABLE (~O) 

In this case we have from (1.2) b = T 2 , We use for convenience b instead 

of T 2 in the notation. We are interested in the two parts of cl(k) given in 

(1.4), i.e., we define 

(2. I) 

c ( 2) (k) = -ib (-i)la(k) 
l 

00 

I 
n=-oo 

00 

I 
n=-co 

inJ 0 (k)J (k) n+,t_ n 
k(-b+in) 

J o (k) JI (k) n+,t, n 
-b+in 

* * Especially we want to know the behaviour of cl 1)cll) and cl2)cl2) with 

spect to the parameter b. The density function a(k) does not depend on b 

and will not be considered here. In fact we discuss the functions 

I 

00 nJ 0 (k)J (k) 
1

2 cl1) (k,b) l n+-c.. n 
= n=-oo k(-b+in) 

(2. 2) 

cl2)(k,b) I 00 J O (k) JI (k) 12 
= b 2 \' n+,t_ n 

l -b+in 
n=-oo 

re-

and we give the asymptotic behaviour of Gil)(k,b) and Gi 2)(k,b) for b ➔ 0 

and for b ➔ 00 for fixed values of k and l (l = 0,1,2,3). 

The functions (2.1) give insight in the difference in behaviour of fric­

tional and rotational forcing of vorticity, as the former forcing mechanism 

is also the major dissipative agency. 

2.1. Summary of the results 

For b ➔ 0 we have 

' 
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(2.3) 

and for b ➔ 00 the behaviour is as follows 

(2. 4) 

f.. = 1,2,3. 

(2.5) 

.t = 1,2,3. 

2.2. A further analysis 

From (1.5), (1.7), (I.II) and (2.2) it follows that 

(2.6) 

For b ➔ 0 we have 

b R.t-I (-l+ib,k) = J 1 (k)J.t(k) + O(b). 

From these results (2.3) easily follows. 
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Next we consider the case b ➔ co, This is more complicate. 

We have 

(2. 7) 

From 

one obtains 

with 

(2. 8) 

and 

Since 

co 
ib R1 (-ib,k) = I 

I ---= 1-n/ib 

N 

I 
j=O 

co 

I 

n=-co 

(n/ib)N+l 
(n/ib)J + --'--'---i-,--

1-n/ib 

N A. (k;l) 
= - I J . 

j=O (ib)J 

nJJ (k)J 0 (k) n n+,{.. A. (k;l) = 
J n=-co 

co 

I 
n=-co 

l-n/ib ~ 1' n= 0,±1,±2, ... , b E: IR 

we have B = O(b-N-l), b 
N 

➔ 00. Hence we have the asymptotic expansion 

(2.9) 
oo A.(k;l) 

ib R,e_(-ib,k) ~ - I J . ' 
j=O (ib)J 

b ➔ oo. 

It remains to compute the quantities A.(k l) defined in (2.8). 
J 

From (1.12) we have 

00 

Al(k;l) = % l 
n=-oo 
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where the recursion (1.11) is used. In a similar way we obtain 

k • 
= -2 {L J +0 (k)(n-l)J 1(k) + l J 0 (k)(n+l)J 1(k) n ~ n- n+~ n+ 

+ l J +o(k)J 1(k) - l J o(k)J 1(k)} n ~ n- n+~ n+ 

Generalizing this method we obtain the recursion 

= ~ t 
m=O 

(J){A (k;l+l) + (-l)j-mA (k;l-1)}. 
m m m 

For the first order terms in the asymptotic expansion of the functions de­

fined in (2.6) we need 

A1(k;l) = k/2 

A2(k;O) = k2/2, A2 (k; 2) = k2/4, 

A3 (k;3) = k3/8, 

A1 (k;O) = A1 (k;2) = A1 (k; 3) = A2(k;3) = o. 
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For cl1)(k) we obtain 

I ~-
k2 

00 

I I 
j=I 

A. (k;l) 2 
J . I 
(-ib)J 

and substituting the above values of Aj(k;l) we obtain (2.4). For Gi2)(k) 

we have for b ➔ oo 

G(2) (k) ~ .!. b 21_1 _ I -'AJ"-. (_k_;l_+_J_) + -- I A. (k;l- ~) 12 

l 4 l+ib j=O (-l-ib)J 1-ib j=O (1-ib)J 

from which (2.5) easily follows. 

