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Summary

A substance is subjected to cylindrical Poiseuille flow, diffusion and a
chemical reaction. In this paper the stationary state will be considered.
It is assumed that the axial component of the diffusion can be neglected.
Then the problem can be reduced to an eigenvalue problem determining an
orthogonal set of eigenfunctions. Also a simplified model will be considered
where the cylindrical wall i1s replaced by a flat wall. This problem can be
solved by means of Laplace transformation. An explicit solution for the
concentration at the wall has been obtained.

§ 1. Introduction. A fluid 1s flowing through a circular tube
which is determined by 0 <7< R, O < 2 < L 1in cylindrical
coordinates. The velocity of the fluid 1s constant and according to
Poiseuille’s law 1t 1s given by

v(7) = V(l — ;-;).

A substance of concentration C(7, 2) moves with the fluid and is
subjected to a diffusion process with diffusion constant D and a
chemical reaction according to which

6C
- _KC,
- O

where ¢ is the time and K a known coefficient. The substance
enters the tube at 2 = 0 with the concentration Cgy. One asks the
concentration at the end of the tube and in particular the concen-

tration at the wall » = R. It can be assumed that the stationary
state has been reached.
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The problem is obviously governed by the partial differential
equation

02C 1 eoC 02C 2\ 3
I T RO TP

A R2/ oz
with the boundary condition

2 =0, C = C,, (1.2)
ry = R, oC/or = 0. (1.3)

In the following sections two different ways of attack will be
discussed. In § 2 the simplifying assumption will be made that
the axial component of diffusion can be neglected. Then it is
possible to represent the solution in the form

o

C(r, 2) = 21] Ap €7 "% @ (rY), (1.4)
where »* and 2* are dimensionless variables proportional to » and
z, and where the @, form an orthogonal set of eigenfunctions with
eligenvalues wy.

This representation fails when 2* is so small that a great number
ot eigenfunctions has to be taken into account. In that case supple-
mentary information can be obtained from the second method
which will be discussed in § 4. There the concentration 1s considered

only near the wall of the tube. If a new variable ¥ is introduced by
means of

y =R — vy (1.5)
and if R is large, (1.1) may be approximated by
( 02C 02C ) 2V eC
D

- Y Ny — KC =0 1.6
8y2+ 022 R yaz (1.6)

with the boundary conditions
2 =0, C = Cy, (1.7)
y = 0, oC/oy = Q. (1.8)
If again the axial component of diffusion 1s neglected, the problem
can be solved by means of Laplace transformation. The Laplace

transform of C(y, z) is a relatively simple expression involving
modified Bessel functions of order 4. The inverse transtormation
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can be performed by means of term by term inversion ot a power
series expansion. We find eventually for the concentration at the

wall.
C(r,2) = Co X dz2"7'3, (1.9)
0

where z' is the dimensionless variable determined by

2=z *—?V D1/2 Kﬂafz.. (IIO)

R
The first few coetfficients are
dop = 1, dy = —1.869, dg ==1.978, dg = — 1.556.

§ 2. First method. In order to get a first impression of the solution
of (1.1) with (1.2) and (1.3) we shall omit the diffusion. For D = 0,

(1.1) reduces to

r2 \ oC
Vil — —)— -+ KC = 0, 2.1
(1= %) 5 e
which can be integrated without difficulty. The solution becomes
»2 \—1
C = C() CXPp — [KV”I (1 — ﬁ) Z:I . (22)

At r = R we have C = 0.

The effect of the diffusion will be to yield a non-vanishing
concentration at the wall. This effect will be mainly due to the radial
component of the diffusion. Therefore the axial component of
ditfusion in (1.1) will be omitted so that this equation reduces to

02C 1 eC V (l y2 ) oC K

= ~ = C=0. (2.3)

‘L_ —— DO —
y or D
The solution of the full equation (1.1) would present analytic
complications which do not occur in the treatment of (2.3).

It will be convenient to introduce the following dimensionless
variables:
. VR?
4D

y - 7R, 2z >z

C - C*Cy. (2.4)

It further « is defined by
a = KR2/4D, (2.5)
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(2.3) passes 1nto

G Y R P Lo
T T e T M T g m et =0 29

with the boundary conditions
¥ =0, C" =1, _ (2.7)
y* = 1, oC*/or* = 0. (2.8)

For simplicity’s sake the asterisks will be omitted from now on.

