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$ 1. Introduction. The {following mathematical model will be
considered. In the cylindrical half-space 0 <7 << o0, 0 << 2 << oo
particles of concentration c(7, z) are subjected to a diffusion process
determined by the constant D and to a mass transport parallel to
the Z-axis with constant velocity — w. The plane z = 0 is a re-
flecting plane, 1.e. the mass transport through that plane is zero.
The particles are produced by a point source at the origin 22 + »2=0
of constant intensity (. |

The stationary state 1s determined by the partial differential

equation
D(l %, oc | 820)+ oc 3 .
e arramesaeern e . n}/ . ‘ — 42 ﬁ) e — ]
y or  or @ 022 0z | (-1
the boundary condition
oc
z2=0 — =0, (1.2)
0z

and the condition of the point source (cf § 2)

¢

22472 >0 C~N-—
27DV 22 4 72

(1.3)

The model described above originated from an investigation by
Boumans 1) concerning the concentration of particles of a metal
evaporated between two electrodes. The plane z = O corresponds to
the lower electrode. If the unit of length is chosen in such a way that
the unit circle O < » << 1, 2 = O represents the surface of the lower
electrode, the surface of the upper electrode is on the plane z = 4.

— 197 —



H. A. LAUWERIEKR

We quote the following values of D and w from an actual ex-
periment: [) = 13 cm2/s, w = 720 cmy/s, radius of electrode surf

; ; w%‘

0.25 cm. Thus we may consider the following numerical example:

3 L e e s - VT RS2 T Ay
A LRI ’ APl NG

The region which is of importance for the experiment is given by
Osr=1 OUs2z2s54

Outside this region the model no longer represents the experimental
conditions. Yet the model considered above may give a realistic
picture if the concentration outside the region 0 < r» < 1,
0 < 2 < 41s very small compared to the concentration inside that
region.

In fact we have found the result that for v = 6 only 0.1669, of the
total mass 1s outside the region considered. FFor v = 3 this figure

becomes 4.459%, and for v = 2 still only 13.59,.

0

§ 2. Derrvation of the solution. The solution of (1.1) with diffusion
from a point source of intensity Q at the origin with diffusion in the
whole space — oo << 2 << oo 1s well known, viz.

_ N SRS
() e-vie+Valtra

col?, 7) = e e 2& %
0( Q) 4?K.D *‘\// ~2 _*..... 7#2 ’ ( }

where v = w/20D. The meaning of the constant () becomes apparent
1f we consider the mass transport through a small sphere of radius ¢
round the origin:

_ oc & 1
.D % - dg T e Q 4:;;@2 e (WM_M> — Q
) on 4 do \ o

In a similar way the solution of (1.1) with diffusion in the half-space
0 < z < oo behaves near the origin as given in (1.3). In the latter
case we should consider the mass transport through a small Aem:-

LEBY . L e g

e
sphere Vz2 4 v2 = p, 2 > 0 only:

" oc % 1
D % e e dg‘ pousmungR S ....,,.,.Qmm 2'71: 92 s et ( w.._.,,_.m> m——m— Q‘
I on 277 00 \ 0

The complete solution of (1.1) and (1.2) may be derived as follows.
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Thus to twice the solution (2.1} for a point source we have added a
~ontinaum of point source H(Jlutlﬂl’lﬁ from sources at z = — 5 r = 0

£

-t
% Skt R ITE
I

with intensitv — 2Q¢(2)dZ. The solution (2.2) clearly satisfies the
f’%éﬁfﬂmmmﬁ @qummn ( .. ) The unknown function qﬁ{f} will be de-

4
f‘x ~ e {f -+ vV £2 ra)

, 9, Jﬁ
¢ J?v? z) e 2(* ol7, ﬁ) —— O i —— f) , o (jj,
7,z (ro2) =y J#E Vit

it
i

the condition (1.2) gives
e Sy OT — T e —vlt+ ' ﬂ! + r%}
4 ‘v" t ~+ 2
From this we obtain at once
@(8) = v.
Thus we have found the following qo]ution

Q?) emiﬂ*i%\ﬁ#rﬁ)

( | ( B 2.?ZD \/ [‘2 - ?»2 ( )

&

which in turn may be written as

’
i - e
_ 3
" WiFFTE2 .
AR i m’# TP ﬁ: é
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- M ipmbad TG ‘
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2" 1
=,

&3

The integral on the right-hand side of (2.3) may be reduced to the
exponential integral

o—t

- (2.5)

We have

. % g E
Ay o) — S A/ ls (2.6)
i ( ? 3 S } ?[) | /;ff m.ﬁ;.in e .,,.,.‘;M,‘-M".MW..:E I E 1 { w ( 3 wyt—vn: ‘xf g 2 ..m§-m ?3) j | » *»

2 vV 2e 4y -



H. A, LAUWERIER

T L R R Nt g P P P R L it IR F T R e el R -+ 1T e B TR B T e i LR L L PPty S P LY TR TR ] ,cn‘.-_&g,f\ﬁ,im|Mcﬂm'msammwmw

i T L P W‘W"WM”W‘W‘WIW‘-ML-Mt'—»wm“:dmmm-;;;m;.-.;.-.g,.3_.,.4:_..,,..,..&._,3 i

.ﬁ:r..l‘e'.