3. THE CASE'!= , 2 = l, , 3 VARIABLE (~O) 

(3. l) 

In this case we are interested in the integrals 

ro 2n 

I I ka < 

0 0 
➔ 

where<> represents an ensemble average over the stochastic function a(k) 

contained in cl(k). For more details on these points we refer to Zinnnerman's 

investigations in [3,4]. In the numerical treatment several density functions 
➔ 

a(k) where considered. Here we give the formulas for the case of a Gaussian 

distribution. 

The integration with respect toe in (3.1) is trivial due to the circu-
➔ 

lar symmetry and due to the assumed isotropic statistics of a(k). As a con-

sequence, the quantities (3.1) are zero for l # m. For a= 1, l = m = 0, 

(3.1) is the residual enstrophy (also considered in [2]), for l = m = I it 

is the tidal enstrophy (first harmonic), for l = m = 2 it is the tidal en­

strophy (second hannonic), etc. 

The integrand of (3.1) is expressed in terms of the function 

(3. 2) 

where* means the complex conjugate and 

(3.3) cpl (k) 



➔ 
By specifying a(k) in (1.4) we write (3.1) as (with different a.) 

(3.4) H (a.) (t-) 
.e. 

Then the enstrophy and the energy are given by 

(3.5) 

9 

Also the following functions are considered; they all have a physical inter­

pretation 

(3.6) 

-5 -4 -3 -2 
These functions are computed for .t = 0,1,2,3 and • 3 = 0,10 ,IO ,IO ,IO , 

10-l, and >- E [I0-2, 10 Z ]. The function G.e_(k) is computed for the same l and 

, 3 values and fork E [I0-2,102 ]. 

In the following subsections we give the asymptotic behaviour of G.e_(k) 

fork ➔ 0 and k ➔ 00 (§3.1) and of Hia.)(>-) for>- ➔ 0 and>- ➔ 00 (§3.2) for 

the appropriate values of a. and .t. 

3.1 Asymptotic behaviour of Gf(k) 

3.1.1 Results fork ➔ 0 

From (1.6) it follows that 

I k 2 
RO(a.,k) = i (I - 2 

2(1-a.) 

3k4 
+ ---2=------,,-2- + ••• ) • 

8 ( 1-a. ) ( 4-a. ) 

Hence, by using (1.8), we have 
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k 
Rl (a.,k) = 2a(l-a.) 

3k3 
------ + ••• 
Sa. ( 1-i) (2-a.) 

and from the recursion (I .14) or directly from (1.5) we obtain 

k2 
R2 ( a. 'k) = _4_a_( _l --a.-)_(_2 ___ a._) + ' ' ' 

With (3.3) we have fork ➔ 0 

R (a.,k) = O(km), 
m 

k ➔ 0. 

¢0 (k) = k [4(b+l) - 3(2+b)k2 + 0(k4)J = 

8b(b 2+1) 

k 2 = 2[1+0(k )] 

(3. 7) cp Ck)= lci-1)/(1-ib) + ock2) 
l 2 

¢2(k) = ¾ (l+i)/[(l-ib)(2-ib)] + 0(k3) 

cp 3 (k) = ½ (l-i)k2/[(l-ib)(2-ib)(3-ib)] 

From these results it follows that the asymptotic behaviour of Gl(k) 

fork ➔ 0 is given by 

G1 (k) 

(3 .8) 

c2(k) 

c3 (k) 

k2 4 = - + O(k ) , 
4 

] 2 
= 4 + O(k ), 

k2 4 = 80 + O(k ) , 

k4 6 
= 3200 + O(k ). 

Summarizing we denote these relations by 

(3.9) k ➔ 0 
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where Y£ and Sl are readily obtained from (3.8). 

3.1.2 Results fork+ 00 , 

It is necessary to distinguish between the cases • 3 > 0 and • 3 = 01 The 

first case is simpler than the second one, therefore we begin with it. 

3.1.2.I •3 > 0 

2 ~ 2 Recall that b =I+ • 3k, hence b • 3k. The expansions in (3,7) of 

~£(k) are also valid fork+ 00 (with other 0-terms, however). Explicitly 

we have fork+ oo 

(3.10) 

From (3.2) it follows that for • 3 > 0 and k + 00 

(3.11) 

3.1.2.2. T = 0 
3 

Let us first study the case£= 0. From (3.2), (3.3), (I .2), (1.6) and 

(1.8) it follows that 



I 2 

( 3. 1 2) 

R1(o:,k) =fz[1 

The behaviour of G0 (k) fork ➔ 00 is found by using asymptotic expan-

sions of the Bessel functions. In the previous subsection (, 3 > O) the para­

meter a: was depending on k. For instance in (3.3) we have a:= ±1-ib = 

±I -i(l + , 3k2). Thus if , 3 > 0 the order of the Bessel functions also depend 

on k. Here, in (3.12), we have a:= J-i, a constant. This is the main differ­

ence between the cases , 3 = 0 and , 3 > 0. 