If in (2.6) the trial solution e™“?¢(7) 1s substituted for C(r), the
following differential equation 1s obtained

deg 1 dcp

¥ 7

1+ 4lw(l — 72) — o] @ = O. (2.9)

This equation is of the contluent hypergeometric type. Some details
concerning its solutions will be given in the following section.
There is a regular solution of the type

p(r) = § byrak (2.10)
0

and a singular solution which is infinite at » = 0. In view of the
physical situation only the regular solution can be used.
Substitution of (2.10) into (2.9) gives with bo = 1:

by = —(w — «),
be = o + (w0 — )2,
by = g%[Sw(w — «) + (w0 — «)3], etc.

Further coefficients can be calculated frorﬁ the recurrent relation
R2bg + (w — a)bp—1 — wbr—_o = 0, R > 2. (2.11)

The boundary condition (2.8) gives the eigenvalue equation
> kb = O. (2.12)
1

From this a set of real and positive eigenvalues w3, w3, w3 ... can
be derived. The corresponding eigenfunctions @1, 2, @3 ... form a
complete set with the following orthogonality relation:

1
[7(1 — 72) ppupn dr = 0, m +* n. (2.13)
0
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The proof of (2.13) is as follows. From (2.9) we obtain for ¢, and

Pn
rem” + @m’ + 4y com(l — r2) — oy = 0,

and
ron” + @n’ + 4r[wp(l — 72) — o] @y = 0.

If the first relation 1s multiplied by ¢, and the second relation by
®m, We find for the difference

d
= [om'Pn — ¢men)] + 47(1 — 7%)(0m — wn) gmpn = 0.

Integration of this relation between » = 0 and 7 = 1 leads in view

of the boundary condition at » = 1 at once to (2.13).
It « 1s small a power series in « can be obtained for the first

eigenvalue. We find
062 053
e 2 —— e ~ | O 4 i )
w1 o 5 ! 20 | (cx ) (2 14)

It the solution of (2.6) with (2.7) and (2.8) is written in the form
C(r, 2) = 3 anpn(r) e~ “"7, (2.15)
1

then only the boundary condition at z = 0 need to be satisfied.

This is possible by a suitable choice of the coefficients a,. Condition
(2.7) requires

[ = 3 anpn(7). (2.16)
1

The coefficients a, can now be determined by means of the ortho-
gonality relation (2.13). We find

1

anoj?’(l — 72)) @ 2(7) dr :;7(1 — 72) pnu(7) dr. (2.17)

I{ : 1s large, the first term of the expansion (2.15) gives a result
sutficiently accurate for some purposes. Hence for z large

0
Cd) m e i) en (218
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It also « 1s small, we have the first order approximation

P1(r) ~ 1 — or?(l1 — }7?), (2.19)
so that
C(r,2) =~ (1 + }a) [1 — ar?(l — 3r2)] e % (2.20)

§ 3. Specral properties. In this section some special properties
of the eigenfunctions of the previous section are collected. The
regular solution of (2.9) can be represented by

where
. ) %2
b? dmm?-f- 1 a "-3: a((‘L ‘-:!- o T » e 3.2

In the familiar notation of the Whittaker function we may also
write

p(r) = @rPVeo)t M, _,  (2rVw). (3.3)

2+ W

From the formula 1)

2m — 1 \*% dz
M m(2) = o T2t 1)z=m+% f e%‘uz< - ) _E . (34)

2711

where the path of integration L is a loop encircling —1 and -1
in the positive direction and avoiding the negative real axis, we may

derive
1 f . (u-—-—-—-l),‘"“j"" du
= —— | e¥"Vv® — JPVe - — (3.5)
?() 27 1w -+ 1 (2 — 1)¢
L
The eigenvalue equation becomes
2711 u 4+ 1 (142 — 1)2

L

The asymptotic solution of this eigenvalue equation 1s determined
by the third order saddlepoint at the origin. Proceeding as described
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in the paper cited above we find

'\/(,o 1)
_ o — 0,
COS( 5 - Z 7T

so that the higher eigenvalues are approximated by

wm ~ 4(m + %)2. (3.7)

This approximation 1s independent of «. The influence of « can be

expected to influence the lower eigenvalues in the sense that the
lowest eigenvalue 1s most 1nfluenced.

