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é'ﬂ. Introduction

If £(x) is a function defined for all real x and satisfying
certain conditions as regards integrability (in the Lebesgue sense)
and behaviour at infinity we may consgider the following pair of
analytic functions
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which are regular respectively in the upper and lower half plane.
For real z the following limiting values may exist

1lim (b"’ (x+1y) :¢)+ (x) 1im (b (x+1v) :(})* (x), 1.2
y 0 y fo

and we have formally

dF (x) - 97 (x) = £(x) 1.3
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wherekfp deﬂOtQS a Cauchy 1ntegral 1, 9

g(x) = ‘}ﬁ Eiml.dt - 14m fﬂ _iﬁﬁflmflf;fl_.dt 1.5
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The formulae 1.3 and 1.4 are called the Plemelj formulae after

T. Plemelj who introduced them in 1908 [4] . It 18 not difficulc
to prove that the Cauchy integral 1.5 exists and the P emelj for-
mulae hold if f(x) belongs to a class of holderian functions. In
Muskhelishvilli's book a generalisation 1s made 1in so far that the

real axis 1s replaced by an arbitrary smooth line.

Thils report is the result of an attempt to generallise the class

of flunctions f(x) for which 1.5 exists and the Plemelj formulae
1.3 and 1.4 hold or at least hold almcst everywhere., It appears
that the relevant theorems are more or less explicitly contained
in the chapter on Hilbert transforms in Titchmarsh [23 . They will
be gilven here in a slightly adapted and simplified version with
speclal reference to the concept of the Cauchy integral and the
valldilty of the Plemelj formulae. In section 2 a simple theory
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will be given for functions of the L7(-co,co) class. It will be

shown that if the limiting values © "(x), (;)“ o(x) are inter-
preted as limifts in the mean the Plemel formulae hold almost
everywhere, In section 3 it will be shown that ("\ (X) (j) . (X)

exist not only a8 limits in the mean but also for almost all X as
ordinary limits.

Finally in section 4 it will be shown that also for the class

L(=-co,00) the formulae of Plemelj hold for almost all x. We note
that convergence in the mean does not imply convergence at any

i#l"

point. Wiener | 3} gilves an example where the limit 1n the mean 1S

zero whereas the 1limit in the ordinary sense does not exist 1in any
point. On the other hand convergence in the ordinary sense does

not imply convergence in the mean, even if the ordinary 1imit
exists everywhere, However, if both the limit in the mean and the
ordinary limit exist, at least almost everywhere, both 1limits are
equal almogt everywhere,

In these sections we shall consider Fourier transforms of functions

g 2

belonging to either the L or the L° class. If f(x) belongs to

2(-co ,co ) the Fourier transform of f(x) is defined by

A oo

F(x) = 1.i.m. —e— f e"1tX prpyar 980 1 f e 1% r(t)at.
A—>oo Vom { /2T Zs
By the norm of f(x) we shall understamd
OO0
def
2ol 9¢F { [Te(e)]® o ) ?

[’5 ] Muskhelishvili. Singular integral equations. Groningen 19353 .
17. Cf.also ¢3 and g 43.

{2] Titchmarsh. Introduction to the theory of Fourler integrals.
Oxford 1937. Ch.V.

(3] wWiener. The Fourier integral. New York 1933. p.29.



§ 2. Pure L° theory

2
Let f£(x) belong to L(-cu,c0). Then its Fourier transform

SN

F(X) = —— f e "X £ig)at

\/2Tr l ( ) 2.7

2 - OO
also belongs to L °(-cu,c0 ).

o 11Uz
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Since for Im z >0 #1, hfﬂ et 1 gt - f w0
2Tl oo -2 e u<Q

we obtaln by means of Parseval's theorem for the function d)+(z)
from 1.1 and similarly for d)"(z)

e =L [ et r(h)er mozeo,
41 /0 itz c.2
- _ A (A )
q‘) (z) Yor Le F(t)dt Im z<0
For real x we define (also in the 1.1.m. sense)
* 0
O 2.3
L - def 1 jf itx
Q7 (x) = P(t)dt
~ (O
Theorem 1
L. .m. 0" (x+iy) = 01 (x) ,
iio D7 (x+iy) = Q7 (x) o
1.m X+1y) = x) .
vTO A
Proof If (PK (z) = KfLT. g[ﬂeitz F(t)dt and similarly (bg (x),
then O
0% (2) - 0* ) || < 0T (2)-d ()l 107 (2)- dre)] ~ 107 (x)- ¢ 6]
For A—> o2 (bz(z) converges 1in the mean TO {$+(z) uniformly in v
since 9
1ot (z) - (bz(z)i ° < { F(t)|° dt —s 0O

Thus A may be determined such that the first and third term on the
right-hand side of the inequality given above are less than ¢€/3,
say. For a fixed A we have l:E.mq dDX(x+iy) m<bg(x) since

v v O

X
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= J# (q“emty)2 !F(t)! : dt —> 0 for y Vv O.
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Thus also the gecond term of the ineqguality is less than €/3 for
y sufficiently small and positive, and the norm of <b+(z)w<b+0x)
is less than ¢ for y sufficiently small and positive. This proves
the first part of the theorem. Similarly for 07 (z).