['he exponential integral may be expanded either for small v or for

large x. We quote the following expansions

§ 3. Auxihary expressions. We shall derive an expression for the
total concentration at the level z:

X

C(z) = 27 J re(r, 2)d. (3.1

()

The function satisties the differential equation

d=C dC
which 15 obtained by integration of (1.1). Since € -»0 for ¢ > oo
C(z) 1s of the form
C(2) =
From (2.6) we obtain

5

co) = © ]( R )x |
) ) Z 1(7)

¢l

© G A R

5 = z?
L &

sO that

((2) == Q e=vE, (3.2}
W
We may remark that the same expression is obtained if we start
trom the solution co(r, z) of a point source of intensity Q diffusing
into the whole space — oo < 7 <7 0, 0 << 7 << oo
Next we shall derive an expression for the total concentration at
the level z outside the circle » = R:

.
»

A(R, ) = 27 | re(r, 2)dr. (3.3}

R
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From (2.4) we obtain

R TR T e R

AR, 2) = — v% fe~vt d e—v" t2+R?

which may be brought into the form

R2
AR, 2) = - Q-»—f e vu (1 — e )d%,
2D 142

z+ V22 +R2
or finally
AR, z) =
= Q{(l e ) e—v(z+Y 22+R?) 4 32 R2E1[v(z+V 22+ Rz)j}, (3.4)
w 74V 224 R2

In particular we have at z = 0O

(o =2
w
A(R, 0) = g {(1 —vR)e"vR + v2R2E,(vR)}.

From the asymptotic expansion of E;(x) for x — oo we obtain the
following approximation for large vR:

e~ VR 3
A (R , O) ~ ..Q.m _,w%wmwww,__ ( ] — - 11 . ) .

We shall now determine the total mass outside the cylinder
O<tz<<4, 0O<<r<<l for the case v=6. The total massin 0 << z < oo,
0 < ¥ << oco1s immediately obtained from (3.2):

D
M me(z)dz — Q — .
0

102

The total mass above the plane z = 4 1s

D
M 1 MJC(Z)dZ — Q e—8v,
_ w2
1
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which 1s entirely negligible. The total mass outside the cylinder
O<2<oo, 0O<ry < 1is

. (e ) -
— M2D e—vu | | — %2" du dz = “zﬂz et 1— 2 -} tdf =
1 0 (>

w (o g =)o (- 1+ B
= v : 5 e v | — —}—m--Z-- £1(7) ¢ .

The total mass outside the finite cylindrical region 0 < z < 4,
O <r <1 1sless than M; + Mo. If v = 6, we have

02 M o1 w2 M
o = 1.4 x 1021 — = 1.66 X 10—3,
oD QD "~ °

Thus for v = 6 only 0.166%, of the total mass is outside the region

0<2<4, 0<r <!l. For v =3 this figure 1s 4.459, and for
v = 2 still 13.59.

§ 4. Appendix. We mention the following alternative method
which gives the solution in a different form. The partial differential
equation (1.1) 1s satisfied by the elementary solution

Jo(ﬂy)e-—-z(v+‘\/22¥1;?)’ (4‘ 1)

A being an arbitrary parameter. From this we may construct the
general solution

c(r, 2) = ff(l)]o(ﬂy)e“z(w“ﬂ“vzf dJ. (4.2)
0

In particular the point source solution c¢o(7, 2) may be obtained in
this way

oo

e—v(z-t+ Vz2 ¢ r2)

. VA2 4+ 92 V22 + 72

(4.3)
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Fermula (4.3) may be derived from the following Laplace transform
(cf. Erdélyi, Integral transforms I, 4.15.9)

o0

fe“l’tjg(a\/t?* — b2) Al = ———eeee
V p2 + a?

e___b\ffpz_l_aé

(4.4)

b

In view of the condition (1.3) the function f(1) may be written as

_ @ A ’

where y(4) —> O for A > co. From the condition (1.2) we obtain

-ve“"v?‘

f(w + Va2 + v2)(A) Jo(Ar)dA = -
¥

0

From Erdélyi Integral transforms 11, 8.2.4 we quote the following

Hankel transform:

o0

| = Totayar = < (4.6
——— Jo(xy)dx = —— . ‘
] Va2 4+ x2 Yy
Thus we have
A v
p(4) =

Substitution of this expression into (4.4) and (4.2) gives

coO

c(7, z) --—--me A — Jo(Ar)e—z(+Vit+v?) dA. (4.7)

22D / vV 2202

It is possible to reduce this expression to the form (2.3) or (2.4).
We have

c(r, z) = 2:SD fe“”t ds f/'lJO(l?’)e“t””j33+ﬂ2 di =
0

2

= Q - | e~ vt dtfu']o(f ’\/ﬁm ‘02) e~ ¥t du =
27t D .

e (%
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— Z:SD e~ d [fjo "V u2 — vi}“ e—ut du] ==

4*-?

H

f wv”‘xt‘-w
e~vtd ~_
where in the last line again (4.4) has been applied.

S O. Generalization. In a similar way the solution may be found
ot the diffusion equation in the region z > 0, 0 < 7 < oo:

] 8(80)1820+2 oc 5 5 1
e e  — S— U - - == "
y or or /) ' 022 Oz ’ (5-1)
with a reflecting plane
0, * _o 5.2
N (5-2)
and a point source at 2z = a, = O
The solution is
U —w(t+ Y 12472
c(,z)=co(r, 2—a) +e2avcy(7, 2 -+ a) 2QD Za”f-e o mwrm d¢, (5.3)
7T \/tg—} y2
2ol
or
c(”,2) oo a .
# F%"js A ;! Q:U fi -f*';#:,:‘;:j.; ) o
==Co(7, ------a:)+ e-ﬁa’??co( Z4a)— 5 Eq[v(z4a-+V ((24-a)2472) ] (5.4)
ud
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