From well-known results of the theory of Bessel functions we derive 

(3. 13) 

J (x)J (x) = 
-a: 0: TTX 

-1 
[(cos o:TT + sin 2x) + O(x )] 

d 
-d J (x)J (x) 

X -a: 0: 
= 2 cos 2x + O(x-2) 

'ITX 

where a: is a fixed parameter. From this it follows that we have using (3.12) 

(3. I 4) G (k) I (1 + cos 2k) 2 
0 ~ k2 sinh TT ' 

k + oo, 

Comparing this result with the first of (3.11) we see that in the present 

case G0 (k) has a damped oscillatory behaviour for large k. 

For very small values of , 3 this behaviour also occurs; also in that 

case, however, G0 (k) ultimately behaves as in (3.10). 

From the recursion in (1.14) and from (I .6) and (1.8) it follows that 

for m 2: 2 

(3.15) k + co 

and that Gl(k) for l = 1,2, ... behaves as G0 (k): a damped oscillatory be­

haviour at infinity. More details on this point will not be given here. 

~I 
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3.2 The asymptotic behaviour of Hia)(A) for A+ 0 and A+ 00 

3.2.1 Results for A+ 0 

The asymptotic expansion of Hia)(A) for A+ 0 is obtained as follo'"ws. 

Standard methods from asymptotic analysis yield using (3.4) and (3.9) 

From this we obtain for the functions 1n (3.5) and (3.6) the asymptotic be­

haviour for A+ 0 

3.2.2 Results for A+ 00 

To obtain the asymptotic expansion of Hia)(A) for A+ 00 it is conve­

nient to write it, by means of Mellin transform technique, as follows 

(3.16) 

where 

(3.17) 

A a+ I r 

H(a) (A) - j A- 2 f[(a+l-z)/2]M[G 0 ,z]dz, l - 4iri -t.. 

L 

00 

M[Gl,z] = f k2 -IGl(k)dk 

0 

is the Mellin transform of Gl. The contour of integration Lin (3.16) is a 
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vertical, such that the singularities of the gamma function at 

(3.18) z. = a + 1 + 2j , 
J 

j = 0,1,2, ... 

and the singularities of M[Gl,z] are at the right of it. 

For details on this method we refer to Bleistein & Handelsman [l, Ch.4]. 

The poles of M[Gl,z] can be localized by using the behaviour of Gl for 

large k. Again, we have to distinguish between two cases: 1 3 = 0, 1 3 > 0. 

3.2.2.1. T = 0 
3 

In this event we use (3.14). It follows that M[Gl,z] has a pole at 

z = 2. (For Re z < 2 the integral (3.17) converges at infinity). The values 

of a to be considered in (3.18) are (see (3.5) and (3.6)) are 

a = 2, g1.v1.ng z. = 3 + 2j 
J 

(3.19) a = 3, giving z, = 4 + 2j 
j 

a = 5, giving z. = 6 + 2j 
J 

Hence, poles zj are in all three cases larger than 2 (the pole of M[Gl,z]). 

By replacing the vertical Lin (3.16) to the right we obtain by taking the 

residue at z = 2 

,\ -+ co, 

where Cia) is a constant, not depending on,\. For the functions in (3.5) 

and (3.6) we have 

gl(,\), fl(,\)= 0(,\-2) 

(3.20) ,\+co 

hl(,\), jl(,\), dl(,\) = 0(1) 

with -r J = 0 
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3.2.2.2. 

The asymptotic behaviour of Gl(k) fork+ 00 is given by (3.11). Hence, 

the poles of M[Gl,z] occur at z = U+2 (l = 0,1,2,3). For l = 0 the situa­

tion is as in subsection 3.2.2.1 with results in (3.20).For l = I we have 

for a= 2 (see (3.19)) a pole zj in 3 and a pole of M[G 1,zJ in 4. Hence, 

the pole 3 gives the main contribution. For l = I, a= 3 the integrand of 

(3.16) has a double pole at z = 4. As a consequence, the asymptotic be­

haviour of H~ 3)(A) = O(lnA). Combining all the possible combinations of l 
and a we obtain the following table for the asymptotic behaviour of the func­

tions of (3.5), (3.6). 