§ 4. Second method. In this section we shall consider the pro-

blem (1.6) with (1.7) and (1.8). If again the axial component of
diftusion 1s neglected, the problem reduces to

02C 2V aC K

— ~ - —(C =0, 4.1
£y RD Y 0z D (4-1)

with
z==0, C = (Cy, (4.2)
vy =0, oC/dy = 0. (4.3)
lo this we may add the extra boundary condition
y = oo, C = finite. (4.4)

It will be convenient to introduce the following dimensionless
variables

3V
y =y’ DK e g s — D': K= C — C'C,. (4.5)
Then (4.1) passes into

2C 2 o, »
oye 37 oz o (4-6)

with the boundary conditions

Z’ — O’ C, — l’ (4‘7)
y' =0, oC'[ey’ = 0, (4.8)
y' = oo, C’ = finite. (4.9)
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The choice of the factor §, somewhat arbitrary at first sight, will

prove convenient later on.

This problem will be solved by means of Laplace transtormation.

If from now on the dashes are omitted, we put

(v, P) mje”w [1 — Cly, 2)] d=.

Then (4.6) i1s transformed into

d2f 1
(] —
1y? (1 + $py)f 5
with
and

y = oo, f == finite.

If next the following substitution is performed:

x =731 + §py),
(4.11) passes 1into

dzf 9 L m9 | — /g
rr-a A

with
x = p~'3, df/dx = 0,

X = OO, f = finite.

The corresponding homogeneous equation

a2y
o - ,.i X f — O

dx2

has the following fundamental solution
fr(x) = 2130 (6,
fa(x) = x”ﬁK'l;g(xagg)'

(4.12)

ol
8 = 2J
st ® -y

(4.15)

(4.16)
(4.17)

A few properties of these functions are collected in the following
section. Here we mention the fact that both solutions are regu-
lar, but that f1(x) becomes infinite as x — oo, whereas fe(x) con-

verges to zero. Furthermore we have
3
%

fi’ (%) f2(x) — fi(x)fe'(x) = -
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It can be easily verified that the solution of (4.12) 1s of the following
form:

fx) = 2 p=% [1(x )ffz( 8 dE + fo®) [ F1(8) dE + Afa(x)], (4.19)

where xg = »~°* and where A follows from (4.13). We find

(%)
A = 7 (o) jfz (4.20)

From the behaviour of fi1(x) and fo(x) at infinity it can be deduced
that (4.19) also satisfies the condition (4.14).

The wvalue of f(x) at x = %o has an 1mportant physical signifi-
cance and in the further discussion we shall restrict ourselves to
that value. We have from (4.19) and (4.20)

Fxg) = 2 p=0s f2'(%0)/1(%0) — f1"(%0)/2(%0) ffz(f
2

f2' (o)

which on applying (4.18) reduces to

flxo) = — 5 p~°0 J f2(&) dé. (4.21)

Substitution of the expressions (4.16) and (4.17) gives the alter-
native expression

f(x0) = I I (4.22)

I'he inversion of this expression is very complicated. However,
in a relatively simple way an expansion in negative powers of 2
can be obtained which leads to a corresponding expansion of C

In positive powers of z. By means of the expansions given in the
following section we obtain

2745

Cj?ﬁ 3 ‘, (4.23)

[~ =

=p48
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where
co = 1.688, Cg == ——-4.040,
C1 = -—--2.355, Cq — 5,189,
Co == 3.1 13, Cy == ---4.026,
etc.
The 1nverse ot (4.23) 1s
| —C(0,2) =3 2 kR
— , Z) —= T e A 3 ] 4.24
‘? (27 —+- 5) .24
J ol
3
or
o 2
C(0, 2) = X d;z3 (4.25)
0
with
dO = 1 d4 — 1.007
dy = —1.869 ds = —0.560
Ao = 1.978 de = 0.168
d3 = — 1.556 etc.

Reintroduction of the original variables gives the first order
approximation

K R3's 7%/s
) (4.26)

C(0, z) ~ Co(l — 0.899 - s
$ 5. Special properties. In this section for reference’s sake a few
special properties of the functions fi1(x) and fa(x) of the preceding
section are collected. The formulae given here can be derived
easily from well-known properties of the Bessel functions.
We quote the following formulae:
>v+ 2k

w

1
e T\

Iv(w) - 020 B
0

and
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and

o 492 4 1
o)~ e (14 Tt )

Hence we have

1/ o0 1 <x3 )}C
SRS T (R

and

72x
From o
7T
K dw = - e
f () du 2 cos (vmr/2)
it tollows that o
27T
dé = ——— .
f f2le) de 34/3
Furthermore 0
. Nls 2—1/3 /3
AT S NP L
Of (3) 2I'(5) 16 I'(5)

The calculation of the coefficients can be facilitated by giving the

following numerical constants
I'(3) = 2.678 939,

I'(3) = 1.354 118,
2'/s = 1.259 921,
273 = 1.587 401.
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