Theorem 2
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almost everywhere,
Proof The first part of this theorem is an obvious consequence of

2.1 and 2.3. For the second part we have

N

(b+(x) +<b“(X) = \/%E‘J,eitx F(t) sgnt at.
— O\D

On the other hand

O We e
_ [H £L§i§ll§!§:2l<h:mxwl~J/ ﬁifi-f(xﬂt)dt
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where £(t) 1s zero for }t§<i€ and -1 for |tl » &,
.& ~itx £ (t) e f sin tx
Since J{ e = dt = 21 —— dt,

we obftain by meang of the convolution theorem

% 0 . O # ?
s £(t) Px-t)dt = —me f et TX F(t){% f Wdujdt =
RN ? oo T O Lo _ %
~ &
oD i . -
= e f elP® w(t)sgnt dt - 71m f eltXF(t).{% f W‘du} at .
Ver -0 Ve L ss O
The square norm of thezgast term equals
o N .
_ 21 2 sin tu o
fiF(tH {ﬁ f e du} dt
w— ) O
and obviously tends to zero as ¢ -=>0. Thus
AN Oy
1.i.m. = j P(x+t)-0(%x-%) g¢ o 1 f c1P%5(t)sgnt dt and the

second part of thc theorem has been proved.



§,3 Mixed Lg theory

I.et again f(X) belong TO Lg(wcojoa), Then also

CAD

g(x) = 1 Efﬂ eltx F(t) sgnt dt 3.1

"""_"r_'.:'_.m
Vet Y

belongs to Lo(«co,on ).
We know already tift
1.4i.m. ;E j W dt = g(x)
E =0 £
We shall now prove
Theorem 3 % )

1im o f L) -f(x=t) g0 = g(x) 3.2
& —3(0 -
4
for almost all X.
We need the following two lemmas
Lemma 1 %% ) 11 in%l-belongs to L(-co,c2) then
T4+x
1 i &
1lim T j “-?————é (P(X“t)dt = (.P(X) 3.3
£ >0 Jew T O+ L
for almost all X.
Proof SO0 L OO | _
1 e g xet)at =g (x) + £ [ QLe)r glxe)29() g,
--:C.\:} T +< O T+ &
Since ¢ 1s an integrable function, we have for almost all X
1im  w (u)=0 *¥*)
u-~->0
where A {P |
w(u) = T J o(x+t) + P(x-t)-2¢(x) | do.
O
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) Cf. Titchmarsh, Theory of Fouriler integrals theorem 91.

%% )A generalisation of this lemma 1is gilven in Titchmarsh l.c,
theorem 13,

#% )The point set where this is true is a Lebesgue set. Cf. Tltch-
marsh. Theory of functions 11.6.
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.../ g_‘% O(x+t) + P(x-t) - 2 @(X)} df = ;[ + f 5
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f = 5 W(u) +[ “T‘?‘?gt s @ (£)dt < Fw(u) + Fex(u')
0O u +< O (t +€ ) 2 ?

dt , provided || <1,

C\j \
jfmz} }6](ug+1) (’ | Q(x+t)+ P(x-6)-2 ¢ (x)
£+

Eﬁxuuezgktaan b%mmade arbitrarily small for suitable u and since for
any [ixed u&/ —= 0 as & -—=>0, we have for almost all X
u

& —> 0O

lemma .

., ~_& ) g = o
1im f m {(P(x%—t)+ t;.f(x_t)-QgeD(x)J dt =0 which proves the
O

LEEEEWE_K) 1r ﬁ%%%%-belongs to L(-mv,o0)

. ( fo?i-i—t - P(x-1) . -2 + ( . ) ) 1 z )
&1iiﬂo L E( T at { mlqj( +t) ‘70(}{ t)jdtj O

3.4
ffor almost all ¥x.

Pronf ,
For almost all X we have 1lim L(u) = O where
u — O U
%
_ |
63(u) mﬁjf }<p(x+t)—tﬁ(xmt)}dt .
O

et x be such a point. Then the expression between brackets in 3.4

may be written acg

o~ 5 e | \
-mm;memm ( - - (“dt - / L ~5€>x+t - @(x-t)rdt
‘[ L(t +82) 1({)(X+t) CP(X t)J | ti2+£§§ LCJL( ) ; ( T 3
&£V - O
which is absolutely less than

1 > _...C\J‘l l
| 3 : / px+t) - PIX-T

f —5——- 40 (t) + &7 T at o+

5 t(t"+€7) 4
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We now proceed to the proof of the theorem.