l = 0 l = I l = 2 l = 3 

gl(A) A -2 A -4 A-6lnA A -6 

fl(A) A -2 A-4lnA A -4 A -4 

hl(A) A/lnA A A 
l I 

jl(A) (lnA) 2 A/(lnA) 2 A 

dl(A) A/lnA A A 

4. A FURTHER GENERALIZATION 

Here we consider some quantities which arise in the study of a general­

ization of the differential equation (I.I). We use different frequencies in 

the forcing and damping terms of the equation and we are interested in the 

analogues of the G and H functions of the previous sections, especially in 

those components in G and H depending on the difference of the two frequen­

cies. To be more specific, let us write the differential equation as 

(4.1) 

where u 1, u2 , a 1, 0 2, bare real parameters, not depending on t and k. 
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The nontransient solution of this equation is 

(4.2) 

where 

(4.3) 

n(k,t) = ; 2 ka(k)e-boit-ik(cos o 1t+ycos a2t) x 

Jte bo1,+ik(cos o 1T+ycos 02,)[ulcos(oiT-f) + 

S1 =a 1!a 2, 

Sz = u2/ul. 

By expanding the exponential functions 

-iKCOSO]t -iyKCOS02t iKCOSOJT eiyKCOSOzT e , e , e , 

ixcost .m imt3 ( ) d b . . as Fourier series, as e = ri e n x, an y integrating the result-

ing series we obtain 

(4.4) n(k,t) = ~~ e-in/4 I im+n-r-sJ (K) J (yK) J (K) J (yK) x 
v2 r,s,n,m m n r s 

ci(na2+(m+l)o 1+ro 1+so2)t 

[ul{ ba 1+i(m+l)o 1+incr2 + 

+ i 

The r, s, n, m - values run from - 00 to +00 • It is clear that the series (4.4) 

can be written as 

( 4. 5) 
p,q,r,s 

a p,q,r,s 



This series can be split up into 

" (I) ija 1t " (2) ijcr 2 t + la.. e +la.. e 
J J j J 

+ \' a.(.4)eij (cr 2-a 1)t l + • • • (ad infinitum). 
j J 

Here we are. interested in the coefficient a.i4). It arises in (4.5) if 

p + r = -1 , q + s = 1. Hence 

a.~4) = I 
p,q 

a • p,q,-,-J-p,1-q 

When applying this to (4.4), we infer that the Fourier coefficient of 

ei(cr2-al)t is given by 

(4) 
= ia(k) 9a -cr (K) a. I 

2 1 

with <P - given by the double sum 
a2 crl 

(4. 6) 
irr/4 

( ) _ Ke \' 
<Pa -cr K - 72 l 

2 l p,q 

with 

B = J (K) J 1 (yK) + iJ (K) J 1 (yK), p,q p q+ p q-

and s1, s2 defined in (4.3). 

Then we define the function (the analogue of (3.2)) 

* <Pcr -cr (K) <Pa -a (K) 
2 J 2 1 

and furthermore 

(4.5) ~az-crJ (K) = phase[¢ (K)]; crz-01 

17 
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the relation between¢, G and w is 

iW(J ..,0 (K) 
2 1 

where we take w (K) € (-n,TI]. The analogues of (3.4) and (3.5) are 
0 2-<r 1 

also considered. We define 

f (A) 
o-2-al 

00 

e 
2 -2 -KA 

= .\-6 H(5) (.\) 
cr2-cr I 

G (K) dK 
o- 2-cr I 

The function G0 -a (K) is computed for 
2 I 

S1 = .966, S2 = .1,.4,.7,1.0, b = I, 

the function w (K) for 
02-01 

S1 = .966, s2 = .4, 
-2 -1 

b = 10 ,10 ,1,10, 

and g0 _ 0 (.\), f 0 _ 0 (.\) for 
2 1 2 1 

S1 = .966, s2 = .4, b = I, 

5. SOME REMARKS ON THE COMPUTATIONS 

-2 2 
kE[lO ,IO], 

-2 2 AE[IO ,10]. 

For the computations of Gl(k) we used the representations (3.2) with 

(3.2) and (I .5). The series in (1 .5) converges very fast, since for large n 

we have 

m;;: O; 
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form< 0 we used (1 .10). The A-integrals Hia)(A) in (3.4) were computed by 

using a trapezoidal rule (after a suitable transformation). For details see 

the previous report [2]. The function of Section 4 are computed as their 

analogues of Section 3. 
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