Since
1 itx e ' - E]x]
. e —-—2—-———2- dt = \/ - £ 3
VZ"E‘C :0‘3 t _*__6 2
and /03 ‘
] 1 1tx T /= &iX
——— - dt = 1 = SN X
— TN
we have according to Parscval'ls formulsa
PROS A
e Tt  _ e bt 4e

According to lemma 1 the right-hand side of this equallty tends

to g(x) as &€-—0 for almost all x. According to lemma 2 we have
for almost all X

{"'J

1im - j M 4t = 1im = f —eic-ggff(x-l-t)-_f(xmt) At =
£+

s — 0 £ —> 0 L }

C 1m0 (xriy) = OT(x) = £(x) - ig(x)

) v *O 3.6
1m0 (x#iy) = 07(x) = -f(x) - ig(x)

o v T O

for almosgt all X.

Proof

a £$+ (x+1¢) wétw(xmi&) Jﬁ o x) — f(t)dt — £(x)

e

for almost all x according to lemma 1.
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%) Cf. Titchmarsh. F.I. theorem 93.
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for almost all x according to 3.5 and lemma 1.

Combining both theorems we have for fg,i*+(x) ana (?)"(X) as defined

+
by 1im i%“ (x+1y)
¥y >0

Theorem 5

L 0T ) 0T = (k) 3.7
l OF (%) + O7(x) = 1im 5 ] EW dt. 3.8



§§4 .7 theory

If £(x) belongs to L{-cvo, ) we have

1im {’¢+ (x+i¢) ~d) (x-1 € ;}mzf(x)

as the prool of the first relation of theorem 4 still holds in
this case,

1T 1s, however, questionable whether the second relation of
theorem 5 remains valid. The Fouriler transform of f(x) exists,
but does not necessarily belong to L(-oo,o00) so that it is un-
certain whether g(x) exists as the inverse transform of i F(x)sgnx.

STill the results of the preceding section remain true and we have
the remarkable Theorem

%
r=

Theorem ©
If f(x) belongs to L{(-co,c2) then

(b+ (x) = 1lim d)+(x+iy)

y Jr O
and %
@”i(X) = lim (b”(x+iy)
y 'O
exist for almost all x and almost everywhere
LN
h (X)+(ﬁ“(x) = 1lim QL—JF r(x+t)-£(x-1) dt 4.1
r £ -3 (0 ol E v

We need the following lemma

Lemma 3
If Y(z) is regular for Im z >0 and 1if

el < olsl’

for some C = 0O and ;y;ao then

1im Y (x+1y)
yvo

exists almost everywhere,

a Z
Proof Consider the function - (z) mdmﬁKLmlﬁz :

The integral

Im z > O
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%) Cf., Titchmarsh., F.T. lhcorem 105.



~10 -

that there is a function ¢(t) with

O
g -1%XT -y
o= [ ey teriyax = eVE p(s) :.2

— O\

By Parseval's Theorem
o 0

zjf SWfb(x+iy)i2 adx ﬁ“/r eVt ﬁp(t)}gdt :

- O — OO

since the left-hand side is bounded as y—>ce we must have a.e.
©(t)=0 for t <0, Since it is also bounded as y -0 ¢(t) belong

L

tfe; LQ(O,QG) and we have from 4,2
1 / itz _
¥olz2) = == | e @ (t)dt Im z > 0.
O

From the preceding section, theorem 4, we know that l%moﬁ%b(x+iy)
exlsts almost everywhere, The same 1s true for '\{/’(Xﬁ-ﬂ?}y\j .

We now proceed to the proof of the theorem. We have

/C}D
+ ] L f(t) .
0 (2) = = oz at
- NY
N O
mﬁ%. 1 f(x-t)dt +%E,[ C f(x-t)dt.
oo T +V 0 T +y

Without loss of generality f(x) may be supposed to be real and non-
negative., Then
GF (x+1ly) = U + iV

where U 2 0. The functilon GXpﬂ<@+(z) satisfies the regquirements of
the preceding lemma since it is uniformly bounded for Im z > 0.

Hence 1lim exp - {)V+( z )} exists almost everywhere. We know already
that’Uyéégda to the limit f(x) for almost all x so that i!+(z) has

a finite 1limit for almost all X.

In particular we have proved thatv

| 1 (¢
llim — f —S5TTS f(}{mt)dt
E-20 rL___,m T +&

exists almost everywhere. The rest of the proof follows easily

from lemma 2 of the preceding scction,



